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ABSTRACT

We present some basic Green’s functions of superconductivity, making emphasis on their geneology and analytic
properties. From calculations, we note that the temperature dependence of the Green’s functions for fermionic (and
bosonic) systems limits and defines the extent of their applications and results. Furthermore, the Gorkov interaction
term of the four field fermion operators, is examined and interpreted in terms of the Landau condensate. Finally we
show that the Gorkov interaction under a certain condition sustains superconductivity and spin density wave in the
system.
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1. INTRODUCTION.

The theory of superconductivity received a
tremendous boost in 1957 when Gorkov (Gorkov, 1958)
formulated the Bardeen-Cooper-Schrieffer(BCS) theory
(Bardeen, Cooper, Schrieffer, 1957) in the language of
the Green's functions. The Green’s functions were
directly introduced into condensed matter physics from
guantum field theory where they had been found to be
particularly successful in solving many body problems
(see e.g, Kushnirenko, 1971). The Green’s function
enables us to obtain the single-particle energy spectrum,
the life-time of single-particle excitations, the ground
state energy and the expectation value of any single-
particle thermodynamic quantity in the ground state of
the system.

A further development in the Green’s function
formalism was made through its diagrammatic
representation of the electron-phonon interaction by
Migdal (Migdal, 1958). Eliashberg later developed a

perturbation method in which the Green’s function
calculated for the ground state of the superconductor
was used as a zero approximation(Eliashberg,1960) in
determining the exact Green's function of the electron
through the Dyson equation. The metallic
superconductors (e.g, tin and lead) and alloy
superconductors (e.g, NbsSn and V;Ga) for which the
BCS theory was formulated have serious cryogenic
drawback- their critical temperatures (T.) are in the
range O0<T.<25K. This circumstance limits their
application in technology. These low temperature
superconductors (LTS)have now been superceeded by
the ceramic high temperature superconductors (HTS)
discovered in 1986(Bednorz and Muller,1986). The
critical temperature of the HTS is greater than 40K, and
room temperature superconductor (T.=300K) is
expected in the near future. The Green’s function
technique is still the main tool for describing and
explaining the properties of these materials (Plakida,
2010).
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2. The single-particle causal Green’s functions.

The single-particle Green'’s function for fermions is defined as (Lifshitz and Pitayevsky,1980)
{ GX joff X12)=- (X,1) i WO 1

where X = 4(* r’},-r is the position vector and t the time. ¥..%5 are the annihilation and creation fermionic field
operators respectively, and . 5 are the spin indices.The angle bracket (--)a denotes averaging with respect to the
ground state of the system. The symbol T is the chronological operator which arranges the operators from right to left
in the order of increasing times f1-fz, with T1 being the reference or highest time on the left. Thus for fermions
- Iy > 1z
G.‘—:P(.‘".]"-']'-g) = . N
I <12 2

If the system is not ferromagnetic and is not situated in an external field, then Gagp
single-particle phonon Green'’s function is defined as (Schrieffer,1964)

DULX)=—-1  Ude=0:D) 3
so that
_ Iy » b
D(Xi-j-,z)_ Ta STz i, 4
The operators and @) are Heisenberg operators, which, as an example for is
VG 0) = e e 5

where H is the Hamiltonian operator. The corresponding Schrodinger representation of the wave function is

1 ——
=— E Q.
livd o

V&

Then (5) can be written in terms of the free particle energy €a{#) as
1 . -
W t) = — Y ayet G
v’ — 7
The non-interacting single-particle Green’s function(ignoring the spin indices) then becomes
GO, t) = — [:_.-'Zei ] (0))
B e 8
Making use of the definition (2) we have
- =1-: A
(0)) = 1 a,)=1-mn,, t- 0
In order to write G°€*>£] in terms of frequency and momentum we carry out a Fourier transformation of (8) as follows
1 ; - 1 3 ; -
G9p, w) = —:'T_, G, tle dtd3r = 7 ‘ et (1-n, 8y
I - I . - 1 . =
— = 7+ 'ar-=__ — N L ‘._l-l'ar- — . = | a.?..
v ¢ pltdr=-g (I-mplet dwdireg e 10

Noting that "= = @3@» =1, at IDl < Pa  and equal to zero at 11 ® 0 for the occupied and unoccupied levels
respectively, then (10) becomes

6O, w) = -i60Pl-po) | & dt+i6(pa—lph ™ at
=0
_ 6(pl - p) N Gl —Ipl) 1
S w—5P)+i0 w-g- 10 w-—cp)+ Uol-mpad 11

Here 5g7%x]) stands for the sign of x and 6L} =1,forx >0 gng Gx)J=0 forx <0 \When P> Vo, ¢ js

positive, and when P < Fa, i s negative, thus the quantity i§  characterises the way the pole of the Green’s
function is by-passed in integration (Abrikosov et al, 1975). The phonon Green'’s function (4) contains the phonon field

operator @{X) which can be written in terms of the annihilation £ and creation 2~ operators of a phonon as

o) = b.e L L
p0x) [ “ i ] ........................................................ 12
The phonon Green'’s function is then
Bz, — tz)e\ 1 B 13
The Fourier transform of (13) is
DO (g,w)= ;e € d"‘+"wa' e dt = g
" 2 S 2 2(w—wg +id)
- +wg—1id) = - +i8) 14
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3. The electron-phonon interaction
The electron-phonon interaction turns out to be a dominant process in condensed matter with its strength
dependent on temperature. The Hamiltonian of the electron —phonon interaction is

= Z g;}p'a?a;'(b@ + b:l?.)

where is the electron —phonon coupling constant and Gps"z are the electron and phonon annihilation operators
respectively. The Hamiltonian (15) describes a scenario in which an electron interacts with phonons in two ways. In
the first instance an electron absorbs a phonon from the field and in the second instance the electron emits a phonon
into the field. Thus two separate vertices of electron-phonon interaction are seen to be present in the electronic

system at 4 = 0K. The process takes a different turn when two electrons are within a phonon exchange range. The
two vertices are now connected by the rapid exchange of phonons and the two electrons pair up. This mechanism of
pairing was first proposed by Cooper(Cooper, 1956). Thus the electron-electron interaction is brought about by the
mediation of phonons whereas the appearance of the electron-electron pairs due to an effective attraction is derived
from the competition between the Coulomb repulsion and the electron- phonon exchange energy. Since the pairing
temperature T, is different for different metals or alloys,then there must be a renormalization of the electron-phonon
vertices for each metal or alloy. We can extract only the single-electron Green’s function from the expression (15), and
this is not sufficient for the exact mathematical description of the pairing mechanism. A state with four operators has to
be introduced. For that purpose we follow Schrieffer(Schrieffer,1964) to write the initial(l) and final states(F) of the
phonons in the system as

IFFYy={u(big |} 1@ + 1 AH A ) 16

where the subscripts @ €M represent absorption and emission of phonons respectively. Since emission and
absorption of phonons take place in equal probability, then

{F InN=dr g:apaga;»agr(bq + bZ, )|J') = {I g*azajaza,by 4 b3 N as
=  goazajajayb_g(bg + b2 )| Dam
In the mean time if we ignore the phonon operators in (17) then we have in our hands the two-particles Green’s
function
(P.£7)= agytys(CN 18
We may then apply Wick’s theorem(Lifshitz and Pitayevsky,1980) to the eqn(18) to have
(P.P7)= ) eyt b ay(th= o 19

The expression (19) defines the two-electrons Green’s function which in the zero order approximation reduces to the
sum of the products of two single —electron Green’s functions. Now let us consider (17), incorporating the phonon
operators this time. For the absorption term we extract the expression

@y @' 3”7"': ................................................................. 20
For the emission term a similar expression is
Gur_l,(i{p'l_;&_q u_;) 21

Wick’s theorem may be carried out for the electron and phonon operators separately in (20) and (21). In the
diagram technique for the Green functions the effect of including the phonon operators in (20) and (21) is that instead
of having two non connecting parallel Green'’s lines, we now have diagrams of the type

5. F B, B

(p.q)= >~ T R e, 22

¥. Py &, B

Lay

Here the dashed line represents the phonon Green’s function, ¥. 4@ are the momenta and is called the zero
order vertex function. The expression (20) corresponds to the left vertex and (21), the right vertex of the diagram in

(22). Furthermore the vertex function indicates attraction in the electron-phonon interaction(Sadovsky, 2006).
Indeed

g:(_):(?;' _ 5)
(ep - ) —w* -F) 23

.a)=V. 9) = g* D™ (g, — &35 - F) =

Here, g) is another notation for the electron-phonon interaction energy and DY is the zero order phonon

Green’s function (14) which depends on the momenta P-? . For electrons close to the Fermi surface €=~ ™0 with

the result that for & positive
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ey A — — 2
L. =—g*<o0 24

The negative sign of 4% shows the existence of attraction between electrons near the Fermi surface.

4, The vertex function and instability of the ground state (T=0)

In their classic paper Bardeen, Cooper and Schrieffer(Bardeen, Cooper, Schrieffer, 1957) showed that at sufficiently
low temperature and in the presence of the interaction condition(24) the electrons in the metal will form pairs in
momentum space near the Fermi surface. The two electrons must have equal and opposite momenta and spins.
Multiple electron-electron scatterings are mediated by phonons as already noted. The scatterings can be represented
by a series of ladder diagrams based on the diagram equation(22)(see, for example, Timm, 2012):

Ps P, P3—<—|—<—P1 34—,—<T<—P1 a—<—r<—|—<—|—<—P1
= | —|‘ + —|———— ......... 25

Fﬁ/ \ P, P4-<J—<—P2 2|<—|—<J_<— P, —<J—<—‘—<-|—<—P

The empty circle with four momentum legs represents the repeated scattering of the electron with phonon,it can also
be called the zero order vertex function. In order to sum the diagram (25) we find in the usual way(Lifshitz and
Pitayevsky, 1980):

P3 Pl P3 _<‘|_<‘|—<_ Pl P3—<—|—4—|—<—|—<— Pl
|

! — ' [ |
| _ | _|_ | | | ............................. 26
P4 —<—l—<'— PZ I:)4 —<—l—<—l—<— P2 P4 < | < ¢ ¢ PZ

Solving (25),(26) simultaneously, we obtain the equation

P.=-P P1 Ps -p" P,
| P1-Ps —I_ | .................. 27
|
<
P,=P'+q P,=P+q P4 P2 P4 P'+q P2

The corresponding integral equation is

INEAR.BEY=V(P -P)+i PTG —PT)GOPT 4+ gU—P' P +glll - P.P+q)
xd‘P"
The interaction potential is
VP - P)= —g*wywp = D 29
where 4 = —g% is the electron-phonon coupling constant, and
£y <Wp
".!.L-:
Ep >*Wp .. 30

wn being the Debye frequency. The solution of the integral equat|on(28) is

A

l_')’.w IGO0 =PIGOP+q)(dép)
T T USROS RO T 31

The problem now consists of evaluation of the integral and then nullifying the denominator in order to find the
singularity of the vertex function. In view of this let us write

i‘GlﬁD_l(_p)Gljnj(p‘l_q} i

IN(BRPRAE)=

a*p _ l.-{;":"»:q—P‘_-{;'C"»:Pa(a'*-p)
4
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B l dsp lE 1
J@m)3)en[weg—s-¢(@—p)+id G—plls— @) +ic 32
Here
o~ Pt ‘
((’UJ T 2m T 33

is the quasiparticle energy and ¥ is the chemical potential. We may evaluate the integral by residue theorem, but first

the domain of analyticity of € must be noted. If both poles of the Green’s function lie in one half plane of € | then the
integral(32) equals zero by Cauchy's theorem. This circumstance is avoided by observing two conditions of the
guasiparticle energies

EP)=0.8G@-p)<0; F@I<0E@—P)=0 e, 34
These conditions place a pole in the upper half plane (uhp) and the other in the lower half plane (lwp). Let us denote

the integral with respect to g inthe uhp by A4, and that in the Ihp by A,, then

17 as . 1
=5 ) [we—e—§@—pP)+ Tl — @)+l wo-§P)-§Q@-P)+idsgnélp) . 35
. _ 1
T e @ E@ =D - 0 SINEW) ) 36
In (32) the integral with respect to momentum ¥ can be evaluated by using the substitution
rd¥% _mpego. T, _ .
P 37 23 l “ l ‘ = PLEe) T 37

where A(Er) s the single-particle density of states of electrons on the Fermi surface. The result of evaluating the
integrals in (32) is

mpg Wy
A

~ans Zvzq e 38
Putting @ = 0 in (38) introduces instability in the system and allows the vertex function(31) to become
A
[wg) =
L4 5n OSSO 39
Using @a = l<2al#™®: then the denominator of (39) becomes
1+ —in =0
2T W b 40
Solving (40) gives the expression(Abrikosov,et al,1975)
S
g = 2lwpe T U@ e e 41
where
__dn®
= 2WDE e 42
Therefore
i il
A=- .
TMDE e ~ Ll e e e e e 43
Subtituting (43) in (39) yields
y. 1 i
Mwa)= - MPr Wg ~I00 i, 44

What we have here in(43) and (44) is that the point of instability of the electronic system towards the formation of
Cooper pairs is given by the point of singularity of the vertex function, which in turn is the point at which electron-
phonon interaction is switched on.

5. The Matsubara Green’s function (T =0 )

In order to determine the temperature at which the pairing of the electrons occurred, the Matsubara temperature
Green’s function can be the most suitable technique. The cooperative phenomenon of interest is the pairing of

electrons in such a way that at the Fermi surface the pair energy @Won = €1» + €2, = 0 | and the pair momentum is
g=p+p: =0. are the singularities of the vertex function I'{&. @) These singularities are not possessed by the

single-electron Green'’s function. The pairs now form a bosonic system and the Matsubara Green’s function for the
ideal Bose gas is
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e 1 i
g = = — = - —
. q- Wy — ¢
tn —om T H OO e, 45
The frequency @ = i{w,; = coincide with those of the retarded Green’s function C (t'-‘ G) which is analytic in

the upper half plane of the complex variable tJ (Lifshitz and Pitayevsky, 1980) The pairing of electrons is again
represented by a series of ladder diagrams whose rungs are made of wavy electron-electron interaction potential in
contradistinction to electron-phonon interaction lines(25). The bare four legs interaction vertex function is given in
terms of the ladder diagrams as

Ps P1 Ps Py Ps Py Ps Py

ﬂ §P2P4 + g g +
P4 P, P4 P, P4 P, P, P, 46

The renormalized vertex is the full four legs circle obtained by joining the end to the beginning of each upper
electron line of the ladders in(46):

Ps Py P1=P3

it

4 D@ a

Each of the diagrams in (46) and (47) can be evaluated by using the rules outlined in Mattuck’s book (Mattuck, 1967).
@)

In (47) the triangle labeled is called the three legs self-energy insertion and it takes care of all the particle-
hole(closed loops) contributions in the diagram equation(47),while the double wriggly lines represent the renormalized
electron-electron interaction. The double straight line is the renormalized Green'’s function. If we cut off the external P;
and P, lines (47) becomes an equation for the self-energy. Thus we may picture(25) as a process which aligns and
brings two electrons together for pairing whereas (46) and (47) depict the actual pairs in the Cooper channel(cc) in
which superconductivity occurs. From (46) and (47) the following diagram equation is obtained

The renormalized vertex is the full four legs circle obtained by joining the end to the beginning of each upper

electron line of the ladders in(46):

- e

Py P, Ps P,

P, P,

{k

P2

This series is summed to give the Bethe-Salpeter equation
g-p P

Ps P1 ei P1 P3
‘;( : : : ‘I‘ .................................. 49
P4 P, P, P, P
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Here the full circle represents diagrams that cannot be cut into two parts joined together by two electrons lines such
that one part contains only two ingoing external lines while the other part contains only two outgoing external lines. In
short these are diagrams which represents the Peierls channel (PC). The intermediate lines, which are the Matsubara
Green'’s functions represent the Cooper channel(CC). The corresponding algebraic equation is

BRR.BER)=  (RR.RR)- TZ @)5(a — p)d®p
n- m
............................. 50
The integral term |n (50) gives
C;'Ep J‘m
T@n L)ETIZ =~z Prin
n U=+
51

Here ™" is the effective mass of the electron, Wxo is the Debye cut-off frequency and the critical temperature of

superconductivity is obtained from (51) to be
inZ

Te= 1AW D8 52

6. The Gorkov interaction

The Hamiltonian of a system of interacting electrons is 1 = Ho+H; where

Ho= - Ly [¥7(rt) T.“ B
W (o, )d3X — ulN

3..”1 r_JE.‘
is the non-interacting Hamiltonian. The interaction Hamiltonian is given by

H,= gz . o, o, OV, (r,t)dX

Gl 54
where 4 s the interaction parameter. The Schrodinger equation for *«- is found to be
.%wﬁ = ) Wo+ A ) WY, y
Then the“equation of motion for the causal Green'’s functio; is given by theexpressmn ..............................
— ;:1 — _u) (XX - (ry —mz)d(t, — ;)= AZ WL (00 We (X 2D)
a 56

where the term on the right hand side of (56) is the Gorkov interaction(Gorkov,1958). If we apply Wick’s theorem to
the Gorkov interaction field operators,the result are two products of causal Green’'s functions and the anomalous
Green'’s functions first obtained by Gorkov:

X.x2) =N Gy N +2) 57
FapUh X)) = WN+2Mz 0 Gy, 58

An important notion that was introduced Lev Landau to explain superconductivity and superfluidity is that of
condensate and the above-condensate states. As superconductivity sets in the Cooper pairs occupy the condensate

and those electrons that have not formed pairs are in the above-condensate. The function * iFap may be regarded as

the wave function of the Cooper pairs in the condensate whereas is the corresponding wave function of
electrons in the above-condensate. In the absence of an external magnetic field contrary to Scherpelz’'s work
(Scherpelz, et al,2012) we shall show that besides superconductivity, spin density wave (SDW) is also contained in

the Gorkov interaction. For that let us put €1 = A3 or 171 = I372 | then we have the altered Gorkov interaction in the
form

Hie= AWs¥s e, 59
According to the expansion (7), the expression (59) can be written as
A A
el )= 1+ ))
-3 B 60
Applying the mean field approximation to (60) we find
H‘rg = — ZL_IZ ) + + (Q- ) +
= ﬁgcz + + Z +
P B 61

where the superconducting order parameter is
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SC= T iz
7.
B e 62
and spin density wave order parameter is given as

A

e e e 63

CONCLUSION

The Green’s functions studied in this paper are the
single-particle causal Green’s function for electrons and
phonons at zero temperature, and the Matsubara and
anomalous Green’s functions suitable for systems at
non-zero temperature. We have only discussed Green’s
functions as applied to fermionic systems,for which the
commutator of two operators is a constant. But for spin
systems (such as the high temperature
superconductors) a good candidate for Green’s function
is the double-time Green’s function first introduced by
Zubarev (Zubarev, 1960). The double-time Green’s
function can be constructed with spin and Hubbard
operators (see for example, Ovchinikov and Valkov,
2011). The BCS theory operates on the electron-phonon
exchange mechanism as is well known, but the notion of
the condensate and Gorkov interaction as worked out in
this paper admits antiferromagnetic (AF) ordering of
spins and its modulation as a precursor to electron
pairing. Thus the condensate and above-condensate
described by the Gorkov interaction (Gorkov, 2011) can
sustain both the SDW and superconductivity although
the same condensate when described by the anomalous
Green'’s functions masks the SDW.
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