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Abstract
Using fundamental solutions, exact solutions are constructed for the real MongeeAagpation.
ContinuousLP, Sobley and Hilder estimates are also obtained for the solutions. Fjrfallythe
Dirichlet problem for the equation, a solution is obtained.

Introduction

Starting from the results in [1] we constructed what must be called a fundamental solution
of the complex Monge-Ampére operator in [2], and we obtained continuousestd L
mates for that operatdiVe consider the real Monge-Ampére operator on arbitrary
bounded domains iR", unlike the classical results which were obtained on convex do-
mainsWe obtain solutions in distributions, viscosity solutidfisestimates, Sobolev es-

imates and Holder estimates. For the free boundary problem we obtain exact solutions

sing integral representation constructed from the fundamental solution, from which we get
the estimatedVe finish by obtaining a solution for the Dirichlet problem for the same
equation. References for the recent works on the Monge-Ampére equation are in the
referencesin[3].

We consider the Monge-Ampére equation in the form

Al — n
det E)xiaxj =fonQ c " (1.1)

where at leadt>0inQ, flne L' (Q), Q being bounded and open i

For the distributional solution, the viscosity solution]thestimates and the Dirichlet
problem the boundary €f need not be smooth. For the sobolev estimates we require the
boundary of2 to have Lesbesgue measure zero, and fordlteHestimates we require
the boundary o2 to be smooth.

Preliminaries
Our estimates come from the explicit integral representation which we use and the esti-
mates are almost immediate. Here we recall the definition of Sobolev Spacétoand H
Spaces.
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LetQ be an open setin, 1<s<co, 1< p<eo, the Sobolev space WQ) :=the
space of all distributions u definedh such that
(a) D*e LP (L), for jo| <m, whens=mis a nonnegative integer

(b) ue W (@) and), [, DU () ~D*UW)| gxdly< o, for o] =m, whens = m+o

. . . Xy
is nonnegative and is not an linteger
With norm 1
Ulpe= = [, IDuP ° 2.1)
lel<m
in case (a) and 1
ID*u (x) - Du (y)| P
Il 0= N0+ 2 /Q/Q dxdy (2.2)
P b= x—y1
in case (b).
ForQ stillan open setin 0& < 1,k> 0 an integertthe Hilder Space *(Q) :=
the space of functions @hsuch that @

If |k (Q) = SUP fl+ Z sup |Bf(X) —D"f(Y) |« o 2.3)
Q

O<lo/<k  X#Y X,yeQ | X — ylx

whereD" Q is a derivative of orden|,w = (w,,...,w ), W, > 0.

Results
Throughout the section is a bounder domairin

Theoem 3.1Letf>0,f eL!(Q)then thereis usuch that

02U

det
© 0xX. 8X1.

= fin distributions (3.1)

Theoem 3.2Letf >0,f continuous antl € LP(Q2). Then there is a continuous u, such
that

Jau
det = 3.2
X, Bx]_ =f (3-2)
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Therefore u is a viscosity soultion.
Theoem 3.3Let f>0and € LP(QQ), 1 <p<eco.Thenthereisie L?(Q), such that

0%
det = 3.3
e 3%, ox =f, 3-3)

and there is K independent dfsuch that
||u|||_p((g)<K”f IILP(Q) (34)

Theoem 3.4Letf>0,f e W (Q), 1<p<o, 1<s<oco, and letthe boundary f
be of Lebesgemeasure zero, Then thereis W *2(2), such that

o2

X, 8X].

det

and || UJLZDQS K|f ||5’pg for some constamt independent dft

®Theoem 3.5Letf >0,f € **(Q),0<a<1, k>0 anintegerand let the bound-
ary ofQ be smooth. Then there is & u “*2* (Q) such that

d0%u
det - 3.6
e 3x ox = f (3.6)
and Ul ke20 (@ <KIF | kop,, @ (3.7)

for some constat independent df

Theoem 3.6Letf >0,fe °( )andge °( ).Then thereis adefined orue °
( ),suchthat

det FU _ ¢ (3.8)

3.9
Solutions and Estimates
In this section we prove those parts of the theorems that need to be proved.
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2 2,
For Theorem 1, letbe a fundamental solution?r2 in ,that is%i =9, the Dirac
X X

deltain .
Define the distributioijin "by

Ej () =€ (0,0, ..., ], ..., 0, 0)) (4.1)

the action o€ being in thgth coordinatep € D(Rn) —a test function.
Letf be zero outsid® and definai by

ETETeTR) (4.2)
where * is convolution. Itis then clear thiathe restriction of to Q satisfies
det L s
ox 9x - | indistributions. '

1 J

ToproveTheorem2,leR,, Q, Q. .. withU Q=Q bean exhaustion%l

of Q. Let {¢} 1 be a sequence of functions withe (X ,),¢, 1onQ,h 0<
0, <1
DefineUve °( ") by

Uvz(El+%+_,,+|%)*((pvfin), 4.4)

where again * is convolution.

Now, it is clear that d vy - finQ and { } tends locally uniformly to a
X 0X
continuous u such that ]
0%
det —— =1f onQ 4.5
wax 1O (45)

Thereforeuis a viscosity soultion of the equation.
To proveTheorem 3, let JE(lsj < n) be as above, I¢be zero outsid& and
Define.

V:(E|+Ez+"'+E\)*(f ), (4.6)
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where * is again convolution. Thenthe restriction of to Q satisfies the conclution of
Theorem 3.
Also if f andQ satisfy the hypothesis of Theorem 4 gisdlefined to be zero outside
Q as above. Then thiconstructed above satisfies the conclusion of Theorem 4.
Now, letf andQ satisfy the hypothesis ®heorem 5, Extenito be in &* ( " and

letywe < ( " beidentically equal to one in a compact neighborhood @efine

V=(E +E+ ... +E)* (%) 4.7)

Thenu, the restriction of to Q, satisfies the conclusion ©heorem 5.
Finally to prove Theorem 6, lep{} be the sequence,ir” (Q) constructed in part
two of this section and define

U= {(E+ B+ v E)* (0 )} @+ (1-0)g “.8)

Then det o, =fin and {u } converges locally uniformly i€ to a function

X 0X
i
@u in Z° (Q) such that

02 —
det 4= =f Q 4.9
e aXian in (4.9

u=g on JdQ
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