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Abstract 

This paper explores the application of Artificial Intelligence (AI) techniques for predicting pit wall deformation in open-cast 

mining operations. Four AI models, including the Patient Rule Induction Method (PRIM), Radial Basis Function Neural 

Network (RBFNN), Back Propagation Neural Network (BPNN), and Group Method of Data Handling (GMDH), were 

developed and evaluated to estimate pit wall deformation for three different monitoring locations designated as Prisms 1, 2 

and 3. The AI models were statistically evaluated using dimensioned error indicators such as Mean Square Error (MSE), Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE). The coefficient of determination (R2) was also used for the 

model’s performance evaluation. The study concluded that for the Prism 1 monitoring point, the BPNN was the most suitable 

for predicting the pit wall deformation. However, for Prisms 2 and 3, the RBFNN demonstrated superior performance, with 

minimal errors and high R2 scores, making it a suitable choice for deformation prediction. GMDH exhibited fair results, while 

PRIM produced significant prediction errors, rendering it less suitable for pit wall deformation estimation. In general, the study 

findings suggest that AI techniques can significantly enhance and automate the deformation prediction process in open-cast 

mining, offering opportunities for improved safety and operational efficiency. 

. 
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1 Introduction  

Surface deformation refers to changes in the shape, 

height, and/or location of the Earth’s surface caused 

by natural or anthropogenic forces. It is a frequent 

mining phenomenon that may occur in both open-pit 

and underground mines. Removing large amounts of 

rock and soil is the primary cause of surface 

deformation in open-pit mining. As the material is 

taken from the earth, the underlying rocks and soil can 

shift and settle, resulting in subsidence or sinking of 

the ground surface. This might result in surface cracks, 

fractures, and uneven ground. In rare cases, subsidence 

can spread outside the mining zone, damaging nearby 

infrastructure and communities. Another factor that 

leads to surface deformation in open pit mining is 

heavy machinery and gear use. By exerting vibration 

and impact on the ground surface, these devices can 

cause soil compaction and settling. 

 

Moreover, excavation can cause the surrounding rock 

and soil to become unstable, resulting in landslides and 

rock falls. Disposing of garbage and exploiting 

mineral reserves might alter the natural hydrological 

cycle of the area. This can cause changes in 

groundwater levels and flow, exacerbating surface 

deformation. Geological factors such as the presence 

of faults, fractures, and weak zones in the ground can 

also induce surface deformation in open-cast mines. 

 

Surface deformation can have several consequences 

for the surrounding environment. It can, for example, 

alter the land’s topography and drainage patterns, 

causing changes in water and nutrient distribution. 

This may affect local plant and animal populations, 

potentially leading to habitat loss and a decline in 

biodiversity. It may also cause soil erosion, which may 

cause sedimentation in nearby streams and impact 

aquatic habitats. Surface deformation could influence 

the region’s availability and quality of water supplies 

due to pollutants or toxic substances released during 

the deformation phase. Subsidence, for example, could 

demolish buildings and infrastructure, resulting in 

harm or death. 

 

With regard to mine subsidence, the release of dust and 

other pollutants can also influence air quality. Hence, 

there is a need for continual monitoring of the stability 

and deformation of an open pit mine’s walls. The 

primary purpose of pit wall monitoring is to guarantee 

the safety of mine personnel and equipment by 

identifying any possible wall instability or movement. 

Moreover, pit wall deformation can also socially 

influence the communities around it. For example, 

safety risks and environmental consequences may 

cause dread and worry among nearby residents, 

potentially leading to social conflict between mining 

companies and local communities. Therefore, the 

stability of steep slopes in open pit mines is a serious 

safety concern. 

 

Many approaches for open pit slope monitoring have 

been used in recent years. Conventional slope 

monitoring systems combine geotechnical sensors and 

surveying tools. However, newer systems use new 

approaches ranging from permanent GPS stations to 

*Manuscript received April 29, 2024 

 Revised version accepted July 05, 2024 

https://doi.org/10.4314/gm.v22i1.1 

https://doi.org/10.4314/gm.v22i1.1


28 

 

                                    GMJ  Vol. 24, No. 1, June, 2024 

radar interferometric data. Because of the 

dependability and precision provided by surveying 

equipment, surveying techniques are nearly always 

utilised in open pit mines, independent of additional 

sensors that may be used in conjunction. Robotic total 

stations are now frequently utilised as the principal 

measurement equipment in conjunction with 

meteorological sensors and interfaced with computers 

and wireless communication capabilities to transfer 

data to a processing centre. 

 

Predicting the projected duration of slope collapse is 

crucial in open pit slope stability management since it 

outlines the necessary procedures to be taken. It is vital 

to know when to evacuate, but it is also helpful to 

know ahead of time if a certain slope is about to 

collapse or if the deformations detected are unlikely to 

result in collapse. Knowing this information 

beforehand allows a mine to plan and implement 

corrective actions, such as schedule adjustments, slope 

angle changes, and buttresses, to decrease economic 

and safety concerns (Zhang et al., 2017). 

 

The mining sector contributes immensely to the 

development and economic growth of countries. In 

Ghana, the said sector was regarded as one of the 

priority areas of the country’s Economic Recovery 

Programme (ERP) in 1983 due to the large production 

of gold, placing Ghana as the second largest gold 

producer in Africa and ninth in the world. Over the 

years, mining has evolved along with technology, and 

several methods of exploiting these minerals have 

been established to enhance production and make 

mining safer. As much as mineral resources have 

contributed immensely to the world’s socioeconomic 

development, they have also caused enormous 

geological and security problems in mining areas 

(Zhou et al., 2021). For example, surface subsidence 

emanating from mining has caused regional disasters 

such as ground fissure, collapses, and pitfalls, which 

severely threaten the safety of production and, 

therefore, raise several questions about the ecology of 

the environment (Yakubu et al., 2018; Huang et al., 

2019; Dong et al., 2020). Dangers attributed to mining 

deformation are always crucial in mining safety 

production. 

 

Over the last 100 years, the failure of mine tailings 

dams has been a primary public concern and a source 

of high liability risk for the mining industry. The 

earliest tailings dam failure was recorded in 1915 at 

Agua Dulce in Chile, where overflow due to heavy 

rains resulted in the dam’s collapse and the release of 

180 000 cubic meters of copper tailings into the 

environment. On a serious note, the most catastrophic 

tailings dam failures happened from 1990 to 2010. Out 

of the 67 tailings dam failures from 1940 to 2010, 52 

occurred between 1990 and 2010, when modernisation 

was at its peak. According to dam committee reports 

and government accounts, these losses can all be 

attributed to a failure to follow standard operating 

procedures and policies, such as deformation 

monitoring on the facilities (Bowker and Chambers 

2015). To achieve mine sustainable development, 

there is a need to monitor and analyse land 

deformations caused by mining activities, determine 

the settlement range, and control the occurrence of 

geological hazards. This provides practical help and 

experience as a reference for comprehensive 

management of the subsidence area (Huang et al., 

2019). 

 

With the continuous upgrade in surveying and 

mapping technologies, there has been substantial 

progress in monitoring mine surface deformations 

(Zhou et al., 2021). Traditional and ground-based 

technologies such as Robotic Total Station (RTS), 

Synthetic Aperture Radar (SAR), and Synthetic 

Aperture Radar Interferometry (InSAR) have been 

broadly used by the geoscientific community for 

monitoring the stability of open cast pit walls (Dong et 

al., 2020). The introduction of the Continuous 

Operating Reference System (CORS), Wide Area 

Augmentation System (WAAS), and Real Time 

Kinematics (RTK) are some new developments for 

improved geodetic-based monitoring. 

 

Even though these enumerated geodetic measurements 

can accurately measure three-dimensional surface 

deformation, the computational process is not 

straightforward. Earlier studies (Miima and Niemeier, 

2004; Kalkan and Chopra, 2010; Osasan and Afeni, 

2010; Kutterer, 2010; and Zhou et al., 2021) have 

suggested numerical and statistical techniques for 

predicting structural deformations. However, these 

methods had limitations, considering the non-linearity 

and complex nature of structures associated with open-

pit mines. Initial boundary conditions are also needed 

for the full implementation of the methods. Therefore, 

to automate the computational process for quick 

decision-making, proper planning, and management of 

safety, it is imperative to use a technique that can 

model the continuous surface and handle appropriately 

the dynamic nature of deformation (Miima and 

Niemeier, 2004; Kutterer et al., 2010; Zhou et al., 

2021). 

 

Consequently, scholars (Gourine et al., 2012; Du et 

al., 2013; Cheng and Xiong, 2017; Miao et al., 2018; 

Sunwen et al., 2019) have relied on the use of 

Artificial Intelligence (AI) techniques to solve 

multivariate nonlinear prediction problems in 

deformation studies in dams, viaducts, and bridges, 

among others. A review of these studies indicates that 

the AI methods can serve as a reliable substitute for 

the traditional numerical and statistical deformation 

modelling methods. This is due to their high attenable 

prediction accuracy, low computing time, and self-

adaptive nature. 
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1.1 Artificial Intelligence Methodologies 

 

Artificial intelligence (AI), in general, is the study and 

development of intelligent agents, where an intelligent 

agent is a system that examines its environment and 

takes actions to maximise its chances of success 

(Russell and Norvig 2003). Many real-world problems 

need the agent to work with incomplete or confusing 

facts (Negnevitsky, 2005). Using AI techniques has 

many advantages over traditional development and 

implementation strategies (Russell and Norvig, 2003; 

Negnevitsky, 2005). These include quick access to 

collected knowledge (e.g., knowledge-based systems), 

easy-to-implement prototypes without deep expert 

knowledge (e.g., artificial neural networks (ANNs)), 

or systems that can learn (e.g., evolutionary 

optimisation algorithms).  

 

Given the enumerated benefits, a variety of AI 

methodologies have been employed to anticipate mine 

slope surface deformation. For example, ANN, which 

is a type of machine learning composed of 

interconnected nodes that process incoming data and 

forecast output, has been employed for predicting 

deformation (Li et al., 2019). Support vector machine 

(SVM) is another machine learning technique that has 

been utilised for prediction problems (Jia et al., 2019). 

The SVM works by selecting the best boundary or 

hyperplane for classifying data points. Random Forest, 

another ensemble learning technique that predicts by 

mixing many decision trees, has also been considered. 

 

Convolutional neural network, a type of deep learning 

technique frequently used for image recognition, is 

used to estimate mine slope surface deformation by 

processing input data hierarchically, learning 

characteristics at various sizes, and making predictions 

based on those features (Xu and Qiu, 2021). Long 

Short-Term Memory Network (LSTM) is a recurrent 

neural network designed to handle sequential data like 

time series data, which can be used to anticipate 

mining slope values in the future (Zhang et al., 2020). 

 

Some of the AI Methods Applied in this Research 

includes; Patient Rule Induction Method, Group 

Method of Data Handling, Back Propagation Neural 

Network, and Radial Basis Function Neural Network. 

1.1.1 Patient Rule Induction Method 

 

The Patient Rule Induction Method (PRIM) is a data 

mining technique for identifying regions in a dataset 

where a certain outcome is more likely to occur. This 

method is especially useful when several predictors or 

factors in the data might influence the conclusion. The 

PRIM technique separates the data into smaller 

regions or subsets, each representing a potential 

collection of elements or predictors associated with a 

certain result. The technique then repeatedly looks for 

the subset with the highest proportion of desired 

outcomes and repeats this approach until a stopping 

condition is met.  

 

The PRIM can be used to evaluate mine surface 

deformation data and develop rules that characterise 

the circumstances or causes related to the deformation. 

This can help predict and manage future deformation 

problems in mining operations. The following 

describes the computational procedures of PRIM for 

surface deformation.  

 

Step 1: Initial Area construction  

The procedure begins by constructing an initial area 

that includes all the mine surface deformation data. 

 

Step 2: Candidate Subset Generation 

A subset of the beginning region is selected using a set 

of criteria designed to optimise the proportion of 

deformation events. Typically, this is performed by 

selecting a set of events or attributes relevant to mine 

surface deformation, such as geological features, 

mining operations, or weather conditions. 

 

Step 3: Quality Control 

A set of criteria, such as the proportion of deformation 

occurrences or the size of the subset, determines the 

quality of the candidate subset. If the subset meets the 

quality standards, it is acknowledged as a new region. 

The method returns to step 2 if the candidate subset is 

rejected. 

 

Step 4: Stopping Criterion 

The algorithm repeats stages 2 and 3 until a stopping 

condition is fulfilled. The stopping condition might be 

a set number of iterations, a degree of precision or 

accuracy, or a quality threshold (Miao et al., 2018) 

 

1.1.2 Back Propagation Neural Network 

 

The Backpropagation Neural Network (BPNN) is a 

type of ANN that trains the network to predict an 

output variable based on a collection of input variables 

using supervised learning. The technique has been 

extensively used in image recognition, audio 

recognition, and natural language processing 

applications. The BPNN comprises three layers: an 

input layer, one or more hidden layers, and an output 

layer. Each layer has a collection of nodes or neurons 

that process the input data. The connections between 

nodes are weighted, and these weights are adjusted 

throughout training to increase prediction accuracy. 

 

The BPNN training algorithm is divided into two 

stages: forward and backpropagation. In the forward 

propagation phase, the input data is received by the 

input layer and sent through the network, and the 

outputs are generated based on the weights of the 

connections between the nodes. The error between the 

expected and actual outputs is computed during the 

backpropagation phase, and the weights are modified 

to minimise this error. This method is continued until 
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the prediction error is reduced to an acceptable level 

(Duddu et al., 2020; Samantaray and Sahoo, 2020; and  

Zhu et al., 2021) 

 

1.1.3 Group Method of Data Handling 

 

The Group Method of Data Handling (GMDH) is a 

data-driven modelling technique commonly used to 

solve regression and classification problems. The 

GMDH method employs a mix of linear and nonlinear 

functions to represent the data. The linear functions are 

used to approximate the data’s global trend, while the 

nonlinear functions capture the data’s local changes 

(Zhang et al., 2017). The method is an iterative and 

adaptive method for dealing with high-dimensional 

and complicated data and has several uses, including 

engineering, finance, and medical application. 

 

The GMDH method employs a divide-and-conquer 

strategy to learn a model from data, repeatedly picking 

and combining parameters that reduce error (Amiri 

and Soleimani, 2021). The GMDH method begins 

with a collection of candidate features and uses a 

forward selection procedure to select the subset of 

input features that minimises error. The algorithm 

picks the feature that minimises the error in each stage 

of the forward selection when paired with the 

previously picked characteristics. This procedure is 

iterated until the required degree of accuracy is 

obtained or the number of chosen parameters reaches 

a predetermined threshold. 

 

1.1.4 Radial Basis Function Neural Network 

 

The Radial Basis Function Neural Network (RBFNN) 

is a type of ANN that models the relationship between 

input and output variables using radial basis functions. 

RBFNN is widely utilised in a wide range of 

applications, including pattern recognition, time-series 

prediction, and control systems. There are three layers 

in the RBFNN: an input layer, a hidden layer, and an 

output layer. The input layer receives the input data, 

while the hidden layer uses radial basis functions to 

accomplish the nonlinear mapping. The output layer 

generates the anticipated output based on the weighted 

sum of the hidden layer’s outputs. 

 

The prototypes, which are typical samples of the input 

data, are at the center of the radial basis functions. The 

radial basis function computes the distance between 

the input data and the prototypes and feeds it into the 

activation function. The activation function transforms 

the distance into a nonlinear output, which is then 

transferred to the output layer. A learning method, 

such as the unsupervised K-means clustering 

algorithm or the supervised backpropagation 

algorithm, determines the weights and centres of the 

radial basis functions. A trial-and-error or validation 

method is often used to determine the number of radial 

basis functions (Xu et al., 2012; Mostajeran and 

Hosseini, 2023). The RBFNN offers various benefits, 

including the ability to handle nonlinear connections, 

a short training period, and resistance to noise and 

outliers.  

 

With the enumerated potential benefits of using AI 

technology in deformation studies, the current 

research seeks to evaluate different the four (4) AI 

models to predict open-cast mine wall deformation, 

using Mine XYZ ltd open pit in southern Ghana as a 

case study. 

 

2 Study Area  

The study area is a large-scale gold mining company 

located in the southern part of Ghana (Figure 1). For 

the purposes of this research, the mining firm will be 

known as Mine XYZ Ltd.  Some of the large-scale 

gold mining companies are; AngloGold Ashanti 

(Ghana) Ltd (Obuasi and Iduaprim), Gold Fields 

Ghana Ltd (Tarkwa and Damang), Newmont Ghana 

Gold Ltd (Keyansi and Akyem), Perseus Mining 

(Ghana) Ltd (Ayanfuri), Asanko Gold Mine Ltd 

(Amansie West), Chirano Gold Mines Ltd, Adamus 

Resources Limited (Teleku Bokazo,Nzema), Golden 

Star Ltd (Prestia/Bogoso and Wassa).  

 
Fig. 1 Map of Southern Ghana Showing Large-

Scale Gold Mining Areas 

 

3 Resources and Methods Used 
 

3.1 Data Description and Division 
 

The primary data set used for the research was 

obtained using the Leica robotic total station. The 

instrument is set on 3-dimensional geodetic control to 

first measure a permanent back site prism mounted on 

a permanent control and to three prisms point locations 

mounted on the Mine X pit walls. At a specific epoch, 

one hundred twenty-nine (129) mine grid coordinates 

(Easting, Northing, Elevation) were measured on each 

prism mounted on the pit walls. These data were 

divided into training and testing sets of 70% and 30%, 

respectively. The data division was based on the hold-

out-cross-validation approach, which has been used in 

similar mining predictive models, such as blast-

induced ground vibration (Arthur et al., 2019). Using 

this popular method, the training set used in designing 
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the predictive model requires a larger proportion of the 

total observations; hence, the training sets for each 

prism were apportioned 90, representing 70% of the 

entire 129 coordinates observed. The remaining 39, 

representing 30% of the 129 data set, were used as the 

testing set to verify the prediction accuracy of the 

optimum trained model for each prism. Equation (1) 

was used to calculate the displacement (deformation) 

based on the observed mine grid coordinates (Easting, 

Northing, and Elevation).  

 

𝐷 =  √(𝐻𝑀)2 + (𝑉𝑀)2                           

 (1) 
 

The HM and VM were computed using Equations (2) 

and (3).  
 

𝐻𝑀 =  √(∆𝐸)2 + (∆𝑁)2                             (2) 

𝑉𝑀 =  √(𝑍𝑖 − 𝑍1)                           (3) 

 

where D is the displacement, HM is the Horizontal 

Movement, and VM is the Vertical Movement. The ∆E 

and ∆N are the cumulative differences in the Eastings 

and Northings, Zi, and Z1 are the base elevation and the 

subsequent elevations, respectively. 

 

The software used in building the AI models was 

MATLAB 2016(a). All codes and algorithms for 

building and evaluating the models were run with the 

software. 

 

3.1.1 Deformation Analysis 

 

Deformation analysis involves determining whether 

point displacements are substantial. To ascertain the 

significance of these displacements, they are 

juxtaposed with their respective 95% confidence 

intervals or ellipses (Bird, 2009). This method 

evaluates the computed displacement magnitude 

against the 95% confidence interval to verify if notable 

movement occurred between observation epochs. 

Should the calculated displacement magnitude exceed 

the 95% confidence interval, it indicates a significant 

movement. However, should the computed 

displacement be less than the 95% confidence interval, 

no displacement has occurred, and the displacement 

could be attributed to measurement error (Okiemute et 

al., 2018). The equation for computing the confidence 

interval is provided in Equation (4). 

 

𝐶𝐼 = 1.96√𝜎𝑘+1
2 +  𝜎𝑘

2                 (4) 

 

where 𝜎𝑘+1
2  is the standard error of the position 𝐾 +

1 epoch, and 𝜎𝑘
2 is the standard error for the previous 

epoch 𝐾. 

 

3.2 Methods Used 
 

Figure 2 provides a flow chart on the various stages 

employed in developing the AI models. Firstly, the 

mine grid coordinates (E, N, and Z) served as the input 

variables in the AI models evaluated, and the 

computed displacement (D) served as the target or 

output variable. Due to different data variability in the 

E, N, and Z, data normalization was performed. Its 

significance is to avoid larger values having influence 

on the smaller recorded data and slowing the AI 

algorithm to reach convergence. The normalized input 

data sets were then fed as input into the AI methods 

with D as the target. The supervised learning technique 

was used for all the AI models utilised in this study for 

predicting D. The next stage was to train the model of 

which network configuration of the controlling 

parameters was adjusted to achieve better model 

prediction. The selected optimum trained model was 

tested using the testing data. The essence is to 

independently assess or verify the validity of the 

trained model. A model is selected as optimum when 

the loss function is within the acceptable tolerance 

value. In this study, the Root Mean Square Error 

(RMSE) was used as the criterion for deciding the 

optimum trained model. A model with the least testing 

and training RMSE value among candidate results 

from the model is chosen as the best. The subsequent 

sections present a detailed account of the methods 

applied. 

 

 
Fig. 2 Stages of the AI Modelling 

3.2.1 Group Method of Data Handling 

 

GMDH networks automatically calculate the most 

crucial input variables, the number of layers, the 

number of neurons in hidden layers, and the ideal 

model structure. Hence, the network is made up of 

neurons that are active and self-organised. The GMDH 

network learns inductively and attempts to construct a 

polynomial model function that would lead to the least 

error between the predicted value and expected output 

(Srinivasan, 2008). To characterize the intricate 

nonlinear interactions between a system’s input and 

output parameters, GMDH employs a multilayer 

network of the second order of the Kolmogorov-Gabor 

polynomial (Arthur et al., 2019) expressed in Equation 

(4). 
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𝑦 = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖
2 + 𝑎4𝑥𝑗

2    (4) 

 

where xi and xj are the input variables, y is the predicted 

output, a is the vector of the coefficient of the 

polynomial function. 

 

As part of the computational process, the GMDH 

constructs layer after layer of intricate links (or 

connections) made up of each term of a polynomial. 

Regression techniques, both linear and nonlinear, are 

used to construct these polynomial terms. The input 

layer is the only layer in the beginning where 

regression analysis of the input variables is performed, 

and the best candidates are then selected to form the 

first layer. The values from the first layer and input 

variables are used to compute regressions to produce 

the second layer. As a result, the method creates 

polynomials of polynomials where only the best is 

selected. This procedure continues until a 

predetermined selection criterion is satisfied 

(Srinivasan, 2008). In this research, the input variables 

are the E, N, and Z coordinates collected from the 

mine, and the output variable is the 3D displacement 

(D) obtained from the collected data. 

 

3.2.2 Radial Basis Function Neural Network 

 

As illustrated in Figure 3, the RBFNN is a three-

layered feed-forward neural network comprising an 

input, a hidden layer, and an output layer. Under this 

study, the input layer consists of the E, N, and Z 

coordinates and D as the target. The hidden layer 

accepts data from the input layer. Each hidden layer 

has an activation function (radial basis functions) that 

models the non-linearity of the input data. The 

activation function used in the hidden layer for this 

study is the Gaussian type. The output layer has a 

linear combinatory function that linearises data from 

the hidden layer to obtain the 3-dimensional 

displacement (D) required. 
 

 
Fig. 3 RBFNN Architecture 

 

3.2.3 Back Propagation Neural Network 

 

Figure 4 shows the architecture of BPNN which 

comprises an input layer, a hidden layer, and an output 

layer. The input layer, which consists of weighted 

training or testing sets, is processed in the hidden layer 

by the nonlinear hyperbolic tangent activation 

function. Even though there are numerous activation 

functions, such as the sigmoid function, rectified linear 

unit, and softplus (Apraku et al., 2022), the hyperbolic 

tangent activation function was chosen due to the 

efficient and effective results it has produced in similar 

deformation predictive models.  

The 3D-displacement output generated from the 

hidden layer serves as inputs for the output layer, 

which contains existing displacement values as 

determined from the primary data via a linear 

activation function to generate a final network.  

 

 
Fig. 4 BPNN Architecture 

 

3.2.4 Patient Rule Induction Method 

 

The PRIM is a tool that is used to find a region of 

interest using a discrete sample and then define it in an 

interpretable way using a set of hypercubes (or boxes). 

PRIM is used for locating areas of an outcome space 

that are of particular interest, which it does by reducing 

the data size incrementally by small amounts in an 

iterative process. Thus, candidate boxes are generated, 

and these boxes represent incrementally smaller sets 

of data. Each box removes a portion of the data based 

on the levels of a single input variable. 

 

For each candidate box, the relative improvement is 

achieved through the peeling strategy (–i.e., a peeling 

step successively strips the generated box in smaller 

strips till it becomes smaller/apparently impossible to 

strip) where the number of outcomes of interest inside 

the box is calculated. The candidate box with the 

greatest improvement is selected. Pasting is also one 

algorithm in the improvement step as it readjusts the 

outcomes of the peeling strategy. The procedure for 

pasting is basically the inverse of the peeling 

procedure. Starting with the peeling outcome, the 

current box is enlarged by pasting along its boundary 

‘small’ strips. The data in the selected candidate box 

replaces the starting data, and the process is repeated 

until a stopping criterion is met. 

 

3.3 Model Evaluation 

 

Model evaluation is the process of using different 

evaluation metrics to understand a machine learning 

model’s performance, as well as its strengths and 

weaknesses. This is important because it provides the 

opportunity to assess the efficacy of a model. In this 

study, the following statistical evaluators were used 

for the model performance evaluation: 
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i. R-squared (R²): R-squared is a measure of how 

well the predicted values of the model fit the actual 

data. It represents the proportion of variance in the 

target variable that the model can explain. R² 

ranges from 0 to 1, with higher values indicating a 

better fit. An R² value close to 1 indicates that the 

model explains a large portion of the variance in 

the data, while a value close to 0 indicates a poor 

fit. The mathematical equation for finding the 

coefficient of determination (R²) is expressed in 

Equation (5): 

R2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
                                     (5) 

where, RSS is the sum of squared residuals (the sum 

of the squared differences between the predicted and 

actual values), and TSS is the total sum of squares 

(the sum of the squared differences between the 

actual values and the mean of the actual values). 

 

ii. Root Mean Squared Error (RMSE): RMSE is a 

measure of the average error between the predicted 

and actual values. It is calculated by taking the 

square root of the mean of the squared differences 

between the predicted and actual values. RMSE is 

commonly used to evaluate the accuracy of a 

model’s predictions, with lower values indicating 

better accuracy. The mathematical formula is 

expressed in Equation (6) as: 

RMSE = √
∑ (𝑥𝑖 − �̂� 𝑖) 2𝑁

𝑖=1

𝑁
              (6) 

 where, N is the number of samples, �̂� 𝑖  is the 

predicted value, and 𝑥𝑖 is the actual value. 

 

iii. Mean Absolute Error (MAE): As expressed in 

Equation (7), MAE measures the average absolute 

difference between the predicted and actual values. 

It is calculated by taking the mean of the absolute 

differences between the predicted and actual 

values. MAE is another commonly used indicator 

of prediction accuracy, with lower values 

indicating better accuracy. 

MAE =
∑ |𝑦𝑖−𝑥𝑖|

𝑛
𝑖=1

𝑛
                      (7) 

where, 𝑦𝑖  is the predicted value, 𝑥𝑖 is the true value, 

and n is the number of data points. 

 

iv. Mean Absolute Percentage Error (MAPE): MAPE 

is a measure of the percentage difference between 

the predicted and actual values. It is calculated by 

taking the mean of the absolute percentage 

differences between the predicted and actual 

values and expressing it as a percentage. MAPE is 

useful for evaluating the prediction accuracy in 

terms of percentage error, which can be helpful in 

certain applications where relative errors are very 

important. It is expressed in Equation (8) as: 

MAPE =  
1

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡

| 

𝑛

𝑡=1

                   (8) 

where, n is the number of times the summation 

iteration happens, 𝐴𝑡 is the actual value and 𝐹𝑡 is the 

forecasted value. 

 

These indicators provide different perspectives on the 

performance of AI prediction models and can be used 

in combination to get a comprehensive evaluation. It 

is important to interpret these indicators in the context 

of the specific problem and data at hand and consider 

the trade-offs between different metrics based on the 

application requirements. Additionally, model 

evaluation should be performed using appropriate 

validation techniques, such as cross-validation, to 

ensure reliable and robust results. 

 

4 Results and Discussion  
 

4.1 Comparison between Displacements and 

their Corresponding 95% Confidence Interval 
 

Figures 5 to 7 presents the 3D displacement 

magnitudes for the monitoring prisms and their 

respective 95% confidence interval. The 

displacements for the monitoring prisms (Prism 1, 

Prism 2, and Prism 3) were computed and compared 

with their respective 95% confidence intervals. This 

undertaking was to ascertain if the computed 3D 

displacements were indeed wall movements or just 

measurement or instrument errors. From the figure it 

can be established that there is movement in the mine 

wall as most of the computed 3D displacement were 

greater than the 95% confidence interval. 

 

 
Fig. 5 3D Displacement and their respective 

Confidence 1ntervals for Prism 1 
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Fig. 6 3D Displacement and their respective 

Confidence 1ntervals for Prism 2 

 

 
Fig. 7 3D Displacement and their respective 

Confidence 1ntervals for Prism 3 

 

4.2 AI Models Developed   

 

In developing the various AI models, several 

architectures were exploited. The essence was to 

determine the most efficient architecture for each AI 

technique. Subsequently, the same set of training and 

testing data were used to train and evaluate all the 

developed AI models, and the best-performing 

architecture for each method was selected. The results 

obtained by the best architectures are presented in the 

subsequent sub-sections. 

 

4.2.1 PRIM Model  

 

The adjustable parameters of the PRIM model were 

alpha peel, alpha paste, min support, max boxes, and 

terminate below mean. The best-performing 

architecture for the PRIM model had an alpha peel, 

alpha paste min support, max boxes, and terminate 

below mean values of 0.2, 0.1, 0.1, inf, and 1, 

respectively. Tables 1 to 3 present the statistical 

performances of the PRIM model in predicting pit wall 

deformation for Prisms 1, 2 and 3.  

 

The statistical results in Tables 1, 2 and 3 indicate that 

the PRIM model performed reasonably when used to 

predict pit wall deformation for Prisms 1 and 2. This 

assertion is confirmed by the training and testing 

results where lower MSE, RMSE, and MAE values 

and relatively high R2 values were recorded.  For 

Prism 3, the PRIM model’s performance was less 

satisfactory in both training and testing. This was 

because higher MSE, RMSE and MAE values and 

lower R2 values were produced by the model, 

indicating that it struggled to capture the deformation 

patterns of the data effectively.  

 

Table 1 Performance of PRIM Model on Prism 1 

Evaluation 

Metric 

PRISM 1 

Train Test 

MSE 0.354176 0.943961 

RMSE 0.595127 0.971577 

MAE 0.334634 0.595918 

R2 0.834996 0.71254 

 

Table 2 Performance of PRIM Model on Prism 2 

Evaluation 

Metric 

PRISM 2 

Train Test 

MSE 0.634726 0.458847 

RMSE 0.796697 0.677382 

MAE 0.462776 0.422292 

R2 0.655404 0.76072 

 

Table 3 Performance of PRIM Model on Prism 3 

Evaluation Metric 
PRISM 3 

Train Test 

MSE 3.775537 1.332795 

RMSE 1.943074 1.154467 

MAE 0.826691 0.749227 

R2 0.409614 0.671484 

 

4.2.2 RBFNN Model  

 

The RBFNN model required changing various 

parameters, such as the number of neurons and width 

parameter, to achieve the optimum structure for the 

best prediction output. For this study, the optimum 

structure of the RBFNN model for Prism 1 was [3-20-

1] with a width parameter value of 2.11. This indicates 

three (3) inputs which were the (E, N, and Z), twenty 

(20) hidden neurons, and one (1) output (D), 

representing the predicted deformation or 

displacement. For Prism 2, the optimum RBFNN 

model was [3-20-1] with a width parameter value of 

1.1. Similarly, the RBFNN model for Prism 3 was [3-

20-1] with a width parameter value of 2.6. Tables 4 to 

6 summarise the statistical results obtained by the 
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model for the training and test samples on the three 

prisms.  

 

The RBFNN model demonstrates remarkable 

predictive performance for all three prisms. This 

means that the models effectively captured the 

functional relationship between the input variables and 

the deformation. Moreover, the RBFNN models’ 

ability to generalise is evident from the consistency in 

performance between the training and testing datasets 

for each prism. For Prisms 2 and 3, the models 

achieved a near-perfect fit to the data, as indicated by 

the very high R2 and low MSE, RMSE, and MAE 

values. These results suggest that the RBFNN is well-

suited for predicting pit wall deformation or 

displacement because it can provide accurate estimates 

even when the input-output mapping relationship is 

highly nonlinear. 

 

Table 4 Performance of RBFNN Model on Prism 1 

Evaluation 

Metric 

PRISM 1 

Train Test 

MSE 0.374843 0.380707 

RMSE 0.612244 0.617014 

MAE 0.275925 0.375651 

R2 0.825368 0.884065 

 

Table 5 Performance of RBFNN Model on Prism 2 

Evaluation 

Metric 

PRISM 2 

Train Test 

MSE 0.000976 0.004553 

RMSE 0.031242 0.067478 

MAE 0.013981 0.037409 

R2 0.99947 0.997626 

 

Table 6 Performance of RBFNN Model on Prism 3 

Evaluation Metric 
PRISM 3 

Training Testing 

MSE 0.0002 0.0002 

RMSE 0.0137 0.0130 

MAPE 0.0657 0.0580 

MAE 0.0034 2.798E-06 

R2 0.99997 0.999960 

 

4.2.3 BPNN  

 

The optimum BPNN model structure for Prism 1 

comprised three (3) input variables, eighty-six (86) 

neurons in a single hidden layer, and one (1) output, as 

such having a structure of [3-86-1]. For Prism 2, the 

BPNN model had [3-19-1] that is, three inputs, 

nineteen hidden neurons and one output. For Prism 3, 

the optimum BPNN model was three inputs, sixteen 

hidden neurons and one output with designated 

structure of [3-16-1]. In all the BPNN models for 

Prisms 1, 2 and 3, the hyperbolic tangent activation 

function was used in the hidden layer of the model, 

while the linear function was used to activate the 

output layer. These functions enabled the model to 

capture the non-linearity and linearity measures 

associated with the input and output data. The 

Levenberg Marquardt backpropagation algorithm was 

adopted for training the model. The predictive 

performances of the BPNN models for each Prism are 

given in Tables 7 to 9.  

 

The BPNN models consistently demonstrate strong 

predictive performance across all prisms. They exhibit 

low error metrics (MSE, RMSE, MAE) and high R2 

values, indicating the closeness of the predicted 

displacement values to the actual. Thus, based on 

Table 7, it is evident that the BPNN model 

demonstrates strong performance with a low MSE and 

RMSE, indicating that it effectively predicts pit wall 

deformation. The MAE is also relatively small, 

signifying accurate predictions. The high R2 value 

close to 1 indicates that the model explains a large 

portion of the variance in the data. Similar to the 

results obtained for Prism 1, the BPNN model for 

Prism 2 exhibits excellent predictive performance, as 

depicted in Table 8. The MSE, RMSE, and MAE are 

all low, suggesting accurate predictions. The R2 value 

close to 1 indicates a strong fit between predicted and 

actual values. Table 9 indicates that the BPNN model 

attained the best result for Prism 3, accomplishing 

extremely low MSE, RMSE, and MAE scores, 

indicating very accurate predictions. The R2 value 

close to 1 suggests an excellent fit for this model.  

 

Table 7 Performance of BPNN Model on Prism 1 

Evaluation 

Metric 

PRISM 1 

Train Test 

MSE 0.382024 0.315396 

RMSE 0.618081 0.561601 

MAE 0.291905 0.365702 

R2 0.822022 0.903954 

 

Table 8 Performance of BPNN Model on Prism 2 

Evaluation Metric 
PRISM 2 

Train Test 

MSE 0.024348 0.025248 

RMSE 0.156039 0.158895 

MAE 0.04028 0.050845 

R2 0.986781 0.986834 
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Table 9 Performance of BPNN Model on Prism 3 

Evaluation Metric 
PRISM 3 

Training Testing 

MSE 0.0008 0.0002 

RMSE 0.0291 0.0140 

MAPE 0.0011 0.0011 

MAE 0.0008 1.1020E-05 

R2 0.9999 0.99995 

 

4.2.4 GMDH Model  

 

Since the GMDH model comprises active and self-

organised neurons, the networks can automatically 

calculate the most crucial input variables, including 

the number of layers, the number of neurons in hidden 

layers, and the ideal model structure. As such, it is 

unnecessary to exploit various architectures to obtain 

the most efficient. Table 10 presents the final models 

of the GMDH for predicting the deformation for each 

prism. 

 

Table 10 GMDH Optimum Prediction Models for Prisms 1, 2 and 3.  
 

Prism Layer Number No. of Neurons Generated Model Equations 

1 

1 1 

x4 = -1511517214.75–(2418.78726839×N) + 

(9816.93181812×E) + (0.0479923852483×E×N) 

+(0.012431403085×N2)-0.0961275630212(E2) 

2 2 

x7 = 775989.982992 –(159560.888474×x4) – 

(4.63241866654×E) + (1.27531411177×E×x4) + 

(0.00119597414548×x42)- (1.25465852756×10-5 ×E2) 

 

x8 = 10061.0057313 –(2285.2729981×x4) + 

(0.0501895605002×N) + 0.00873857302548×N×x4) + 

(0.00117732363721×x42) –  

(3.38961659877×10-07×N2) 

3 1 

x10 = -0.933088514069–(21.1071150389×x8) + 

(22.6791958936×x7) + (981.152368054×x7×x8) –

(487.658948988×x82)-493.56434846×x72) 

 

4 1 

Model = -25214.8002185 + 

(5090.96826363×x10) + (16.7995429237×Z) – 

(4.21516195138×Z*x10) – 

(0.0379030064304×x102) + (0.0033809003734×Z3) 

 

2 

1 3 

x4 = 138291193.494 + (25.4845581055×N) – 

(7372.27298846×E) + (0.0029577019824×E×N) –

(0.00202893848265×N2) + (0.0523463932664×E2) 

x5 = 20854980.7672 – (13678.466942×Z) + 

(699.026611692×E) + (0.154271700416×E×Z) –

(2.15533914835×Z2) – (0.00715234385189×E2) 

 

x6 = 5908325.29719 – (1432.58163579×Z) – 

(47.0961007853×N) + (0.109885277754×N×Z) –

(11.1138665406×Z2) – (0.000151440966832×E2) 

 

2 2 

x7 = -53.941703589 + (30.8563220732×x5) + 

(1.54713180637×x4) – (0.530899121309×x4×x5) –

(3.7540562418×x52) – (0.00369077043192×x42) 

 

x8 = 586.730487607 – (354.787846236×x6) + 

(13.903706616×x5) – (3.46554856355×x5×x6) + 

(49.7699825656×x62) + (0.257894086767×x52) 

 

3 1 

Model = -0.122352293817 – (1.26478575791×x8) + 

(1.56380103002×x7) –(3.15420232287×x7×x8) + 

(2.01091370213×x82) + (1.29019188683×x72) 
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3 

             1               2 x4 = 15276512.844 – (39.2004850073*N) – 

(199.052114098×E) + (0.000294601897375×E×N) + 

(0.0009437689656×N2) – (0.00346690510599×E2) 

 

x5 = -723088470.972 – (210562.645858×Z) + 

(6858.41309688×E) + (2.16344867169×E×Z) –

(25.5372534698×Z2) – (0.0109059435517×E2) 

 

             2              1 x7 = -7.51797436666 + (0.201321376032×x5) + 

(2.28286407323×x4) – (0.0057344339419×x4×x5) + 

(0.0072903619418×x52) – (0.0373285429086×x42) 

 

            3              1 Deformation = 436589.145983 – (163253.227121×x7) – 

(68.1088450012×Z) + (135.272830425×Z×x7) + 

(0.00214540054163×x72) – (0.243319024281×x32) 

 

The statistical performance results are presented in 

Tables 11 to 13. 

 

As presented in Table 11, The GMDH model 

demonstrates reasonably good predictive performance 

on Prism 1. The MSE is relatively low, indicating 

decent predictive accuracy. The RMSE and MAE 

values, while not as low as desired, suggest acceptable 

prediction errors. The R2 value is relatively high, 

indicating that the model explains a significant portion 

of the variance and captures some of the underlying 

patterns in Prism 1 data. For Prism 2 (Table 12), the 

GMDH achieved a relatively low MSE, RMSE and 

MAE values, suggesting lower prediction errors. The 

R2 value is higher, indicating that the model could 

explain the variance in Prism 2 data effectively. For 

Prism 3, presented in Table 13, the GMDH model 

exhibited a decent predictive accuracy. This is evident 

in the respective RMSE, MAE and R2 values obtained.  

 

Table 10 Performance of GMDH Model on Prism 1 

Evaluation Metric 
PRISM 1 

Training Testing 

MSE 0.0146 0.0407 

RMSE 0.1207 0.2017 

MAPE 0.4628 0.4628 

MAE 0.0046 0.0156 

R2 0.9932 0.9879 

 

Table 11 Performance of GMDH Model on Prism 2 

Evaluation 

Metric 

PRISM 2 

Train Test 

MSE 0.15142 0.096625 

RMSE 0.389128  0.31085 

MAE 0.202848 0.150665 

R2 0.917793 0.958 

 

 

 

Table 12 Performance of GMDH Model on Prism 3 
 

Evaluation 

Metric 

GMDH 

Train Test 

MSE 0.042185 0.047691 

RMSE 0.20539 0.218382 

MAE 0.101552 0.101277 

R2 0.993403 0.988245 

4.3 Statistical Evaluation of the Developed AI 

Models  

 

A comparative evaluation was performed to gain 

crucial insights into the various developed models’ 

performance. All the models were evaluated with the 

same test dataset to avoid bias. The resulting statistical 

outcomes are discussed in the subsequent 

subheadings. 

 

4.3.1 Statistical Evaluation of Models for Prism 1 

 

Based on Table 14, the PRIM model shows moderate 

performance in terms of MSE (0.943961), RMSE 

(0.971577), and MAE (0.595918), indicating low level 

of accuracy in predicting pit wall deformation. 

However, the R2 value of 0.71254 suggests that it 

explains only a moderate amount of variance in the 

data. The RBFNN model outperforms PRIM with 

significantly lower MSE (0.380707), RMSE 

(0.617014), and MAE (0.375651) values. The R2 value 

of 0.884065 attained by the BPNN model indicates a 

strong fit between predicted and actual deformation 

values. The GMDH model also showed strong 

performance with a remarkably low MSE (0.040697) 

and RMSE (0.201736). The MAE score of 0.10554 is 

also quite low, signifying accurate predictions. The R2 

value of 0.987607 indicates an excellent fit, making 

GMDH a competitive choice. Regardless, the BPNN 

model exhibits the best performance among these 

three models for Prism 1. The reason is that the BPNN 
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achieved the lowest MSE (0.315396), RMSE 

(0.561601), and MAE (0.365702) scores, indicating a 

marginal variation between the predicted and actual 

deformation. This assertion is in line with the R2 value 

of 0.903954 which suggests an excellent fit by the 

BPNN model. 

 

Table 13 Statistical Evaluation of Models on Prism 

1 for the Testing Data 
 

AI  

Model 

Evaluation Metrics 

MSE RMSE MAE R2 

PRIM 0.943961 0.971577 0.595918 0.71254 

RBFN

N 
0.380707 0.617014 0.375651 

0.88406

5 

BPPN 0.315396 0.561601 0.365702 
0.90395

4 

GMD

H 
0.040697 0.201736 0.10554 

0.98760

7 

 

4.3.2 Statistical Evaluation of Models for Prism 2 

 

Table 15 indicates that the PRIM model had a 

moderate performance, with relatively high MSE 

(0.458847), RMSE (0.677382), and MAE (0.422292) 

values. The R2 value of 0.76072 suggests that it could 

explain about 76.072% of the variation in the 

displacement when the input variables (E, N and Z) 

changes. The RBFNN model significantly 

outperformed PRIM, with very low MSE (0.004553), 

RMSE (0.067478), and MAE (0.037409) scores. 

RBFNN’s high R2 value of 0.997626 indicates an 

almost perfect fit, demonstrating its accuracy in 

predicting pit wall deformation. On the contrary, the 

GMDH model exhibits variable performance with 

MSE (0.096625), RMSE (0.31085), MAE (0.150665) 

and R2 (0.958) values better than only the PRIM. 

Overall, the RBFNN was the better model for 

predicting deformation for Prism 2 which was 

followed by BPNN.  

 

Table 14 Statistical Evaluation of Models on Prism 

2 for the Testing Data 
 

AI 

Model 

Evaluation Metrics 

MSE RMSE MAE R2 

PRIM 0.458847 0.677382 0.422292 0.76072 

RBFN

N 
0.004553 0.067478 0.037409 0.997626 

BPPN 0.025248 0.158895 0.050845 0.986834 

GMDH 0.096625 0.31085  0.150665 0.958 

 

4.3.3 Statistical Evaluation of Models for Prism 3 

 

As shown in Table 16, the GDMH model showed 

strong performance with low MSE (0.047691), RMSE 

(0.218382), MAE (0.101277) and R2 value of 

0.988245. The interpretation here is that the GMDH 

could produce predictions that has a marginal variation 

of 1.1755%. This can be confirmed from the 

R2(0.988245) value obtained. However, closely 

related values were achieved for the BPNN and 

RBFNN, indicating outstanding predictive 

capabilities. The PRIM had the worst performance 

among all the candidate models evaluated for Prism 3.  

 

Table 15 Statistical Evaluation of Models on Prism 

3 for the Testing Data 
 

AI  

Model 

Evaluation Metrics 

MSE RMSE MAE R2 

PRIM 1.332795 1.154467 0.749227 0.671484 

RBFNN 0.000168 0.012954 0.005512 0.999959 

BPPN 0.000196 0.013993 0.005096 0.999952 

GMDH 0.047691 0.218382 0.101277 0.988245 

 

In general, the comparative assessment divulges that, 

overall, the BPNN and RBFNN models consistently 

demonstrate strong predictive performance across all 

the three prisms. The BPNN and RBFNN exhibited 

low error metrics (MSE, RMSE, MAE) and high R2 

values, indicating stronger learning ability and good 

generalisation performance of these models to capture 

the relationship between input and output variables 

effectively. GMDH, while competitive, has shown 

mixed results across different prisms, and PRIM 

generally performed moderately compared to the other 

models.  
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5 Conclusions 
 

This study proposes utilising AI techniques for 

estimating pit wall deformation in an open-cast mine. 

Four AI models, namely, the PRIM, RBFNN, BPNN, 

and GMDH, were developed. To achieve the best 

performance, each AI model was meticulously fine-

tuned, and their associated parameters were optimised.  

 

The findings of this study encourage the adoption and 

utilisation of RBFNN and BPNN for pit wall 

deformation prediction in open-cast mining 

operations. These models exhibited exceptional 

accuracy and robust predictive capabilities, providing 

valuable tools for enhancing safety and operational 

efficiency in mining. GMDH, with its respectable 

performance, can serve as an alternative in situations 

where a balance between accuracy and computational 

efficiency is sought. However, PRIM, due to its 

significant errors, may not be the optimal choice for 

accurate deformation estimation in this context. It can 

also be stated for an AI model to perform with high 

order of predictive accuracy, there is the need for 

continuous model adaptation based on new dataset.  
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