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Abstract
Using fundamental solutions, exact solutions are constructed for the real Monge-Ampère equation.
Continuous, LP, Soblev, and Hölder estimates are also obtained for the solutions. Finally, for the
Dirichlet problem for the equation, a solution is obtained.

Introduction
Starting from the results in [1] we constructed what must be called a fundamental solution
of the complex Monge-Ampère operator in [2], and we obtained continuous and Lp esti-
mates for that operator. We consider the real Monge-Ampère operator on arbitrary
bounded domains in  n, unlike the classical results which were obtained on convex do-
mains. We obtain solutions in distributions, viscosity solutions, Lp-estimates, Sobolev es-
timates and Holder estimates. For the free boundary problem we obtain exact solutions
using integral representation constructed from the fundamental solution, from which we get
the estimates. We finish by obtaining a solution for the Dirichlet problem for the same
equation. References for the recent works on the Monge-Ampère equation are in the
references in [3].

We consider the Monge-Ampère equation in the form

det      ∂
2u        =   f  on  Ω  ⊂

 

n

∂ ∂

where at least f > 0 in Ω, f 
1 ∈ L1 (Ω), Ω being bounded and open in 

 

n.
     

  n

For the distributional solution, the viscosity solution, the Lp-estimates and the Dirichlet
problem the boundary of Ω need not be smooth. For the sobolev estimates we require the
boundary of Ω to have Lesbesgue measure zero, and for the Hölder estimates we require
the boundary of Ω to be smooth.

Preliminaries
Our estimates come from the explicit integral representation which we use and the esti-
mates are almost immediate. Here we recall the definition of Sobolev Spaces and Hölder
Spaces.
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Let Ω be an open set in 

 

n, 1 < s < ∞, 1 < p < ∞, the Sobolev space W

 

 (Ω) := the
space of all distributions u defined in Ω, such that

(a) Dα ∈ Lp (Ω), for |α| < m, when s = m is a nonnegative integer,

(b) u ∈ W  (Ω) and ∫
Ω 

 ∫
Ω
  |D

αu (x) – Dαu(y)| dxdy < ∞, for |α| = m, when s = m + σ
                                       | x – y | n + σp

is nonnegative and is not an linteger.
With norm

||u||
m,p,Ω 

=    Σ     ∫
Ω
 |Dαu|p    

1

(2.1)
        |α| < m      

p

in case (a) and

p||u|| 
s, p, Ω 

=     ||u||
m,p,Ω

 + Σ     ∫
Ω  

∫
Ω 

 |Dα u (x) – Dαu (y)| 
dxdy  

1

(2.2)
     

  p

          
p

          

|α| = m            |x – y |n + σp

in case (b).
For Ω still an open set in 0 < α < 1, k > 0 an integer, the Hölder Space 

ℂ 

k,α (Ω) :=
the space of functions on Ω such that

|f | k,α (Ω) := sup | f | +   Σ         sup    |Dw f (x) – Dw f (y) | < ∞ (2.3)
             Ω             0 <|ω| <κ       x≠ y x,y ∈Ω   | x – y|α

where Dw Ω is a derivative of order |w|, w = (w
1
,..., w

n
), w

j
 > 0.

Results
Throughout the section is a bounder domain in 

ℝ 

n.

Theorem 3.1. Let f > 0, f 

 

  ∈L1 (Ω) then there is u such that

det      ∂
2u        =  f in distributions (3.1)

 ∂ ∂

Theorem 3.2. Let f  > 0, f continuous and f  

 

 ∈ Lp(Ω). Then there is a continuous u, such
that

det      ∂
2u      

=  f (3.2)
 ∂ ∂
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Theorem 3.3. Let  f > 0 and f 

 

 ∈ Lp (Ω), 1  < p < ∞ . Then there is u ∈ Lp Ω  such that

det      ∂
2u       

=  f , (3.3)
 ∂ ∂

and there is a K independent of f such that

||u||
L 

p 
((Ω)

 < K || f 

 

 || 
L p (Ω)

(3.4)

Theorem 3.4. Let f > 0, f 

 

 ∈ W

 

 (Ω), 1 < p < ∞, 1 < s < ∞, and let the boundary of Ω
be of Lebesque measure zero, Then there is u ∈ W

 

 + 2 (Ω), such that

det     ∂
2u      =  f (3.5)

∂ ∂

and   || u||
s + 2,p,Ω

 < K || f 
 

 ||
s,p,Ω

 for some constant K independent of f.

Theorem 3.5. Let f 
 

  > 0, f  ∈
ℂ 

k,α (Ω), 0 < α < 1, k > 0 an integer, and let the bound-
ary of Ω be smooth. Then there is a u ∈ 

ℂ 

k+2,α (Ω) such that

det      ∂
2u      

=  f (3.6)
 ∂ ∂

and |u|

ℂ 

 k + 2, α
 (Ω) < K | f 

 

 |

ℂ 

 k, α
 

 k, α
 (Ω) (3.7)

for some constant K independent of f.

Theorem 3.6. Let f  > 0, f ∈

ℂ 

0 (

 

) and g ∈

ℂ 

0 (

 

). Then there is a u defined on u ∈

ℂ 

0

(

 

), such that

det      ∂
2u        

=  f (3.8)
 ∂ ∂

and u = g on ∂Ω
(3.9)

Solutions and Estimates
In this section we prove those parts of the theorems that need to be proved.
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For Theorem 1, let e be a fundamental solution for  ∂2  in 

ℝ 

, that is  ∂
2e  = δ, the Dirac

          ∂x2                    ∂x2

delta in 

ℝ 

.
Define the distribution Ej in 

ℝ 

n by

Ej (ϕ) = e (ϕ(0, 0, ..., j, ..., 0, 0)) (4.1)

the action of e being in the jth coordinate; ϕ ∈ D(Rn)  – a test function.
Let f be zero outside Ω and define u by

v = (E
1
 + E

2
 + ... + E

n
) * (f 

 

) (4.2)

where * is convolution. It is then clear that u, the restriction of v to Ω satisfies

det       ∂
2u        

=  f  in distributions. (4.3)
 ∂ ∂

To prove Theorem 2, let Ω
1
, 

  
 Ω

2
 

  
 Ω

3
 

  
 ..., with U

 

 Ω = Ω, be an exhaustion

of Ω. Let  {ϕ
v
} ∞ 1 be a sequence of functions with  ϕν ∈

ℂ  

(Ω
v + 1

), ϕ
v
 

 

 1 on Ω
v
, 0 <

ϕ
v
 < 1.

Define Uv ∈

ℂ 

0 (

ℝ 

n) by

Uv = (E
1
 + E

2
 + ... + E

n
) * (ϕ

v
 f i ), (4.4)   n

where again * is convolution.

Now, it is clear that det     ∂2vv         = f in Ω
v
 and {ν

v
} tends locally uniformly to a

         ∂ ∂
continuous u such that

det ∂2u       =  f  on Ω (4.5)
  ∂ ∂

Therefore, u is a viscosity soultion of the equation.
To prove Theorem 3, let E

j
 (1 < j < n) be as above, let f be zero outside Ω and

Define.
v = (E

i
 + E

2
 + ... + E

n
) * (f 

 

 ), (4.6)
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where * is again convolution. Then u, the restriction of v to Ω satisfies the conclution of
Theorem 3.

Also if f and Ω satisfy the hypothesis of Theorem 4 and f is defined to be zero outside
Ω as above. Then the u constructed above satisfies the conclusion of Theorem 4.

Now, let f and Ω satisfy the hypothesis of Theorem 5, Extend f to be in Ck,α (

ℝ 

n) and

let ψ ∈ 

ℂ 

∞ (

ℝ 

n) be identically equal to one in a compact neighborhood of 

 

. Define
       

0

v = (E
1
 + E

2
 + ... + E

n
) * (f  ) (4.7)

Then u, the restriction of v to Ω, satisfies the conclusion of Theorem 5.
Finally to prove Theorem 6, let {ϕ

v
} be the sequence in 

ℂ 

∞ (Ω) constructed in part
two of this section and define       

  0

u
v
 := { ( E

1
 + E

2
 + ... + E

n
) * (ϕ

v 
f 

 

 )} ϕ
v
 + (1 – ϕ

v
)g (4.8)

Then det        ∂
2v

v
        = f in Ω

v
 and {u

v
} converges locally uniformly in Ω to a function

            ∂ ∂
u in 0 (Ω) such that

det      ∂
2u        =  f   in   Ω (4.9)

        ∂ ∂
∂ Ω.
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