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Abstract 
 
Urban planning, epidemiology research, and environmental management have significant challenges when predicting 

intraurban noise levels in communities, particularly in developing nations. To accurately predict changes in noise levels during 

intraurban development and the resulting noise pollution, the majority of existing noise-predicting models are limited. In this 

study, two noise prediction models namely, Classical Extreme Learning Machine (C-ELM) and Bi-directional Extreme 

Learning (B-ELM) were developed for Tarkwa Nsuaem Municipality, and their performances were evaluated using statistical 

indicators. Using statistical measures to compare the models' performances, the B-ELM outperformed the C-ELM. The 

indications show the difference, with the RMSE of B-ELM being 0.87 dB and that of C-ELM being 3.67 dB. Additionally, the 

B-Standard ELM's Deviation and Mean Square Error were 0.80 dB and 0.1399 dB, respectively, while for the C-ELM, they 

were 3.73 dB and 0.06 dB. The findings of the B-ELM were used to create a map that depicts the distribution of the expected 

noise levels. It was discovered that there is a hazard, meaning persons who live in that region are at a high risk of experiencing 

adverse health impacts from noise levels above 65 dB when comparing the expected noise levels to the EPA limits. 
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1 Introduction 

 

In recent years, the escalation of ambient noise 

pollution in urban areas has emerged as a significant 

concern driven by diverse factors, including cultural 

diversity, social events, industrial growth, and 

infrastructural expansion. This surge poses grave 

health risks, as highlighted in literature citing 

cardiovascular issues, hearing impairments, sleep 

disturbances, and mental health disorders (Baffoe 

and Duker, 2019a; Passchier-Vermeer and 

Passchier, 2000). Despite regulatory efforts, such as 

mandates for hearing protection in developed 

nations, workplace-induced hearing loss remains 

prevalent (Golmohammadi et al., 2018; Jariwala et 

al., 2017; Singh and Davar, 2004; Basner et al., 

2014). 

 

With human activities and industrial operations 

continuing to expand, the trajectory of noise 

pollution is set for further increase, necessitating 

rigorous research to update noise pollution indices 

for informed urban planning and environmental 

conservation (Baffoe and Duker, 2019a). Efforts to 

mitigate noise exposure risks in workplaces 

safeguard workers and enhance operational 

efficiency (Golmohammadi et al., 2018). 

 

In this context, this study aims to evaluate the 

effectiveness of extreme learning machine (ELM) 

strategies in predicting noise levels. ELM, a variant 

of single-hidden layer feedforward neural networks, 

offers rapid learning and commendable  

generalisation performance (Huang et al., 2006). 

The research will scrutinize four ELM 

methodologies, including bi-directional ELM, to 

assess their performance in noise prediction. 

Subsequent refinements to the ELM framework, 

such as optimally pruned ELM and fully complex 

ELM, have further improved learning speed and 

generalization capabilities (Huang et al., 2015; 

Huang et al., Rong et al., 2008; Jordan and Mitchell, 

2015; Parbat and Naganaik, 2007). 

 

By comparing the performance of Classical Extreme 

Learning Machine (C-ELM) and Bi-directional 

Extreme Learning Machine (B-ELM) methods, this 

study seeks to provide insights into their efficacy in 

facilitating accurate environmental noise 

assessments, thus aiding in noise pollution 

mitigation and urban planning initiatives (Albadr et 

al., 2018; Ding et al., 2014;) This research 

contributes significantly to the field, providing a 

nuanced understanding of noise prediction 

methodologies and their implications for public 

health and urban development. The Ghanaian 

Environmental Protection Agency's mission is to 

manage, protect, and enhance the country's 

environment while also providing standard solutions 

to worldwide environmental issues. Therefore, it has 

set noise level standards for the communities in 

Ghana (Mensah, 2018).  

 

Several studies emphasize the importance of 

comprehensive research on environmental 

pollution, notably noise pollution, to create a 

welcoming atmosphere and facilitate effective city 

planning and environmental management (Baffoe 

and Duker, 2019b). Various models have been 

developed to forecast noise levels accurately for 

these purposes. Notable models include the land-use 

regression model proposed by Morelli et al., (2015), 

the Multiple Linear Regression and Hybrid 

Approach by Baffoe and Duker (2019), and the 
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Regression Equation for Modeling 10% Exceeded 

Sound Level (L10) as a Function of Traffic Density 

(L10) by Rao and Mitra (1971). Cho and Mun 

(2008) introduced a highway traffic noise prediction 

model that considered different road surfaces, while 

Parbat and Nagarnaik (2007) proposed assessment 

and modelling of noise levels using ANN (Ragettli 

et al.,2014).  

 

Short-term traffic noise by Morelli et al., (2015), the 

Multiple Linear Regression and Hybrid Approach 

by Baffoe and Duker (2019), and the Regression 

Equation for Modeling 10% Exceeded Sound Level 

(L10) as a Function of Traffic Density (L10) by Rao 

and Mitra (1971). Cho and Mun (2008) introduced a 

highway traffic noise prediction model that 

considered different road surfaces, while Parbat and 

Nagarmaik (2007) proposed an artificial neural 

network model for predicting sound levels under 

traffic conditions. 

 

Studies suggest that Artificial Neural Networks 

(ANN) outperform other approaches due to their 

ability to approximate complex nonlinear mappings 

efficiently. Feedforward neural networks, 

particularly single hidden layer feedforward 

networks (SLFNs), have been extensively studied 

for fault tolerance and learning capabilities. 

However, the iterative parameter adjustment process 

makes conventional learning methods for SLFNs 

prone to getting stuck in local minimums. To 

address these limitations, Extreme Learning 

Machines (ELM) have emerged as a hybrid system, 

(Bengio, 2009; Yang et al., 2012) combining the 

advantages of neural and artificial neural networks. 

ELM compensates for the deficiencies of traditional 

artificial neural networks by providing faster 

learning capabilities and efficient approximation of 

complex mappings (Baffoe and Duker, 2019b). 

 

Therefore, this study on noise pollution modelling is 

crucial for creating a conducive environment and 

facilitating effective urban planning and 

environmental management. The development of 

advanced models such as ELM holds promise for 

more accurate and efficient forecasting of noise 

levels, aiding in sustainable development efforts 

2 Resources and Methods Used 

2.1 Study Area 

The Tarkwa-Nsuaem Municipality (TNM) is 

situated between 5⁰ 17' and 5⁰ 19' north latitude and 

1⁰ 59' and 2⁰ 00' west longitude. It is approximately 

85 kilometres north of Takoradi, Ghana's Western 

Regional Capital. Tarkwa-Nsuaem Municipality 

was established in 2007 from the previous Wassa 

West District by Legislative Instrument (LI) 1886. 

To the north, south, east, and west, it is bordered by 

Prestea Huni-Valley, Ahanta West, Mpohor Wassa 

East, and Nzema East (Mensah, 2018). Fig. 1 shows 

the selected study area of TNM 

 

Fig. 1: Tarkwa Nsuaem Municipality 

There are 90 477 people living in Tarkwa Nsuaem 

Municipality, according to the 2010 Population and 

Housing Census, with men outnumbering women 

(51.6% to 48.4%). The municipality's population is 

youthful, with 38.1% of people under the age of 15 

and just 4.4% of people over the age of 60. As a 

result, the municipality's demographic pyramid has 

a wide base and a small proportion of elderly 

residents. The overall age dependence ratio for the 

municipality is 69.6, with females having a higher 

ratio (72.6%) than men (67.1). (Anon., 2014). The 

municipality is in a rainforest zone, with trees 

ranging from 15 to 40 meters. 

2.2 Methods Used 

2.2.1 Data Collection 

The noise levels at certain places, such as 

monitoring stations, churches, workshops, and road 

networks, were measured using the sound level 

metre. The noise levels were also estimated using 

the area's digital city map. The microphone's 

diaphragm responded to the Variations in air 

pressure brought on by the sound waves when the 

sound level meter's microphone picked up those 

waves in the air. The device's screen displayed the 

sound pressure in decibels (dB) after the movement 

in the diaphragm 

2.2.2 The B-ELM 

Bi-directional Extreme Learning Machine (B-ELM) 

in a recently suggested learning approach for SLFNs 

called bi-directional ELM, specific hidden nodes are 

not picked at random. According to theory, this 

method tends to zero out the network output 

relatively early in the learning process. The 

recommended B-learning ELM's pace can be tens to 

hundreds of times quicker than existing incremental 

ELM techniques.  
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Additionally, the outcomes of the simulations show 

that the B-ELM, which has just two hidden nodes, 

can perform comparably to the I-ELM, which has 

hundreds of hidden nodes in terms of generalization. 

As a result, B-ELM may significantly reduce the 

number of concealed nodes compared to other I-

ELM. The lianas can reach into the upper tree layer; 

therefore, the forest is dense with them. Mahogany, 

Wawa, Odum, and Sapele are examples of 

economically valuable trees. The Bonsa Reserve, 

Ekumfi Reserve, Neung South Reserve, and Neung 

North Reserve are among the main forest reserves in 

Tarkwa Nsuaem (Anon., 2014). 

The terrain is undulating, with an average height of 

roughly 70 meters. The highest point is between 150 

and 300 m above sea level. The Bonsa River and its 

tributaries, such as Buri, Anoni, Sumin, and Ayiasu, 

drain the area in a dendritic pattern (Anon., 2014). 

 

Was transformed into electrical impulses, which 

were subsequently translated back to sound 

pressure. 20. The locations of the several spots 

where the sound levels were monitored were 

selected using the portable GPS. Ghana Meter Grid 

was used as the receiver's coordinate system. 

 

The GPS receiver at each location took a long time 

to monitor more than four satellites before readings 

could be taken. This was done to ensure the obtained 

coordinates were within the allowable error margin. 

When calculating the horizontal coordinates of the 

various points, it was ensured that the GPS was 

unobstructed by any canopy.  

 

Residual error function e and the network output 

weights B are related in the context of B-ELM, and 

this connection is known as the error-output weight 

ellipse relationship. Equation (1) gives an 

illustration of this:  

 

    
β2𝑛

2

β2𝑛−1
2 +

‖𝑒2𝑛‖2

‖𝑒2𝑛−1‖2 = 1                                             (1)    

 

 𝛽2𝑛 2 𝛽2𝑛−1 2 + ‖e2𝑛‖ 2 ‖e2𝑛−1‖2 = 1                     (2) 

 

Where βi is the weight linking the ith hidden node to 

the output node, and ei stands for the residual error 

function for the present network with i hidden nodes. 

This phrase emphasizes that the success of learning 

only rests on Equation (3). 

 
β2𝑛

2

β2𝑛−1
2  , if  ׀ 𝛽2𝑛  ׀/׀  𝛽2𝑛−11 →  ׀, ‖ℯ2𝑛‖ ≪ ‖ℯ2𝑛−1‖ 

(3) 

Finding improved hidden node parameters (a, b) is 

the main goal of the approach to decrease the neural 

network's residual error as rapidly as feasible. The 

hidden node parameters (a, b) are produced 

randomly, much like I-ELM, where the number of  

 

𝐻2
𝑛𝑒=e2𝑛−1.(𝛽2𝑛−1)-1                                                  (4) 

 

 𝛃𝟐𝐧 =  
 (𝐞𝟐𝐧−𝟏,𝑯𝟐𝒏

𝒆 )

‖𝑯𝟐𝒏
𝒆 ‖

𝟐

⬚

                                             (5) 

 

      β2n + 1

=  
 (e2n − 1, 𝐻2𝑛

𝑟 + 1)

‖𝐻2𝑛
𝑒 ‖2

⬚

                                            (6) 

h: R → R is provided as the sigmoid or sine value 

activation. Given a succession of error feedback 

functions (x, a,b) based on Equation (7). 

 

Hidden nodes L ∈ {2n+1, n ∈ Z}. However, the 

parameters of hidden nodes (a, b) are discovered 

when the number of hidden nodes L ∈ {2n, n ∈ Z}. 

For any continuous goal function f, given SLFNs 

with any bounded non-constant piecewise 

continuous function H: R → R for additive or sine 

nodes, a randomly generated function sequence 

𝐻2𝑛+1 𝑟 is produced. The error feed-back function 

sequence 𝐻2𝑛  ,n ∈ Z, 𝑙𝑖𝑚𝑛→∞‖𝑓 − (𝑓2𝑛−2 + 

𝐻2𝑛−1𝑟 . 𝛽2𝑛 + 𝐻2𝑛  . 𝛽2𝑛‖ = 0 holds with a 1 percent 

chance if the following Equations (4) to (6). 

 

𝐻2𝑛
𝑒 =  e2n − 1 . (β2𝑛−1)−1

                                                     (7) 

 

If SLFN is trained by B-ELM for any continuous 

target f and f = T, then we have  

\{(τ2n−1,|β2n|/|β2n−1|)|τ2n−1 ∈ {0, 1},|β2n|/|β2n−1|∈{1, 

0}. 

 

Moreover, C-ELM exhibits excellent generalization 

capabilities and can approximate any function when 

utilizing typical activation functions like additive or 

Radial Basis Function (RBF). Its distinctiveness lies 

in the random feature mapping step, unlike Support 

Vector Machines (SVM) that rely on kernel 

functions or deep neural networks using techniques 

like Restricted Boltzmann Machines (RBM) or 

Auto-Encoders/Auto-Decoders for feature learning. 

ELM accommodates various nonlinear mapping 

functions, making it versatile for real-world 

applications, including classification and regression 

tasks. For ELM, Given N distinct training samples 

 

(𝑥𝑖, 𝑡𝑖) ∈ 𝑅𝑛 × 𝑅(𝑖 = 1, 2, , … . , 𝑁), 

 

 
(8) 

𝑂𝑗 is the output vector of the SLFN with respect to 

the input sample 

xi.𝑎𝑖 = [𝑎𝑖1, 𝛽𝑖2, … . 𝛽𝑖 ] and 𝑏𝑖 learning parameters 

generated randomly of the jth hidden node, 

respectively. 

𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑚]𝑇 is the link connecting the 

jth hidden node and the output nodes. 
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𝐻𝛽 = 0                                                        

(9) 

where, 

xi.𝑎𝑖 = [𝑎𝑖1, 𝛽𝑖2, … . 𝛽𝑖 ] and 𝑏𝑖 learning 
parameters generated randomly of the jth hidden 

node, respectively. 

𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑚]𝑇 is the link connecting the jth 

hidden node and the output nodes.  

 

Equation (8) may be used to express the output of an 

SLFN with 𝑁 ̃ hidden nodes, which can be additive 

or RBF:  

 

(𝑥𝑗; 𝑎𝑖, 𝑏𝑖) is the major activation function of ELM. 

Set 𝑎𝑖.𝑥𝑗 be the inner product of ai and xj. Equation 

(3.1) can be written compactly as Equation (9): 

 

(𝑥𝑗; 𝑎𝑖, 𝑏𝑖) is the major activation function of ELM. 

Set 𝑎𝑖.𝑥𝑗 be the inner product of ai and xj. Equation 

(3.1) can be written compactly as Equation (10): 

                        

𝐻𝛽 = 0                                                                                    

(10) 

 

where, 

 

 𝑓(𝑎𝑖. 𝑥𝑖 + 𝑏1) ⋯  (𝑎�̃�. 𝑥1 + 𝑏�̃�) 

𝐻 =     [            ⋮          ⋱         ⋮   ] 

𝑓(𝑎𝑖. 𝑥𝑁 + 𝑏1) ⋯ (𝑎�̃�. 𝑥𝑁 +𝑏�̃�)            (11) 
 

β =  [
β1

𝑇

⋮
β𝑁

𝑇
]

𝑀𝑥𝑛

                                                   (12) 

 

and  

 

O =  [
O1

𝑇

⋮
O𝑁

𝑇
]

𝑀𝑥𝑛

                                                  (13) 

 

H is referred to as the hidden layer's 
output matrix in this context to reduce the ‖𝑂 − 

𝑇‖ network cost function. According to ELM 

theories, the learning parameters 𝑎𝑖 and 𝑏𝑖 of the 

hidden nodes can be chosen at random without 

taking the input data into account. Once 

Equation (3.2) is transformed into a linear 

system, the output weights 𝛽 may be calculated 

analytically by solving Equation (14) for the 

least squares as shown below: 

 

βˆ =  H ⸆T                                           (14) 

  
Where H is 𝐻† generalized Moore-Penrose inverse. 

Thus, the output weights are calculated using a 

mathematical transformation, and there are a 

number of effective ways to address the 

aforementioned issue, including the Gaussian 

elimination approach, the orthogonal projection 

method, the iterative method, and the single value 

decomposition (SVD) (Rao and Mitra, 1971). Any 

long training term where the network's parameters 

are iteratively modified with suitable learning 

parameters (such as learning rate and iterations). 

The three-step C-ELM method may thus be summed 

up as follows:  

 

Input: a training set (𝑥𝑖, 𝑡𝑖) ∈ 𝑅𝑛 × 𝑅(𝑖 = 1,2, … , 

𝑁), the activation function f, and the hidden node 

number �̃�. 

Output: the output weights 𝛽. 

Step 1: Set the concealed nodes' parameters at 

random (𝑎𝑖, 𝑏𝑖) , i=1…,�̃�. 

 

Step 2: The hidden layer H's output matrix should be 

calculated. 

Step 3: Identify the output weight 𝛽: 𝛽 = 𝐻†𝑇. 

 

Analytically, the output weights may be calculated 

by discovering a least squares solution in the manner 

described as 𝛽 = 𝐻†T.  

2.2.3 Statistical Indicators Model Performance 

Evaluation 

Equations listed from Equation (15) to Equation (17) 

were used to compute statistical indicators in order 

to evaluate the accuracy of the proposed models 

utilized in this research (5.4). The Mean Square 

Error (MSE), Root Mean Square Error (RMSE), and 

Standard Deviation equations are indicators that aid 

in the objective evaluation of the models (SD).  

 

The MSE is a single value that provide information 

about the goodness of fit of the regression line, and 

it is defined as:  

MSE=∑〖(X-X⎺⎺) 〗^2/N                                 (15) 

where, 𝑥 is the measured value, �̅� is the predicted 

value, and N is the number of observation points.  

 

The RMSE presents the model's accuracy by 

comparing the deviation between predicted and 

measured noise levels. The value of RMSE is always 

positive and defined as. 

 

RMSE=√ (∑E^2/N)                                              (16) 

 

where N is the number of observation points, and E2 

represents the error square. 

 

SD=√(((∑〖(X-X⎺⎺)〗^2)/(N-1))                       (17) 

 

where N-1 is the degree of freedom, 𝑥 is the 

measured value and �̅�is the anticipated value. The 
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Standard Deviation (SD) quantifies how closely 

the data are grouped around the mean. 

3. Results and Discussion 

3.1 Results 

Table 1 shows the errors propagated from the 

prediction of noise levels in Tarkwa Nsuaem 

Municipality (TNM) using C-ELM and that of the 

B-ELM, as compared with the observed. Fig. 2 

shows the various predictions from the models 

applied. 

 

Fig. 3 shows the trend of noise level as generated 

by C-ELM and B-ELM as compared to the 

observed (Target) using the testing data. The blue 

colour indicates the observed noise level, the 

orange colour represents the noise level predicted 

by C-ELM, and the ash colour shows the noise 

level predicted by B-ELM. The trend of errors 

produced by both prediction models using the 

testing data is shown in Fig. 3. 

 

For the testing data, Table 2 presents the 

statistically based performance indicators of the C- 

ELM and B-ELM approaches. 

 

The spatial distribution of the research area's noise 

levels was plotted using the outcomes of the 

generated model ELM method. Fig. 4 depicts the 

distribution of the expected noise in the research 

region. Comparison of the C-ELM and B-ELM 

was done using the statistical indicators 

mentioned earlier. 

 
Table 2 Performance Indicators 

ELM 

Technique 

RMSE 

(dB) 

MSE 

(dB) 

Standard 

Deviation (dB) 

B-ELM 0.8736 0.7632 0.8045 

C-ELM 3.6751 13.506 3.7366 

 

3.2  Discussion 

The errors in predicting noise levels by the C-ELM 

and B-ELM models are analyzed in Section 2.1, 

revealing minor discrepancies between the projected 

outputs and testing data. Tables 1 and 2 and Figs. 3 

and 4 demonstrate that the B-ELM model generally 

provides more accurate predictions than the C-ELM, 

aligning better with observed noise data. 

Specifically, the B-ELM exhibits less error 

inconsistency over the zero value, indicating its 

superior accuracy in predicting noise levels. This 

finding is reinforced by statistical measures such as 

the Root Mean Square Error (RMSE) and standard 

deviation, which illustrate the B-ELM's higher 

predictive power and precision compared to the C-

ELM. 

The errors in predicting noise levels by the C-ELM 

and B-ELM models are analyzed in Section 2.1, 

revealing minor discrepancies between the projected 

outputs and testing data. Tables 1 and 2 and Fig.s 3 

and 4 demonstrate that the B-ELM model generally 

provides more accurate predictions than the C-ELM, 

aligning better with observed noise data. 

Specifically, the B-ELM exhibits less error 

inconsistency over the zero value, indicating its 

superior accuracy in predicting noise levels. This 

finding is reinforced by statistical measures such as 

the Root Mean Square Error (RMSE) and standard 

deviation, which illustrate the B-ELM's higher 

predictive power and precision compared to the C-

ELM. 

The RMSE values further confirm the superior 

performance of the B-ELM, with a significantly 

lower RMSE of 0.8736 dB compared to the C-

ELM's 3.6751 dB, as indicated in Table 2. 

Additionally, the standard deviation values highlight 

the B-ELM's better precision, with a deviation of 

0.8045 dB for the B-ELM and 3.7366 dB for the C-

ELM. Moreover, the Mean Square Error (MSE) 

values from Table 5.2 reinforce the effectiveness of 

both approaches, with the B-ELM providing an 

MSE of 0.7362 dB compared to the C-ELM's 13.506 

dB, indicating the   quality of fit of the regression 

line. These results underscore the utility of noise 

prediction models like the B-ELM in assessing noise 

exposure for urban planning and environmental 

management, particularly in areas lacking official 

noise maps or prediction models. 
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Table 1: A Sample of Errors Propagated During Predictions of Noise Levels for Testing Data 
 

Observed 
Predicted Residual Predicted Residual 

(C-ELM) (C-ELM) (B-ELM) (B-ELM) 

67 61.973 5.027 66.928 0.072 

67 68.012 -1.012 66.918 0.082 

66 68.192 -2.192 66.950 -0.950 

65 74.011 -9.011 66.937 -1.937 

65 65.970 -0.970 66.919 -1.919 

63 61.845 1.155 64.900 -1.900 

63 73.131 -10.131 63.877 -0.877 

67 62.297 4.703 67.413 -0.413 

67 66.188 0.812 67.403 -0.403 

68 65.645 2.355 67.436 0.564 

67 67.697 -0.697 67.429 -0.429 

 

 
 

Fig. 2: Trend of Noise Level Yielded by Both Prediction Models for Testing Data 

 
Fig. 3 Trend of Errors Generated from the Predictions Models for Testing Data 

 

 

76 

74 

72 

70 

68 

66 

64 

62 

60 

58 
1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Observation Points 

Target C-
ELM 

B-
ELM 



72 

 
                                    GMJ  Vol. 24, No.1, June., 2024 

 
 

Fig. 4: Map of Study Area after Prediction 

 

4 Conclusion 

Two extreme learning machine algorithms have 

been used to forecast noise, and their effectiveness 

has been assessed using statistical measures. The 

models were created to complement the 

shortcomings of SLFNs and enhance them based on 

the strengths and capabilities of the Classical ELM 

and Bi-directional ELM. B-ELM outperformed C-

ELM when comparing the performances of the ELM 

models using statistical measures. The indications 

show the discrepancy, with the RMSE of B-ELM 

being 0.8736 dB and that of C-ELM being, 

respectively, 3.6751 dB. Additionally, the B-ELM 

standard deviation and MSE are each 0.8045 dB and 

0.7632 dB, respectively, while the C-ELM had 

3.7366 dB and 13.506 dB. 

A map showing the distribution of the predicted 

noise levels has been generated from the results of 

the B-ELM model. Comparing the predicted noise 

levels to the Environmental Protection Agency 

(EPA) standards of Ghana, it was observed that 

there is a threat, which means that people living in 

an area with noise level above 65 dB are at high risk 

of health effects of noise pollution including, 

psychological, sleep and behavioral disorder. The 

created models have demonstrated their capacity to 

map interurban noise concerning changing urban 

land use. Urban planning and noise management 

will benefit from this. 
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