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Abstract 
 

Support Vector Machine (SVM) is one of the most effective machine learning algorithms widely employed for 

classification tasks. SVMs perform well in high-dimensional spaces, making them suitable for applications with 

a large number of features. This capability is crucial in tasks like image classification, where each pixel can 

represent a feature. Its effectiveness has made it a preferred choice among remote sensing experts. However, the 

performance of the SVM is highly dependent on the appropriate selection of the best combination of 

hyperparameters. Thus, optimisation is an essential step for maximising classification accuracy. This paper 

explores a metaheuristic optimisation algorithm, the Grey Wolf Optimisation Algorithm (GWO), to optimise the 

performance of the SVM by fine-tuning the optimal combination of hyperparameters that can improve the 

accuracy of the SVM. With an accuracy of 92%, the GWO-optimised SVM confirms its superiority compared to 

the standalone SVM, which obtained an accuracy of 89%. The findings of this research highlight the potential of 

metaheuristic algorithms in improving the effectiveness of machine learning algorithms for image classification 

tasks.  

 

Keywords: Support Vector Machine, Hyperparameter Optimisation, Image Classification, Metaheuristic, Grey 
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1 Introduction 

 

Satellite image classification is a fundamental 

component in remote sensing and geospatial 

analysis, holding paramount importance in land use 

and cover mapping (Alqurashi and Kumar, 2013; 

Fan et al., 2023). It involves categorising a satellite 

image’s pixels according to the type of land cover 

they represent using their spectral properties 

(Rudrapal and Subhedar, 2015). This field of remote 

sensing technology has generated attention in a 

variety of applications, leading to the development 

of several algorithms (Huang et al., 2002). 
 

Traditionally, land cover classification 

predominantly relied on statistical methods such as 

Maximum Likelihood Classification (MLC) 

(Ahmad and Quegan, 2012), Minimum Distance to 

Mean (MDM), and Markov Random Field (MRF) 

(Yang et al., 2013), among others. However, the 

advent of machine learning (ML) has revolutionised 

this field by introducing more versatile and powerful 

algorithms. Researchers have since examined 

numerous supervised classification algorithms, 

including Random Forest (Shihab et al., 2020; Piao 

et al., 2021; Amini et al., 2022; Thakur and Panse, 

2022; Cengiz et al., 2023), Decision Trees (Hamad, 

2020), K-Nearest Neighbour (Thakur and Panse, 

2022), Artificial Neural Networks (Hamad, 2020; e 

Silva et al., 2020; Shihab et al., 2020), and Support 

Vector Machines (Pal and Mather, 2005; Prasad et 

al., 2017; Cengiz et al., 2023). These supervised ML 

algorithms have shown exceptional performance in 

handling the intricate patterns in remote sensing 

data. The algorithms’ inherent ability to capture 

non-linear relationships and adapt to complex 

feature spaces makes them strong candidates for 

land cover classification. Unlike traditional 

classifiers like the MLC, these algorithms can work 

with both balanced and imbalanced datasets. This 

makes them better at dealing with the classification 

uncertainties associated with traditional models 

(Yuh et al., 2023). 

 

Among the many machine learning algorithms 

employed for satellite image classification, the 

Support Vector Machine (SVM) holds a distinct 

position.SVM’s capacity to delineate complex 

decision boundaries, handle high-dimensional data, 

and exhibit robust generalisation performance 

makes it a preferred choice among remote sensing 

experts(Abbas and Jaber, 2020; Basheer et al., 2022; 

Tamirat et al., 2023). While SVM offers substantial 

potential, its performance heavily relies on the 

appropriate selection of hyperparameters 

(Mantovani et al., 2015). These hyperparameters 

determine the SVM’s ability to generalise from 

training data to unseen samples, impacting its 

classification accuracy and robustness (Ramasamy 

et al., 2021). Therefore, it is essential to optimise the 

hyperparameters of the SVM to maximise its 

effectiveness for satellite image classification tasks. 

 

Traditional methods for hyperparameter 

optimisation, such as grid and random searches, 

have been commonly used to fine-tune machine 

learning model hyperparameters. However, these 
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techniques tend to converge slowly and are prone to 

getting stuck in local minima, resulting in lower 

precision (Tamimi et al, 2017). Additionally, they 

demand significant computational resources, 

particularly in high-dimensional search spaces, 

which reduces their efficiency (Li et al., 2015). 

 

An intuitive approach is the use of metaheuristic 

algorithms. Inspired by natural processes, these 

algorithms offer a more efficient and effective way 

to search for optimal hyperparameters. One such 

algorithm is Grey Wolf Optimisation (GWO), a 

relatively new metaheuristic approach that draws 

inspiration from the social hierarchy and hunting 

behaviour of grey wolves. GWO exhibits superior 

exploration-exploitation capabilities and has 

successfully optimised complex functions (Negi et 

al., 2021). 

 

Consequently, this work proposes an SVM-GWO 

model for land cover classification. The principal 

aim is to utilise the GWO algorithm to fine-tune the 

selection of SVM hyperparameters. The 

contributions of this paper to existing literature are: 

• Investigate the performance of GWO for 

optimising the hyperparameters of SVM 

for land cover classification; and 

• Evaluate the performance of the proposed 

SVM-GWO model with conventional 

SVM 

 

1.1 Justification 
 

In hyperparameter optimisation for image 

classification, the selection of an appropriate 

metaheuristic algorithm plays a pivotal role in 

determining the efficiency and effectiveness of the 

optimisation process (Kuo et al., 2018). Over the last 

few years, advancements in metaheuristic 

algorithms have motivated numerous researchers to 

apply them to various optimisation problems (Ali et 

al., 2017). Metaheuristic algorithms offer several 

advantages over conventional methods, including 

their derivative-free nature, lack of constraints on 

problem formulation, and adaptability to a diverse 

range of real-world problems(Tomar et al.,2023). 

Several metaheuristic algorithms have been applied 

to image classification tasks. For example, a 

hybridised Genetic Algorithm Particle Swarm 

Optimisation (GAPSO) was used to effectively tune 

the hyperparameters of the SVM (Cheng and Bao, 

2014) 

 

Among various metaheuristic algorithms, Grey Wolf 

Optimisation (GWO) stands out as a superior choice, 

offering compelling advantages that make it a better 

choice for the complex nature of image classification 

(Askarzadeh, 2013).GWO’s inspiration from the 

social hierarchy and hunting behaviour of grey wolves 

in nature provides a unique foundation, enabling the 

emulation of cooperative and competitive dynamics 

observed in the natural world. This inherent ability 

contributes to GWO’s exceptional balance between 

exploration and exploitation (Hatta et al., 2019), a 

crucial aspect for effectively navigating high-

dimensional search spaces encountered in 

hyperparameter optimisation for image classification. 

Notably, GWO excels in avoiding premature 

convergence to local minima, a common challenge in 

conventional optimisation methods and some 

metaheuristic algorithms. With fewer tuning 

parameters, specifically population and iterations, 

GWO stands out for its simplicity compared to other 

algorithms, which require more intricate parameter 

adjustments (Mirjalili et al., 2014). Its adaptability to 

complex functions, particularly in the context of non-

linear relationships inherent in image classification 

tasks, further underscores GWO’s efficacy. The 

reasons stated above justify the choice of the GWO to 

optimise the SVM in this paper. 

 

1.2 Review of Related Works 
 

Google Scholar Advanced Search and Science 

Direct were adopted to identify the various works 

that had been conducted. In order to access the vast 

knowledge and methodologies adopted in image 

classifications, the search focused on manuscripts 

from 2010 to 2023, even though a few articles from 

earlier years were included based on their relevance 

to the subject. The keywords that were used to filter 

manuscripts included “Image Classification” or 

“Pixel Based Classification” and “Metaheuristic 

Algorithms” or “Hyperparameter Optimisation”. 

Also, the searches were limited to peer-reviewed 

journals. For the screening stage, abstracts of the 

selected articles were analysed to ascertain if the 

write-up matched up to the focus of this paper. 

Articles that were unrelated to the research question 

were thus excluded. This section of the paper delves 

into the evolving landscape of pixel-based image 

classification, focusing on the hybridisation of 

machine learning and optimisation algorithms. 

 

Generally, there are two image classification 

methods: unsupervised and supervised. The 

unsupervised classification methods do not have a 

priori information on the dataset. Classes are formed 

based on the pixel characteristics of the dataset itself 

(Wang et al., 2017). Some examples include K-

Means Clustering (Venkateswaran et al., 2013; 

Wang et al., 2013; Vishwanath et al., 2016), the 

Iterative Self-Organising Data Analysis Training 

Algorithm (ISODATA) (Abbas et al., 2016), the 

Fuzzy Clustering Algorithm (HongLei et al., 2013), 

and Random Forest Theory (PeerBhay et al., 2015). 

However, these techniques require prior knowledge 

about the dataset for supervised classification. 

Research reveals that supervised techniques yield 

better results than unsupervised ones (Hasmadi et 

al., 2009). Thus, supervised classification 

techniques have been utilised by many researchers 
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in the field of remote sensing. Many research works 

have been conducted in the literature on remote 

sensing image classification techniques and 

optimisation algorithms for image classification 

techniques. 

 

For instance, Elmanai et al. (2013) researched the 

best classifier for multispectral data by comparing 

three classifiers. In their research, they concluded 

that the SVM, which obtained an accuracy of 

88.35%, was the best technique for classifying 

multispectral data as compared to the K-Means and 

the Minimum Distance classifiers, which obtained 

accuracies of 51.27% and 85.01%, respectively. 

Research was also conducted by Mondal et al. 

(2012) to assess the accuracy of the Support Vector 

Machine and Maximum Likelihood Classifiers. 

They applied the classifiers to detect and assess land 

cover change along the Birupa basin in Odisha. The 

spatial similarity and area statistics were assessed 

between the two classifiers, and the results obtained 

demonstrated that the SVM classifier provides better 

results than MLC. 

 

Zhu et al. (2019) examined the performance of three 

intelligence algorithms: artificial bee colony (ACO), 

particle swarm optimisation (PSO) and genetic 

algorithms (GA). The research evaluated the 

performance of the three algorithms on SVM. Three 

hyperspectral images were used, and the optimisers’ 

convergence rate, sample size, feature selection, 

parameter settings and classification accuracies 

were compared. The GA was observed to be more 

robust regarding sample size and feature selection. 

 

Xue et al. (2014) also introduced a novel 

hyperspectral image classification method, HA-

PSO-SVM, which combines harmonic analysis 

(HA), particle swarm optimisation (PSO), and 

support vector machine (SVM). Initially, HA 

transforms pixels into the frequency domain, 

enhancing features for classification. Subsequently, 

PSO optimises SVM parameters (penalty parameter 

C and kernel parameter), improving classification 

performance. 

 

Wang et al. (2017) presented a classification model 

for remotely sensed images using the optimal SVM 

and modified binary ant colony algorithm. The 

results obtained were compared with an optimal 

SVM optimised with the binary-coded particle 

swarm optimisation (BPSO), binary-coded ant 

colony optimisation (BACO), and binary-coded 

cuckoo search (BCS) algorithms. A general 

observation was that swarm intelligence and 

evolutionary algorithms perform better at increasing 

the performance accuracy of SVM. 

 

The literature review illustrates the efficiency of 

metaheuristics in optimising hyperparameter 

selection. However, while existing studies have 

demonstrated the effectiveness of metaheuristic 

algorithms in optimising hyperparameters of ML 

models, the exploration of new metaheuristics 

remains a vital area of research. The No Free Lunch 

(NFL) theorem, proposed by Ho and Pepyne (2002), 

posits that no single metaheuristic algorithm can 

outperform all others across a wide range of problem 

domains. Consequently, researchers are continually 

developing new metaheuristic algorithms, variants, 

and hybrid techniques that may potentially surpass 

existing methods or offer unique advantages As a 

result, scientists are continually creating new 

metaheuristic algorithms, variations, and hybrid 

approaches that could outperform current ones. 

(Nsiah et al., 2023). 

 

2 Study Area and Methodology 
 

2.1 Study Area 
 

The Greater Accra Region, which houses Accra, the 

capital city of Ghana, is one of Ghana’s most rapidly 

urbanising regions. The region serves as the 

country’s capital hub and houses its most prominent 

seaport and international airport, making it an 

important international gateway. The region has 

attracted many investors, resulting in an influx of 

immigrants, primarily searching for greener 

pastures. This influx of immigrants has resulted in 

the need for space, mainly for settlement, thus 

resulting in the rapid change in the land cover and 

land use of the area. The land cover of the study area 

is a heterogeneous mix of natural and man-made 

features, including water bodies, vegetation, bare 

lands, and built-up areas. For the training and testing 

of the model, 2 440 ground truth points were 

randomly picked using the Google Earth Pro 

software. The sample points were split into training 

and test datasets in the 0.8: 0.2 ratio. Fig. 1 shows 

the map of the study area. 
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Fig. 1 Map of Greater Accra Region 

 

2.2 Methods Used 

 

This section elaborates on the various methods 

employed in the study. This includes the data used, 

training sample generation, parameter tuning, model 

formulation, assessment and classification. A 

flowchart of the adopted methodology is provided in 

Fig. 2. 

 

2.2.1 Data Used 

The dataset used in this study was a multispectral 

Landsat Image of the year 2021, obtained from the 

USGS Earth Explorer website 

(https://earthexplorer.usgs.gov). For the year under 

consideration, the Landsat 8 satellite imagery was 

obtained.. Landsat 8 provides high-quality satellite 

imagery with various spectral bands that are 

valuable for remote sensing and land cover 

classification tasks. For this study, six out of the 

eleven bands were selected. The bands were selected 

based on their relevance to the classification task in 

this study. Table 1 shows the specific bands that 

were selected and their relevance to the 

classification task. Radiometric and reflectance 

corrections were performed to correct all 

atmospheric errors. To make the data more 

convenient for data analysis and manipulation, the 

bands of the array structure were stacked along the 

third axis, creating a 3D array with bands as the third 

dimension. The 3D array was then reshaped into a 

2D array, where every row signifies a pixel, and 

each column signifies a different band. This format 

rendered the data more convenient for analysis and 

manipulation.  

Table 1 Specific Bands Selected for the 

Classification Task 

SELECTED BANDS RELEVANCE 

Band 1 - 

Coastal/Aerosol (0.43 

- 0.45 µm) 

Useful for mapping 

shallow water and 

differentiating land 

from water, as well 

as assessing coastal 

and aerosol 

properties 

Band 2 - Blue (0.45 - 

0.51 µm) 

Helps in 

distinguishing soil 

and vegetation, and 

is essential for water 

body mapping and 

monitoring 

Band 3 - Green (0.53 - 

0.59 µm) 

 Useful for assessing 

plant vigour and is a 

key component in 

vegetation analysis. 

 

Band 4- Red Band 

(0.64 - 0.67 µm ) 

Essential for 

differentiating 

vegetation types and 

health due to its 

sensitivity to 

chlorophyll 

absorption. 

Band 5- Near Infrared 

(NIR) (0.85 - 0.88 

µm) 

Able to distinguish 

between different 

land cover types 

https://earthexplorer.usgs.gov/
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based on their 

reflectance 

properties. 

Band 8 - 

Panchromatic (0.50 - 

0.68 µm) 

Provides high 

spatial resolution 

images which can be 

used to sharpen 

multispectral bands. 

It enhances the 

detail and clarity of 

the image. 
 

 
Fig. 2 Flowchart of Adopted Methodology 

2.2.2 Training Samples Generation 

 

The training data were randomly generated using 

Google Earth Pro. The generated data were then 

sampled to extract their band values. A total of 2440 

points were generated and split into training (80 %) 

and testing (20 %). This ratio was chosen due to its 

preferred usage among machine learning 

researchers. The training data provided the model 

with input data examples and their corresponding 

correct outputs or labels. These datasets are used to 

enable the model to learn patterns and relationships 

between input features and output labels. The 

purpose of the testing data was to evaluate the 

performance of a trained machine-learning model. It 

consisted of a different set of sample points from the 

training dataset. The testing dataset aims to assess 

how well the models can perform on unseen data. 

This helps understand if the model can generalise its 

predictions to new and unseen data. A sample of the 

training data is represented in Fig. 3. 
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Fig. 3 Sample Training Data 

 

2.2.3 Grey Wolf Optimiser 

 

The Grey Wolf Optimisation algorithm (GWO), 

formulated by Mirjalili et al. (2014), draws 

inspiration from grey wolves’ hierarchical structure 

and hunting tactics. The Grey Wolf Optimiser 

(GWO) is a nature-inspired optimisation algorithm 

based on grey wolves’ social hierarchy and hunting 

behaviour. It mimics the cooperative and 

competitive interactions among wolves to search for 

optimal solutions efficiently. GWO effectively 

navigates complex search spaces by balancing 

exploration and exploitation, making it suitable for 

solving various optimisation problems. 

 

Grey wolves are well-known for their social nature 

and typically live in packs that comprise 5 to 12 

wolves. The social hierarchy of grey wolves is 

characterised by a structured organisation reflecting 

their cooperative and familial dynamics. The alpha 

wolves stand at the top of the hierarchy, typically 

composed of a dominant breeding pair – an alpha 

male and an alpha female. These leaders wield 

significant influence, making critical decisions for 

the pack. Subordinate to the alphas are the beta 

wolves, serving as supportive members who 

contribute to maintaining order within the pack. 

They may assume leadership roles in the absence of 

the alphas. The omega wolf, occupying the lowest 

rank, experiences greater social stress and plays a 

vital role in diffusing tensions within the pack, 

contributing to overall social harmony. In some 

descriptions of wolf hierarchies, delta wolves may 

exist as intermediaries between higher-ranking and 

lower-ranking members(Wong et al., 2014).  

 

The Grey Wolf Optimisation (GWO) algorithm 

strategically emulates the hunting behaviour of grey 

wolves, orchestrating its optimisation process 

through four distinct phases: searching for prey, 

encircling the prey, hunting, and attacking. In this 

algorithmic framework, each wolf symbolises an 

initialised solution within the hyperspace of the 

given problem, drawing an analogy between 

potential solutions and prey in the wolves’ natural 

hunting environment. The wolves are classified 

based on their fitness, with the most adept solution 

identified as the alpha wolf, followed by the beta and 

delta wolves, while all other solutions are 

collectively denoted as Omega(Rezaei et al., 2018). 

 

The algorithm unfolds its hunting strategy as the 

Alpha, Beta, and Delta wolves take the lead in the 

pack, guiding the exploration of potential solutions 

within the problem’s hyperspace. The Omega wolf 

follows suit, representing additional solutions in the 

search space. As the wolf pack collectively 

identifies promising prey, the algorithm seamlessly 

transitions through the phases: searching for prey, 

encircling the prey, hunting, and attacking (Mirjalili 

et al., 2014). 

 

During the encircling phase, mathematically 

expressed through equations 1 and 2, the Alpha, 
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Beta, and Delta wolves update their positions to 

surround the targeted prey. This phase emphasises 

exploitation, focusing the algorithm’s efforts on 

refining and converging towards the identified 

solutions. The subsequent hunting phase intensifies 

the pursuit of optimal solutions, with the pack 

concentrating its search on the regions identified 

during the exploration phase. The attacking phase 

then refines the wolves’ positions, optimising each 

solution’s fitness (Hatta et al., 2019). 

 

�⃗⃗� = 𝐶  ∙ |𝑋 𝑝(𝑡) − 𝑋 (𝑡)|    (1) 

𝑋 (𝑡 + 1) = |𝑋 𝑝(𝑡) − 𝐴  ∙ �⃗⃗� |  (2) 

 

where  𝑋 (𝑡)𝑎𝑛𝑑 𝑋 𝑝(𝑡)  denote the grey wolves and 

the prey’s location, respectively, at the tth iteration. 

�⃗⃗�  denotes the position alteration element. 

𝐴  𝑎𝑛𝑑 𝐶  are coefficient vectors and are computed as 

shown in Equations (3) and (4). 

 

𝐴 = 2𝑎  ∙  𝑟 1 − 𝑎     (3) 

𝐶 = 2 ∙  𝑟2     (4) 

where 𝑟 1 𝑎𝑛𝑑 𝑟2 are vectors with values between 0 

and 1 that are generated randomly, and 𝑎  is a 

moderating entity that linearly diminishes from 2 to 

0. 

 

In the GWO algorithm, the positions of the fittest 

solutions, that is, α, β, and δ, are updated first. Then, 

the other search agents (ω) are repositioned based on 

Equations (5), (6) and (7). 

 

�⃗⃗� 𝛼 = |𝐶 1  ∙  𝑋 𝛼 − 𝑋 |  (5) 

�⃗⃗� 𝛽 = |𝐶 2  ∙  𝑋 𝛽 − 𝑋 |  (6) 

�⃗⃗� 𝛿 = |𝐶 3  ∙  𝑋 𝛿 − 𝑋 |  (7) 

where �⃗⃗� 𝛼, �⃗⃗� 𝛽, and �⃗⃗� 𝛿 denotes the step size of ω with 

regards to α, β, and δ, with their respective as  𝑋 𝛼, 

𝑋 𝛽, and 𝑋 𝛿 . 𝐶 1, 𝐶 2 and 𝐶 3 are randomly initiated 

vectors and 𝑋  is the current solution location. 

 

After the distances are defined, 𝑋 (𝑡 + 1) which 

denotes the final position of the current solution is 

subsequently computed by Equations (8), (9), (10) 

and (11). 

 

𝑋 1 = 𝑋 𝛼 − 𝐴 1(�⃗⃗� 𝛼)    (8) 

𝑋 2 = 𝑋 𝛽 − 𝐴 2(�⃗⃗� 𝛽)    (9) 

𝑋 3 = 𝑋 𝛿 − 𝐴 3(�⃗⃗� 𝜎)   (10) 

𝑋 (𝑡 + 1) =  
�⃗� 1+�⃗� 2+ �⃗� 3

3
  (11) 

 

The GWO was adopted for this study due to the 

random adaptability of 𝐴  and 𝐶 . These parameters 

enable the algorithm to achieve a balance when 

exploring and exploiting a search space. Thus, 𝐴  

initiates the exploration of search space and |𝐴 | > 1 

prompts candidate solutions to diverge from weaker 

prey in search of a fitter one. Similarly, candidate 

solutions converge toward the prey when |𝐴 | < 1. 

𝐶 = [0, 2][0,2] which a random vector secondarily 

specifies weights for the prey considering its 

location from the wolf (Makhadmeh et al., 2019). 

The pseudocode for the GWO algorithm is shown in 

Fig. 4. 

 

 
Fig. 4 Pseudocode of the GWO (Source: Mirjalili 

et al. (2014)) 

 

2.2.4 Support Vector Machine 

 

Introduced in 1963 by Vapnik, the SVM is a 

classifier that linearly separates datasets using a 

decision boundary known as the hyperplane. The 

concept of the Support Vector Machine is to find a 

decision boundary that maximises the margin 

between the datasets closest to the boundary. The 

support vectors are the datasets lying closest to the 

decision boundary, also known as a hyperplane. 
SVMs have been employed effectively to solve 

many real-world problems, such as text recognition, 

regression, and image classification (Cervantes et 

al., 2020). The Equation of the hyperplane is 

represented mathematically in Equation (12) 

 

𝑤. 𝑥 + 𝑏 = 0    (12) 

 

Where 𝑤 and 𝑏 are the normal vectors and the bias 

of the hyperplane, respectively. The points that 

satisfy Equation (12) are to be considered when 

defining the margin hyperplanes because they lie 

exactly on one of the margin borders. The distances 

for these points to the optimal hyperplane (𝜔 ⋅ 𝑥𝑖 +

𝑏 = 0) are therefore d+= d_ = 
1

‖𝑤‖
 and the margin 

width is equal to 
2

‖𝑤‖
. The optimisation of the margin 

width is obtained by solving the constrained 

quadratic optimisation problem presented in 

Equations (13) and (14). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 1
2

‖𝜔‖
⁄    (13) 

𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑦 = 𝜔 ⋅ 𝑥𝑖 + 𝑏 − 1 > 0
     (14) 

 

The architecture of SVM is depicted in Fig. 5. 
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Fig. 5 SVM Architecture (Source: Adopted from 

Ruiz-Gonzalez et al., 2014) 

 

2.2.5 Hyperparameter Optimisation using GWO 

 

This study optimised the hyperparameters, one of 

the key features of the support vector machine, using 

the grey wolf optimiser. These parameters are not 

directly learned from the data. However, they are set 

before the learning process begins. The 

hyperparameters are the regularisation parameter 

(C) and the choice of kernel function. The selection 

of the best c value and kernel for enhanced 

performance can be quite complex. 

 

The regularisation parameter balances minimising 

training error and maintaining the model’s 

simplicity to avoid overfitting. A small value of C 

allows for a larger margin and a smoother decision 

boundary, which promotes better generalisation but 

potentially increases bias. On the other hand, a large 

C value prioritises accurate classification of training 

samples, potentially leading to a more complex 

decision boundary and higher variance, hence 

increasing the risk of overfitting (Poku et al., 2023). 

 

The kernel function maps the input features into a 

higher-dimensional space, allowing SVM to handle 

non-linear decision boundaries. The shape of the 

decision boundary is determined by the type of 

kernel function used (linear, polynomial, radial basis 

function, among others) (Prajapati and Patle, 2010). 

The kernel function, thus, significantly affects the 

performance of the SVM model. Even though it was 

initially designed as a binary classifier, SVM can be 

modified to solve multiclass problems by converting 

the model into a higher dimensional using kernels 

(Cawley and Talbot, 2010).  

 

Support Vector Machine (SVM) becomes an 

optimisation problem when trained on a dataset to 

find the optimal decision boundary that maximises 

the margin between different classes while 

minimising the classification error. Overall, SVM 

optimisation aims to find the parameters that 

minimise the classification error on the training data 

while maintaining good generalisation performance 

on unseen data. 

 

The objective of the SVM is to find the decision 

boundary (hyperplane) that maximises the margin 

between different classes while minimising the 

classification error. This involves minimising the 

objective function, which quantifies the 

misclassification error and the complexity of the 

decision boundary. This is subject to constraints that 

ensure correct classification and sufficient margin 

between classes. Consequently, the objective 

function was defined to achieve the minimum fitness 

values. 

 

2.2.6 Accuracy Metrics 

 

Four standard metrics namely; Recall, Precision, F1- 

Score, and Overall Accuracy were used to evaluate 

the effectiveness of the different classification 

algorithms. Equation (15) illustrates how the recall, 

which quantifies a model's completeness, is 

calculated as the ratio of positively identified targets 

to positive targets. The ratio of the number of 

positively identified targets to the total number of 

targets recognised as positive is known as Precision, 

which measures how accurate or precise a model is. 

Equation (16) provides the mathematical expression 

for Precision. Equation (17) is the mathematical 

representation of Accuracy, which is the percentage 

of accurately detected targets to all detected targets. 

Equation (18) depicts that F1 is the harmonic mean 

of accuracy and recall.  

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (15) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (16) 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
   (17) 

F1-score = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (18) 

 

where 𝑇𝑃 is the true positive, 𝐹𝑃 is the false 

positive, 𝐹𝑁 represents the false negative, and 𝑇𝑁 is 

the true negative. 

 

3 Results and Discussion 

 

3.1 Experimental Design 

 

The experiment was conducted on a Windows 

Operating System using Python as the programming 

language, utilising several libraries, including Scikit 

Learn, Numpy, Label Encoder, Pandas, Osgeo, and 

Mealpy (Thieu and Mirjalili, 2023). The image 

dataset was structured as an objective function for 

the Grey Wolf Optimiser (GWO). The GWO 

parameters were initialised to find the optimal 

hyperparameter combinations that would yield the 

highest accuracy for the Support Vector Machine 

(SVM) model. The specific GWO settings and 

parameters are detailed in Table 2. 
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Table 2 GWO Parameter Settings 
GWO 

PARAMETER 

VALUE 

Fitness Function Objective Function 

Lower Bound [0, 0.1] 

Upper Bound [3.99, 1000] 

Epoch Size 50 

Population Size 50 

 

3.2 Performance Comparison 

 

The robustness of the GWO-SVM model was 

ascertained by conducting a comparative analysis 

with the standalone SVM using recall, precision, F-

1 score and overall accuracy. The GWO-SVM and 

SVM models were trained and tested using the same 

data. The findings of the evaluation are discussed in 

the subsequent sections. 

 

3.2.1 Comparison between the GWO-SVM and 

SVM 
 

The SVM classifier was employed with default 

parameter settings, while the GWO-SVM 

underwent a hyperparameter tuning process. After 

50 iterations, GWO selected a regularisation 

parameter of 52.5 and an RBF kernel as the optimal 

configuration. 

 

The results shown in Table 3 and Fig. 6 demonstrate 

improvements in the classification performance of 

GWO-SVM compared to the standalone SVM. 

GWO-SVM achieved a precision of 0.91, surpassing 

SVM’s precision of 0.84. Both classifiers exhibited 

similar recall values of 0.82, indicating consistent 

performance in identifying positive instances. The 

F1-Score, a measure of the balance between 

precision and recall, was higher for GWO-SVM 

(0.85) than SVM (0.83). Overall accuracy showed a 

significant improvement, with GWO-SVM 

achieving 0.9192, outperforming SVM’s 0.8932. 

 

The higher precision of GWO-SVM suggests that 

predicting the positive class is more accurate than 

SVM. This is critical in applications where the 

misclassification of positive instances is costly. The 

consistent recall values indicate that both classifiers 

perform equally well in identifying positive 

instances. However, the superior F1-Score of GWO-

SVM emphasises its better balance between 

precision and recall, making it a more reliable 

classifier. The substantial improvement in overall 

accuracy further solidifies the superiority of GWO-

SVM, as it makes more accurate predictions across 

both positive and negative classes. Table 3 displays 

the classification performance of the developed 

models. Therefore, based on this comprehensive 

evaluation, GWO-SVM emerges as a promising 

classifier, excelling in making precise positive 

predictions while maintaining a strong balance 

between precision and recall.  

 

 

Table 3 Accuracy Metrics for SVM and GWO-SVM 

CLASSIFIER PRECISION RECALL F1-SCORE OVERALL 

ACCURACY 

SVM 0.84 0.82 0.83 0.8932 

GWO-SVM 0.91 0.82 0.85 0.9192 
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Fig. 6 Comparison between the Four Accuracy Metrics 

 

3.3.2 Runtime  

The computational efficiency was also observed. 

The GWO spent less than 7 secs for each epoch to 

complete its search. A graph showing the runtime of 

the GWO is depicted in Fig. 7. Table 4 also shows 

the runtime used by both the standalone SVM and 

the GWO-optimised SVM. 

 

 

Table 4 Runtime of SVM and GWO-SVM 

CLASSIFIER TIME USED (MINS) 

SVM 28 

GWO-SVM 4.73 

 

 

 

Fig. 7 Graph of  Runtime for GWO   
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3.3.2 Land Cover Maps 
The resulting land cover maps were visually 

compared between the standalone SVM and the 

GWO-SVM models. It could be observed that both 

models generally classified the various land cover 

types. However, it could be observed that some parts 

of the forest cover types were classified as bareland 

areas by the standalone SVM. The resulting images 

are shown in Figs. 8 and 9. 

 

 
Fig. 8 SVM-derived LULC Map  

 

 
Fig. 9 GWO-SVM-derived LULC Map  
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4.4 Research Implication 

 

Applying the Grey Wolf Optimisation (GWO) 

Algorithm to Support Vector Machine (SVM) for 

pixel-based image classification has yielded 

promising results and significant research 

implications. The successful integration of GWO 

with SVM showcases its potential as an effective 

and efficient approach for optimising 

hyperparameters in the context of image 

classification tasks, enhancing accuracy and 

efficiency in the classification of land cover types. 

The superior performance of this hybrid approach 

implies that it can serve as a valuable tool for remote 

sensing applications, environmental monitoring, and 

land cover mapping. Furthermore, the research 

implication of this study extends beyond pixel-based 

image classification. The effective integration of 

GWO with SVM may inspire researchers to 

investigate its potential in other machine-learning 

applications, such as object detection, feature 

selection, and anomaly detection. In conclusion, 

using GWO-SVM in pixel-based image 

classification opens new avenues for improving the 

performance and efficiency of machine learning 

models. The research implications of this study 

contribute to advancing the field of machine 

learning optimisation techniques, stimulating 

further research and innovation in developing 

sophisticated algorithms for a wide range of 

applications in image analysis. 

 

5. Conclusion and Future Works 
 

This study has optimised the SVM for pixel-based 

image classification on heterogeneous land types. 

The grey wolf optimiser conducted an exhaustive 

search within the hyperspace, and the results 

obtained from the Grey Wolf Optimised-SVM 

yielded the highest accuracy metric. Four evaluation 

metrics, precision, recall, F1-score, and overall 

accuracy, are considered for evaluating the proposed 

model. The performance assessment confirmed that 

the proposed hybrid classification technique was 

superior to the standalone SVM. Therefore, the 

optimised SVM could significantly improve land 

cover mapping accuracy, especially for complex 

land cover characteristics. Whilst this research has 

addressed the significance of optimisation 

techniques in improving classification accuracies, 

future works will explore beyond spectral features, 

considering textural, statistical (such as mean, 

median, standard deviation, etc) and various 

topographical indices (such as normalised 

differential vegetative index, built-up index, 

modified normalised differential water index, soil 

adjusted vegetative index, etc). This will provide 

richer information for classification, improving 

model robustness and accuracy. In the context of 

hyperparameter tuning, future research shall focus 

on hybrid methods. By combining the strengths of 

multiple models, these methods can correct the 

weaknesses of each model, leading to a more robust 

and accurate prediction 
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