
DOI: https://dx.doi.org/10.4314/gjpas.v30i4.15

GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 30, 2024: 577-584

COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA ISSN 1118 – 0579, e-ISSN: 2992 - 4464
www.globaljournalseries.com.ng, Email: globaljournalseries@gmail.com

THE COMPUTATIONAL EFFECT AND HYPERPARAMETERS
TUNING OF DEEP CONVOLUTIONAL LAYER DEPTH OF HIGH-
RANKING TUBERCULOSIS DETECTION MODELS

AUGUSTINE O. OTOBI, JOSEPH O. ESIN, IDONGESIT E. ETENG, B. I. ELE,
S. I. ELE, D. U. ASHISHIE AND CLEOPAS, ANIETIE OKPAN

Email: otobiaugustine@unical.edu.ng, jesin57@unical.edu.ng, idongeteng@gmail.com, elebassey@unical.edu.ng ,myyrs2015up@gmail.com,

ashishiedenis@gmail.com, okpancleo@gmail.com

ORCID:0000-0002-4711-8239

(Received 11 September 2024; Revision Accepted 23 October 2024)

ABSTRACT

In the past decade, artificial intelligence (AI) solutions have seen widespread application in medical fields, which
include automated detection of breast cancer, brain tumors, physiological monitoring and detection of lung
diseases such as pneumonia from chest X-Rays (CXRs). Machine learning, a subset of AI, empowers computers
to learn autonomously, without direct human programming, by extracting patterns (feature extraction) from data
(images). Deep learning, a specialized branch of machine learning, employs multiple convolutional layers to
extract complex features from raw input data. This article examines the impact of varying the convolutional layers
in deep learning models on their efficiency, focusing on algorithm complexity and parameter counts. We discuss
theoretical foundations, and relevant factors affecting efficiency, and analyze algorithm complexity of high-ranking
models developed for detecting tuberculosis from chest x-ray (CXR) using convolutional neural networks. The
number of convolutional layers significantly influences model efficiency, affecting both performance and
computational complexity. We could conclude practically that optimal layer depth balances model efficiency,
accuracy and resource utilization. This assertion was reached by developing a model with fewer convolutional
layer depth using the ResNet18 architecture. The parameters count of the ResNet18 model developed was
compared with other model developed to detect tuberculosis from chest X-Ray images. The result of this
comparison proved that fewer layer depth with the right hyperparameter tuning can produce a better and more
efficient deep learning solutions to societal problems. This article also gives insights for future research and
practical applications which includes the exploration of adaptive architectures that can dynamically adjust their
depth based on the complexity of the task and available resources. Further research can also scientifically probe
other methods of reducing the computational overhead of deep neural networks while maintaining priority for high
computational performance, model scalability and efficiency.

KEYWORDS: Artificial Intelligence, Deep learning, convolutional neural networks, model efficiency, algorithm
complexity, layer depth, parameters counts.

INTRODUCTION

Background: Deep learning has revolutionized
various fields, with Convolutional Neural Networks
(CNNs) being pivotal in tasks such as image
recognition and natural language processing (LeCun
et al., 2015).

These networks mimic the human brain's neural
structures, allowing machines to learn from vast
amounts of data. CNNs have proven effective for
visual tasks due to their ability to learn spatial
hierarchies of features automatically and adaptively.
Problem Statement: One of the critical design

577

Augustine O. Otobi, University of Calabar, Department of Computer Science
Joseph O. Esin, University of Calabar, Department of Computer Science
Idongesit E. Eteng, University of Calabar, Department of Computer Science
B. I. Ele, University of Calabar, Department of Computer Science
S. I. Ele, University of Calabar, Department of Computer Science
D. U. Ashishie, University of Calabar, Department of Computer Science
Cleopas, Anietie Okpan, University of Calabar, Department of Computer Science

© 2024 Bachudo Science Co. Ltd. This work is licensed under Creative Commons Attribution 4.0 International License.

https://dx.doi.org/10.4314/gjpas.v30i4.15
http://www.globaljournalseries.com.ng/
mailto:otobiaugustine@unical.edu.ng
mailto:jesin57@unical.edu.ng
mailto:idongeteng@gmail.com
mailto:elebassey@unical.edu.ng
mailto:myyrs2015up@gmail.com
mailto:ashishiedenis@gmail.com
mailto:okpancleo@gmail.com

choices in CNNs is determining the number of
convolutional layers. While deeper networks have the
potential to learn more complex features, they also
pose challenges such as increased computational
complexity and risk of overfitting (He et al., 2016).
Objective: This research aims to explore the causal
relationship between the number of convolutional
layers in CNNs and model efficiency, with a particular
focus on algorithm complexity.
Significance: Understanding this relationship helps in
designing more efficient deep learning models, and
balancing performance with computational and
resource constraints. It provides valuable insights for
both academic research and practical applications in
various fields such as computer vision, natural
language processing, and more.
Theoretical Background
Overview of Deep Learning and CNNs:
Convolutional Neural Networks (CNNs) are designed
to process data with a grid-like topology, such as
images (Krizhevsky, Sutskever, & Hinton, 2012). They
consist of multiple layers, including convolutional
layers that apply filters to input data to extract
features. The hierarchical structure of CNNs allows
them to learn low-level features such as edges in early
layers and high-level features such as objects in
deeper layers (Zeiler & Fergus, 2014).
Importance of Layer Depth: The depth of a CNN,
determined by the number of convolutional layers,
affects its ability to learn complex features. Deeper
networks can capture more intricate patterns but also
pose challenges in terms of training and
computational efficiency. He et al. (2016) introduced
residual connections in ResNet to address the
vanishing gradient problem in deep networks,
demonstrating that deeper architectures could

achieve better performance when appropriately
managed.
Model Efficiency Metrics: Model efficiency in deep
learning refers to the balance between the model's
performance and the computational resources
required. Metrics include accuracy, inference time,
and resource usage such as memory and processing
power. Efficient models are those that achieve high
accuracy with minimal computational overhead (Han
et al., 2016).
Factors Affecting Efficiency: Several factors
influence model efficiency, including:

 Layer Depth: More layers can capture more
features but also increase computational complexity
(Simonyan et al. 2015).

 Layer Width: Wider layers can learn more
features at each level but require more computational
resources.

 Filter Size: Larger filters can capture broader
patterns but increase the computational cost (Long et
al. 2015).

 Pooling and Stride: Techniques like pooling
reduce dimensionality and computational load but can
also lead to information loss (Springenberg et al.,
2014).
Methodology: Algorithm complexity in CNNs can be
measured using metrics like computational cost
(FLOPs - floating point operations), memory usage,
and training/inference time. The complexity grows
with the number of layers and the size of the filters
used in each layer (Tan & Le, 2019).
Increasing the number of layers typically enhances the
model's capacity to learn but also increases the
computational complexity, leading to higher resource
consumption and longer training times (Szegedy et al.,
2015). Deeper networks require more floating-point
operations, which translates to greater energy
consumption and longer inference times.

AUGUSTINE O. OTOBI, JOSEPH O. ESIN, IDONGESIT E. ETENG, B. I. ELE,
578 S. I. ELE, D. U. ASHISHIE AND CLEOPAS, ANIETIE OKPAN

TABLE 1: Concise Complexity Comparison Table of Related Works

SN Model Time Complexity Space Complexity Default Layer depth

1 ResNet-18 O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 18 convolutional layers

2 ResNet-50 O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 50 convolutional layers

3 VGG-16 O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 13 convolutional layers

4 TBNet Proprietary; typically
optimized for time and space
efficiency

Proprietary; typically
optimized for time and
space efficiency

Specific implementations
of TBNet can vary, so the
exact number of
convolutional layers is
not standardized.

5 ChexNet
(DenseNet-121)

Based on DenseNet; time
complexity similar to
DenseNet

Based on DenseNet; time
complexity similar to
DenseNet

57 convolutional layers,
121 layers total, with

6 NASNetMobile O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 27 convolutional layers

7 EfficientNet (B0) O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 16 convolutional layers

8 Xception O(N . K2 ⋅H⋅ W . (Cin +Cout) O(N . H⋅ W⋅ Cout) 36 convolutional layers

9 Inception V3 O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 48 convolutional layers

10 DenseNet O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 121 layers total, with 57
convolutional layers

11 MobileNetV2 O(N . K2 ⋅H⋅ W . (Cin +Cout) O(N . H⋅ W⋅ Cout) 53 convolutional layers

12 AlexNet O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 5
convolutional layers

13 ShuffleNet V2
(1.0x)

O(N . K2 ⋅H⋅ W . (Cin +
Cout

g
) O(N . H⋅ W⋅ Cout) 86 convolutional layers

14 SqueezeNet O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 26 convolutional layers

15 ResNeXt O(N . K2 ⋅H⋅ W . (Cin +
Cout

g
) O(N . H⋅ W⋅ Cout) 50 convolutional layers

16 Wide ResNet-50-
2

O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 50 convolutional layers

17 SE-ResNet (50) O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 50 convolutional layers

18 RegNet
(Y-200MF)

O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 12 convolutional layers

19 MNasNet O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 54 convolutional layers

20 GhostNet O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 54 convolutional layers

K: Kernel (or Filter) size
N: Number of input channels :
Cout: Number of output channels
Cin: Number of input channels
H: Height of the input feature map
W: Width of the input feature map

Estimation of Parameters Count from Algorithm
Complexity
In the context of neural networks, parameters are the
internal variables that the model learns from the
training data. These parameters are crucial for the
network to make predictions and include the following:
1. Weights: These are the main parameters in
neural networks. Each connection between neurons
has an associated weight that determines the strength
and direction of the connection. During training, the
model adjusts these weights to minimize the error in
its predictions.
2. Biases: Bias terms are added to the weighted
sum of inputs to a neuron. They allow the activation
function to be shifted to the left or right, which helps
the model fit the training data better.

There are different types of parameters and this can
be viewed from the perspective of Convolutional
layers, fully connected layers, and Batch
normalization layers. Convolutional Layers:
Convolutional weights and it biases are primary in the
evaluation of the complexity of a neural network.
Weights: These are the filters (kernels) used in the
convolution operation. Each filter has weights that are
learned during training. Biases: Each filter can have
an associated bias term. Fully Connected (Dense)
Layers Weights: Each neuron in a fully connected
layer is connected to every neuron in the previous
layer, with a corresponding weight for each
connection. Batch Normalization Layers: These
parameters are learned during training to normalize
the input to each layer and maintain the
expressiveness of the network.

THE COMPUTATIONAL EFFECT AND HYPERPARAMETERS TUNING OF DEEP CONVOLUTIONAL LAYER DEPTH 579

Parameters counts is given significant preference in
algorithm complexity analysis for the following
reasons:
1. Learning: The process of training a neural
network involves adjusting these parameters to
minimize the loss function, which measures how well
the network's predictions match the actual data.
2. Model Complexity: The number of
parameters affects the model's capacity to learn and
generalize from the data. Too few parameters can
lead to underfitting, while too many parameters can
lead to overfitting.
3. Computational Resources: The number of
parameters determines the amount of memory and
computation required for training and inference.
Models with a large number of parameters require
more powerful hardware and longer training times.

Parameters Count for ResNet-18
ResNet-18 is designed with fewer layers compared to
most of the other deeper convolutional neural network
(CNN) architectures. It uses residual blocks that help
in maintaining a low time complexity while being
able to train deeper models effectively (He et. Al.,
2015).

 Each convolutional layer follows the typical
convolution complexity
O(N . K2⋅ Cin ⋅H⋅ W ⋅ Cout)

 The residual connections (element-wise
addition) are efficient and have a lower time
complexity due to it fewer convolutional layers
ResNet-18 is more memory efficient than most other
deeper convolutional neural network, making it
suitable for resource-constrained environments (He
et. al., 2016). Feature maps and convolutional weights
dominate the space complexity, which can be
expressed as:

 O(N . H⋅ W⋅ Cout)

Layer-wise Breakdown
1. Initial Convolutional Layer:
o 7x7 convolution, 64 filters, stride 2

o Complexity: O (7×7×3×64×
224 X 224

2 X2
) = O (7×7×3×64×112×112)

2. Max Pooling Layer:
o 3x3 max pooling, stride 2
o Complexity: Not computationally expensive compared to convolutions
3. Residual Blocks (Convolutional Layers):
o Each block has two 3x3 convolutional layers
o There are 4 stages, each stage has 2 residual blocks:
 Stage 1: 64 filters, input size 56x56
 Stage 2: 128 filters, input size 28x28
 Stage 3: 256 filters, input size 14x14
 Stage 4: 512 filters, input size 7x7
Stage-wise Complexity:
Stage 1 (4 layers, 64 filters, 56x56): 2×(3×3×64×64×56×56)×2
Stage 2 (4 layers, 128 filters, 28x28): 2×(3×3×64×128×28×28)×2
Stage 3 (4 layers, 256 filters, 14x14): 2×(3×3×128×256×14×14)×2
Stage 4 (4 layers, 512 filters, 7x7): 2×(3×3×256×512×7×7)×2
Fully Connected Layer:
o Output: 1000 classes
o Complexity: O(512×1×1×1000) = O(512×1000)
 Total Computational Complexity
Summing up the complexities of all layers, the overall computational complexity of ResNet-18 can be
approximated as:

O(7×7×3×64×112×112)+ ∑ O4
I=1 (2×3×3×Cin×Cout×H×W×2)+O(512×1000)

Where Cin and Cout are the input and output channel dimensions, and H and W are the spatial dimensions of the
feature maps at each stage.
Parameters Count
1. Initial Convolutional Layer: 7×7×3×64=9,4087
2. Residual Blocks:
o Stage 1: 2×(3×3×64×64)×2=147,456
o Stage 2: 2×(3×3×64×128+3×3×128×128)×2=1,179,648
o Stage 3: 2×(3×3×128×256+3×3×256×256)×2=4,718,592
o Stage 4: 2×(3×3×256×512+3×3×512×512)×2=18,874,368
3. Fully Connected Layer: 512×1000+1000(bias)=513,000512 \times 1000 + 1000 (bias) =
513,000512×1000+1000(bias)=513,000
Total Parameters: Approximately 11.7 million parameters.

AUGUSTINE O. OTOBI, JOSEPH O. ESIN, IDONGESIT E. ETENG, B. I. ELE,
580 S. I. ELE, D. U. ASHISHIE AND CLEOPAS, ANIETIE OKPAN

Summary

 Computational Complexity: Dominated by the convolutional layers, especially in deeper stages.

 Parameters Count: About 11.7 million parameters.

 Main Contributors: Convolutional layers in the residual blocks are the primary contributors to both
computational complexity and parameter count.

Parameters Count for ResNet-50
ResNet-50 is a deeper version of ResNet-18 with 50 layers.
Architecture Breakdown

 Initial Layers:
o 7x7 convolution, 64 filters, stride 2
o 3x3 max pooling, stride 2

 Residual Blocks:
o Bottleneck design: 1x1, 3x3, 1x1 convolutions
o 4 stages with the following configurations:
 Stage 1: 3 blocks, 256 output filters
 Stage 2: 4 blocks, 512 output filters
 Stage 3: 6 blocks, 1024 output filters
 Stage 4: 3 blocks, 2048 output filters

 Fully Connected Layer:
o Output: 1000 classes
Complexity
1. Initial Convolutional Layer:
o 7×7×3×64×112×112=38,943
2. Residual Blocks:
o Stage 1 (3 blocks, each with 1x1, 3x3, 1x1):
3×(1×1×64×64×56×56+3×3×64×64×56×56+1×1×64×256×56×56)
o Stage 2 (4 blocks): 4×(1×1×256×128×28×28+3×3×128×128×28×28+1×1×128×512×28×28)
o Stage 3 (6 blocks): 6×(1×1×512×256×14×14+3×3×256×256×14×14+1×1×256×1024×14×14)
o Stage 4 (3 blocks): 3×(1×1×1024×512×7×7+3×3×512×512×7×7+1×1×512×2048×7×7)
3. Fully Connected Layer:
o 2048×1000=2,048,0002048
Total Parameters: ~25.6 million.

Parameters Count for VGG-16
VGG-16 is a convolutional neural network with 16 layers.
Architecture Breakdown

 Convolutional Layers:
o 13 convolutional layers in 5 blocks
o Each block followed by a max pooling layer

 Fully Connected Layers:
o 3 fully connected layers
Complexity
1. Convolutional Layers:
o Block 1: 2×(3×3×3×64×224×224)=17,251,5842
o Block 2: 2×(3×3×64×128×112×112)=38,707,200
o Block 3: 3×(3×3×128×256×56×56)=132,710,400
o Block 4: 3×(3×3×256×512×28×28)=265,420,800
o Block 5: 3×(3×3×512×512×14×14)=132,710,400
2. Fully Connected Layers:
o FC1: 512×7×7×4096=102,760,448
o FC2: 4096×4096=16,777,216
o FC3: 4096×1000=4,096,000
Total Parameters: ~138 million.

THE COMPUTATIONAL EFFECT AND HYPERPARAMETERS TUNING OF DEEP CONVOLUTIONAL LAYER DEPTH 581

Parameters Count for EfficientNet-BO
EfficientNet-B0
EfficientNet-B0 is designed for both accuracy and efficiency.
Architecture Breakdown

 Mobile Inverted Bottleneck Convolution (MBConv) blocks
o 7 stages with different configurations and expansion factors
Complexity
o Complexity depends on the depth and expansion factor for each block.
o Example stage calculation:
 Stage 1: 3×3×32×16×2242×2242=3,154,176
Total Parameters: ~5.3 million.
Parameters Count for Xception
Xception uses depthwise separable convolutions.
Architecture Breakdown

 Entry Flow: Series of separable convolutional layers

 Middle Flow: 8 blocks of separable convolutional layers

 Exit Flow: Separable convolutional layers and fully connected layers
Complexity
Separable Convolutions:
o Complexity significantly reduced compared to standard convolutions
o Example stage calculation:
 3×3×64×1×64×56×56=12,582,912
Total Parameters: ~23 million.

Parameters Count for Inception V3
Inception V3 uses inception modules for efficient computation.
Architecture Breakdown

 Inception Modules:
o Modules with different filter sizes to capture different features
Complexity
Inception Modules:
o Combination of convolutions with different kernel sizes
o Example module calculation:
 1×1,3×3,5×51 convolutions combined
Total Parameters: ~23.8 million.
Here is a concise summary of the parameter counts:

 ResNet-18: ~11.7 million parameters

 ResNet-50: ~25.6 million parameters

 VGG-16: ~138 million parameters

 EfficientNet-B0: ~5.3 million parameters

 Xception: ~23 million parameters

 Inception V3: ~23.8 million parameters
Comparing table 1 and table 2, it can be seen that there is an inverse relationship between parameter count and
efficiency of a deep learning model due to the depth of their convolutional layers.

AUGUSTINE O. OTOBI, JOSEPH O. ESIN, IDONGESIT E. ETENG, B. I. ELE,
582 S. I. ELE, D. U. ASHISHIE AND CLEOPAS, ANIETIE OKPAN

TABLE 2: Systematic Review of Published Research on Tuberculosis Detection Using Convolutional
Neural Networks

To further validate our assertion of fewer convolutional
layers for efficiency of deep learning model, aside the
algorithm complexity and parameters counts, this
research also applied and experimental setup of a
proposed Deep Convolution Neural Network which
employed a pre-trained ResNet-18 architecture to
develop a model for tuberculosis detection in chest X-
Ray (CXR) images with the mindset of having an
efficient model with small sized (hidden) convolutional
layers and the right hyperparameters. The strength of
this approach also includes improved latency
achieved by ResNet blocks which uses Identity
shortcut and Projection shortcut in the basic
building blocks of ResNet-18, this block is repeated
throughout the network to prevent vanishing gradient
problem during backpropagaton and also improve
computational and time complexity which in turn
guarantee efficiency of the deep learning algorithm
compared to the related work in table 2. The ResNet-
18 deep learning model achieved an overall model
accuracy of 99.5%,99.2% precision, 99.7% Recall and
99.5% F1_Score having been trained with 900 images
and validated 600 images of pre-processed chest x-
ray (CXR). The following hyperparameter tuning was
adopted in the training and validation of the ResNet-
18 model:

DISCUSSION ON CONVOLUTIONAL NEURAL
NETWORK VARYING LAYER DEPTH AND
PARAMETERS COUNT
Synthesis of Key Points: The number of
convolutional layers in a CNN significantly impacts
model efficiency. While deeper networks can achieve
higher accuracy, they require more computational
resources and time. The balance between depth and
efficiency is crucial for designing practical models.
Implications for Practice: Practitioners need to
balance the benefits of deeper networks with the
practical constraints of available computational
resources. Techniques such as pruning, quantization,
and efficient architecture design can help manage
complexity (Han et al., 2016). Additionally, employing
architectural innovations like residual connections and
inception modules can allow for deeper networks
without a proportional increase in complexity
(Szegedy et al., 2015).
Future Directions: Future research should focus on
developing methods to optimize the number of layers
and overall architecture for specific tasks, considering
both performance and resource efficiency.

SN Author(s) Title Architecture Accuracy Precision Recall F1_Score

1 Ahsan et al.
(2019)

Application of a
Convolutional
Neural Network
using transfer
learning for
tuberculosis
detection

VGG 81.25% 94.1% 87.3%

2 Wong et al.
(2022)

TB-Net: A
Tailored, Self-
Attention Deep
Convolutional
Neural Network
Design for
Detection of
Tuberculosis
Cases from
Chest X-ray
Images

TB-Net 99.86%

99.71% 100.0% ---

ChexNet 99.42% 100% 98.85% ---

NASNetMobile 99.28% 91.84% 99.71% ---

EfficientNetB0 99.98% 99.42% 98.56% ---

3 Showkatianet
al. (2022)

Deep learning-
based
automatic
detection of
tuberculosis
disease in chest
X-ray images

ConvNet 0.87% 0.88% 0.87% 0.87%

Exception 0.91% 0.91% 0.91% 0.91%

Inception_V3 0.88% 0.88% 0.88% 0.88%

ResNet50 0.90% 0.91% 0.91% 0.91%

VGG16 0.90% 0.91% 0.91% 0.91%

4 Sharma et al.
(2023)

Deep learning
models for
tuberculosis
detection and
infected region
visualization in
chest X-ray
images

Xception 99.29%, 99.30% 99.29% 99.29%

THE COMPUTATIONAL EFFECT AND HYPERPARAMETERS TUNING OF DEEP CONVOLUTIONAL LAYER DEPTH 583

Adaptive architectures that can dynamically adjust
their depth based on the complexity of the input data
and computational constraints are a promising area of
study (Tan & Le, 2019). For future research, Artificial
Intelligence Experts may explore the possibility of
developing adaptive Architectures that can
dynamically adjust their depth based on the
complexity of the input data and computational
constraints. As deep learning continues to evolve,
understanding the trade-offs between model depth
and efficiency will be crucial for developing more
effective and practical AI solutions. The insights
gained from this study can guide the design of future
architectures that balance performance with
computational efficiency.
Summary and Conclusion: This article highlights the
importance of the number of convolutional layers in
determining the efficiency of deep learning models. A
careful balance between depth and computational
complexity is essential for optimal performance.
Recommendations: Future studies should explore
adaptive architectures that can dynamically adjust
their depth based on the complexity of the task and
available resources. Further research into methods for
reducing the computational overhead of deep
networks while maintaining high performance is
essential.

REFERENCES

Ahsan, M., Gomes, R., Denton, A., 2019. "Application
 of a Convolutional Neural Network using
 transfer learning for tuberculosis detection"
 2019 IEEE:978-1-7281-0927-5/19

Han, S., Mao, H., and Dally, W. J., 2016. Deep
 compression: Compressing deep neural
 networks with pruning, trained quantization
 and Huffman coding. International
 Conference on Learning Representations
 (ICLR).

He, K., Zhang, X., Ren, S., and Sun, J., 2015. Delving
 deep into rectifiers: Surpassing human-level
 performance on ImageNet classification.
 Proceedings of the IEEE International
 Conference on Computer Vision (ICCV),
 1026-1034.

He, K., Zhang, X., Ren, S., and Sun, J., 2016. Deep
 residual learning for image recognition.
 Proceedings of the IEEE Conference on
 Computer Vision and Pattern Recognition
 (CVPR), 770-778.

Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2012.
 ImageNet classification with deep

 convolutional neural networks. Advances in
 Neural Information Processing Systems
 (NIPS), 1097-1105.

LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep
 learning. Nature, 521(7553), 436-444.

Long, J., Shelhamer, E., and Darrell, T., 2015. Fully
 convolutional networks for semantic
 segmentation. Proceedings of the IEEE
 Conference on Computer Vision and Pattern
 Recognition (CVPR), 3431-3440.

Sharma, V., Gupta, S. K., Shukla, K. K., 2023. "Deep
 learning models for tuberculosis detection
 and infected region visualization in chest X-
 ray images" Intelligent Medicine,
 DOI:10.1016/j.imed.2023.06.001, LicenseCC
 BY-NC-ND 4.0

Showkatian, E., Salehi, M., Ghaffari, H., Reiazi, R.,
 Sadighi, N., 2022. "Deep learning-based
 automatic detection of tuberculosis disease in
 chest X-ray images" Polish Journal of
 Radiology DOI: 10.5114/pjr.2022.113435

Simonyan, K., and Zisserman, A., 2015. Very deep
 convolutional networks for large-scale image
 recognition. International Conference on
 Learning Representations (ICLR).

Springenberg, J. T., Dosovitskiy, A., Brox, T., and
 Riedmiller, M., 2014. Striving for simplicity:
 The all convolutional net. arXiv preprint
 arXiv:1412.6806.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
 Anguelov, D., and Rabinovich, A., 2015.
 Going deeper with convolutions. Proceedings
 of the IEEE Conference on Computer Vision
 and Pattern Recognition (CVPR), 1-9.

Tan, M., and Le, Q., 2019. EfficientNet: Rethinking
 model scaling for convolutional neural
 networks. Proceedings of the International
 Conference on Machine Learning (ICML),
 6105-6114.

Wong, A., Ren, H. L. J., Rahmat-Khah, H., Sabri, A.,
 Alaref, A., Liu, H., 2022. "TB-Net: A Tailored,
 Self-Attention Deep Convolutional Neural
 Network Design for Detection of Tuberculosis
 Cases from Chest X-ray Images"
 Computerized Medical Imaging and Graphics
 DOI: 10.3389/frai.2022.827299

Zeiler, M. D., and Fergus, R., 2014. Visualizing and
 understanding convolutional networks.
 European Conference on Computer Vision
 (ECCV), 818-833.

AUGUSTINE O. OTOBI, JOSEPH O. ESIN, IDONGESIT E. ETENG, B. I. ELE,
584 S. I. ELE, D. U. ASHISHIE AND CLEOPAS, ANIETIE OKPAN

