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ABSTRACT 

 
In the past decade, artificial intelligence (AI) solutions have seen widespread application in medical fields, which 
include automated detection of breast cancer, brain tumors, physiological monitoring and detection of lung 
diseases such as pneumonia from chest X-Rays (CXRs). Machine learning, a subset of AI, empowers computers 
to learn autonomously, without direct human programming, by extracting patterns (feature extraction) from data 
(images). Deep learning, a specialized branch of machine learning, employs multiple convolutional layers to 
extract complex features from raw input data. This article examines the impact of varying the convolutional layers 
in deep learning models on their efficiency, focusing on algorithm complexity and parameter counts. We discuss 
theoretical foundations, and relevant factors affecting efficiency, and analyze algorithm complexity of high-ranking 
models developed for detecting tuberculosis from chest x-ray (CXR) using convolutional neural networks.  The 
number of convolutional layers significantly influences model efficiency, affecting both performance and 
computational complexity. We could conclude practically that optimal layer depth balances model efficiency, 
accuracy and resource utilization. This assertion was reached by developing a model with fewer convolutional 
layer depth using the ResNet18 architecture. The parameters count of the ResNet18 model developed was 
compared with other model developed to detect tuberculosis from chest X-Ray images. The result of this 
comparison proved that fewer layer depth with the right hyperparameter tuning can produce a better and more 
efficient deep learning solutions to societal problems. This article also gives insights for future research and 
practical applications which includes the exploration of adaptive architectures that can dynamically adjust their 
depth based on the complexity of the task and available resources. Further research can also scientifically probe 
other methods of reducing the computational overhead of deep neural networks while maintaining priority for high 
computational performance, model scalability and efficiency. 
 
KEYWORDS: Artificial Intelligence, Deep learning, convolutional neural networks, model efficiency, algorithm 
complexity, layer depth, parameters counts. 
 
INTRODUCTION 
 
Background: Deep learning has revolutionized 
various fields, with Convolutional Neural Networks 
(CNNs) being pivotal in tasks such as image 
recognition and natural language processing (LeCun 
et al., 2015). 
 
 
 
 
 
 
 
 
 
 
 

These networks mimic the human brain's neural 
structures, allowing machines to learn from vast 
amounts of data. CNNs have proven effective for 
visual tasks due to their ability to learn spatial 
hierarchies of features automatically and adaptively. 
Problem Statement: One of the critical design  
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choices in CNNs is determining the number of 
convolutional layers. While deeper networks have the 
potential to learn more complex features, they also 
pose challenges such as increased computational 
complexity and risk of overfitting (He et al., 2016). 
Objective: This research aims to explore the causal 
relationship between the number of convolutional 
layers in CNNs and model efficiency, with a particular 
focus on algorithm complexity.  
Significance: Understanding this relationship helps in 
designing more efficient deep learning models, and 
balancing performance with computational and 
resource constraints. It provides valuable insights for 
both academic research and practical applications in 
various fields such as computer vision, natural 
language processing, and more. 
Theoretical Background 
Overview of Deep Learning and CNNs: 
Convolutional Neural Networks (CNNs) are designed 
to process data with a grid-like topology, such as 
images (Krizhevsky, Sutskever, & Hinton, 2012). They 
consist of multiple layers, including convolutional 
layers that apply filters to input data to extract 
features. The hierarchical structure of CNNs allows 
them to learn low-level features such as edges in early 
layers and high-level features such as objects in 
deeper layers (Zeiler & Fergus, 2014). 
Importance of Layer Depth: The depth of a CNN, 
determined by the number of convolutional layers, 
affects its ability to learn complex features. Deeper 
networks can capture more intricate patterns but also 
pose challenges in terms of training and 
computational efficiency. He et al. (2016) introduced 
residual connections in ResNet to address the 
vanishing gradient problem in deep networks, 
demonstrating that deeper architectures could  
 
 
 

 
 
 
achieve better performance when appropriately 
managed. 
Model Efficiency Metrics: Model efficiency in deep 
learning refers to the balance between the model's 
performance and the computational resources 
required. Metrics include accuracy, inference time, 
and resource usage such as memory and processing 
power. Efficient models are those that achieve high 
accuracy with minimal computational overhead (Han 
et al., 2016). 
Factors Affecting Efficiency: Several factors 
influence model efficiency, including: 

 Layer Depth: More layers can capture more 
features but also increase computational complexity 
(Simonyan et al. 2015). 

 Layer Width: Wider layers can learn more 
features at each level but require more computational 
resources. 

 Filter Size: Larger filters can capture broader 
patterns but increase the computational cost (Long et 
al. 2015). 

 Pooling and Stride: Techniques like pooling 
reduce dimensionality and computational load but can 
also lead to information loss (Springenberg et al., 
2014). 
Methodology: Algorithm complexity in CNNs can be 
measured using metrics like computational cost 
(FLOPs - floating point operations), memory usage, 
and training/inference time. The complexity grows 
with the number of layers and the size of the filters 
used in each layer (Tan & Le, 2019). 
Increasing the number of layers typically enhances the 
model's capacity to learn but also increases the 
computational complexity, leading to higher resource 
consumption and longer training times (Szegedy et al., 
2015). Deeper networks require more floating-point 
operations, which translates to greater energy 
consumption and longer inference times. 
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TABLE 1: Concise Complexity Comparison Table of Related Works 
 

SN Model Time Complexity Space Complexity Default Layer depth 

1 ResNet-18 O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 18 convolutional layers 

2 ResNet-50 O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 50 convolutional layers 

3 VGG-16 O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 13 convolutional layers 

4 TBNet Proprietary; typically 
optimized for time and space 
efficiency 

Proprietary; typically 
optimized for time and 
space efficiency 

Specific implementations 
of TBNet can vary, so the 
exact number of 
convolutional layers is 
not standardized. 

5 ChexNet 
(DenseNet-121) 

Based on DenseNet; time 
complexity similar to 
DenseNet 

Based on DenseNet; time 
complexity similar to 
DenseNet 

57 convolutional layers, 
121 layers total, with 

6 NASNetMobile O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 27 convolutional layers 

7 EfficientNet (B0) O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 16 convolutional layers 

8 Xception O(N .  K2 ⋅H⋅ W  . (Cin +Cout) O(N . H⋅ W⋅ Cout) 36 convolutional layers 

9 Inception V3 O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 48 convolutional layers 

10 DenseNet O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 121 layers total, with 57 
convolutional layers 

11 MobileNetV2 O(N .  K2 ⋅H⋅ W  . (Cin +Cout) O(N . H⋅ W⋅ Cout) 53 convolutional layers 

12 AlexNet O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 5  
convolutional layers 

13 ShuffleNet V2 
(1.0x) 

O(N .  K2 ⋅H⋅ W  . (Cin +
Cout

g
) O(N . H⋅ W⋅ Cout) 86 convolutional layers 

14 SqueezeNet O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 26 convolutional layers 

15 ResNeXt O(N .  K2 ⋅H⋅ W  . (Cin +
Cout

g
) O(N . H⋅ W⋅ Cout) 50 convolutional layers 

16 Wide ResNet-50-
2 

O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 50 convolutional layers 

17 SE-ResNet (50) O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 50 convolutional layers 

18 RegNet  
(Y-200MF) 

O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 12 convolutional layers 

19 MNasNet O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 54 convolutional layers 

20 GhostNet O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) O(N . H⋅ W⋅ Cout) 54 convolutional layers 

 
K: Kernel (or Filter) size  
N: Number of input channels :  
Cout: Number of output channels  
Cin: Number of input channels 
H: Height of the input feature map  
W: Width of the input feature map 
 
Estimation of Parameters Count from Algorithm 
Complexity 
In the context of neural networks, parameters are the 
internal variables that the model learns from the 
training data. These parameters are crucial for the 
network to make predictions and include the following: 
1. Weights: These are the main parameters in 
neural networks. Each connection between neurons 
has an associated weight that determines the strength 
and direction of the connection. During training, the 
model adjusts these weights to minimize the error in 
its predictions. 
2. Biases: Bias terms are added to the weighted 
sum of inputs to a neuron. They allow the activation 
function to be shifted to the left or right, which helps 
the model fit the training data better. 

There are different types of parameters and this can 
be viewed from the perspective of Convolutional 
layers, fully connected layers, and Batch 
normalization layers.   Convolutional Layers: 
Convolutional weights and it biases are primary in the 
evaluation of the complexity of a neural network. 
Weights: These are the filters (kernels) used in the 
convolution operation. Each filter has weights that are 
learned during training. Biases: Each filter can have 
an associated bias term. Fully Connected (Dense) 
Layers Weights: Each neuron in a fully connected 
layer is connected to every neuron in the previous 
layer, with a corresponding weight for each 
connection. Batch Normalization Layers: These 
parameters are learned during training to normalize 
the input to each layer and maintain the 
expressiveness of the network. 
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Parameters counts is given significant preference in 
algorithm complexity analysis for the following 
reasons:  
1. Learning: The process of training a neural 
network involves adjusting these parameters to 
minimize the loss function, which measures how well 
the network's predictions match the actual data. 
2. Model Complexity: The number of 
parameters affects the model's capacity to learn and 
generalize from the data. Too few parameters can 
lead to underfitting, while too many parameters can 
lead to overfitting. 
3. Computational Resources: The number of 
parameters determines the amount of memory and 
computation required for training and inference. 
Models with a large number of parameters require 
more powerful hardware and longer training times. 
 
 
 
 

 
 
 
 
Parameters Count for ResNet-18 
ResNet-18 is designed with fewer layers compared to 
most of the other deeper convolutional neural network 
(CNN) architectures. It uses residual blocks that help 
in maintaining a low time complexity while being 
able to train deeper models effectively (He et. Al., 
2015). 

 Each convolutional layer follows the typical 
convolution complexity 
O(N .  K2⋅ Cin ⋅H⋅ W ⋅ Cout) 

 The residual connections (element-wise 
addition) are efficient and have a lower time 
complexity due to it fewer convolutional layers 
ResNet-18 is more memory efficient than most other 
deeper convolutional neural network, making it 
suitable for resource-constrained environments (He 
et. al., 2016). Feature maps and convolutional weights 
dominate the space complexity, which can be 
expressed as:  

  O(N . H⋅ W⋅ Cout)

Layer-wise Breakdown 
1. Initial Convolutional Layer: 
o 7x7 convolution, 64 filters, stride 2 

o Complexity: O (7×7×3×64×
224 X 224

2 X2
) = O (7×7×3×64×112×112) 

2. Max Pooling Layer: 
o 3x3 max pooling, stride 2 
o Complexity: Not computationally expensive compared to convolutions 
3. Residual Blocks (Convolutional Layers): 
o Each block has two 3x3 convolutional layers 
o There are 4 stages, each stage has 2 residual blocks: 
 Stage 1: 64 filters, input size   56x56 
 Stage 2: 128 filters, input size 28x28 
 Stage 3: 256 filters, input size 14x14 
 Stage 4: 512 filters, input size 7x7 
Stage-wise Complexity: 
Stage 1 (4 layers, 64 filters, 56x56): 2×(3×3×64×64×56×56)×2 
Stage 2 (4 layers, 128 filters, 28x28): 2×(3×3×64×128×28×28)×2 
Stage 3 (4 layers, 256 filters, 14x14): 2×(3×3×128×256×14×14)×2 
Stage 4 (4 layers, 512 filters, 7x7): 2×(3×3×256×512×7×7)×2 
Fully Connected Layer: 
o Output: 1000 classes 
o Complexity: O(512×1×1×1000) = O(512×1000) 
 Total Computational Complexity 
Summing up the complexities of all layers, the overall computational complexity of ResNet-18 can be 
approximated as: 

O(7×7×3×64×112×112)+ ∑ O4
I=1  (2×3×3×Cin×Cout×H×W×2)+O(512×1000) 

Where Cin  and Cout are the input and output channel dimensions, and H and W are the spatial dimensions of the 
feature maps at each stage. 
Parameters Count 
1. Initial Convolutional Layer: 7×7×3×64=9,4087  
2. Residual Blocks: 
o Stage 1: 2×(3×3×64×64)×2=147,456 
o Stage 2: 2×(3×3×64×128+3×3×128×128)×2=1,179,648 
o Stage 3: 2×(3×3×128×256+3×3×256×256)×2=4,718,592 
o Stage 4: 2×(3×3×256×512+3×3×512×512)×2=18,874,368 
3. Fully Connected Layer: 512×1000+1000(bias)=513,000512 \times 1000 + 1000 (bias) = 
513,000512×1000+1000(bias)=513,000 
Total Parameters: Approximately 11.7 million parameters. 
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Summary 

 Computational Complexity: Dominated by the convolutional layers, especially in deeper stages. 

 Parameters Count: About 11.7 million parameters. 

 Main Contributors: Convolutional layers in the residual blocks are the primary contributors to both 
computational complexity and parameter count. 
 
Parameters Count for ResNet-50 
ResNet-50 is a deeper version of ResNet-18 with 50 layers. 
Architecture Breakdown 

 Initial Layers: 
o 7x7 convolution, 64 filters, stride 2 
o 3x3 max pooling, stride 2 

 Residual Blocks: 
o Bottleneck design: 1x1, 3x3, 1x1 convolutions 
o 4 stages with the following configurations: 
 Stage 1: 3 blocks, 256 output filters 
 Stage 2: 4 blocks, 512 output filters 
 Stage 3: 6 blocks, 1024 output filters 
 Stage 4: 3 blocks, 2048 output filters 

 Fully Connected Layer: 
o Output: 1000 classes 
Complexity 
1. Initial Convolutional Layer: 
o 7×7×3×64×112×112=38,943  
2. Residual Blocks: 
o Stage 1 (3 blocks, each with 1x1, 3x3, 1x1): 
3×(1×1×64×64×56×56+3×3×64×64×56×56+1×1×64×256×56×56) 
o Stage 2 (4 blocks): 4×(1×1×256×128×28×28+3×3×128×128×28×28+1×1×128×512×28×28) 
o Stage 3 (6 blocks): 6×(1×1×512×256×14×14+3×3×256×256×14×14+1×1×256×1024×14×14) 
o Stage 4 (3 blocks): 3×(1×1×1024×512×7×7+3×3×512×512×7×7+1×1×512×2048×7×7) 
3. Fully Connected Layer: 
o 2048×1000=2,048,0002048 
Total Parameters: ~25.6 million. 
 
Parameters Count for VGG-16 
VGG-16 is a convolutional neural network with 16 layers. 
Architecture Breakdown 

 Convolutional Layers: 
o 13 convolutional layers in 5 blocks 
o Each block followed by a max pooling layer 

 Fully Connected Layers: 
o 3 fully connected layers 
Complexity 
1. Convolutional Layers: 
o Block 1: 2×(3×3×3×64×224×224)=17,251,5842  
o Block 2: 2×(3×3×64×128×112×112)=38,707,200 
o Block 3: 3×(3×3×128×256×56×56)=132,710,400 
o Block 4: 3×(3×3×256×512×28×28)=265,420,800 
o Block 5: 3×(3×3×512×512×14×14)=132,710,400 
2. Fully Connected Layers: 
o FC1: 512×7×7×4096=102,760,448 
o FC2: 4096×4096=16,777,216 
o FC3: 4096×1000=4,096,000 
Total Parameters: ~138 million. 
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Parameters Count for EfficientNet-BO 
EfficientNet-B0 
EfficientNet-B0 is designed for both accuracy and efficiency. 
Architecture Breakdown 

 Mobile Inverted Bottleneck Convolution (MBConv) blocks 
o 7 stages with different configurations and expansion factors 
Complexity 
o Complexity depends on the depth and expansion factor for each block. 
o Example stage calculation: 
 Stage 1: 3×3×32×16×2242×2242=3,154,176 
Total Parameters: ~5.3 million. 
Parameters Count for Xception 
Xception uses depthwise separable convolutions. 
Architecture Breakdown 

 Entry Flow: Series of separable convolutional layers 

 Middle Flow: 8 blocks of separable convolutional layers 

 Exit Flow: Separable convolutional layers and fully connected layers 
Complexity 
Separable Convolutions: 
o Complexity significantly reduced compared to standard convolutions 
o Example stage calculation: 
 3×3×64×1×64×56×56=12,582,912 
Total Parameters: ~23 million. 
 
Parameters Count for Inception V3 
Inception V3 uses inception modules for efficient computation. 
Architecture Breakdown 

 Inception Modules: 
o Modules with different filter sizes to capture different features 
Complexity 
Inception Modules: 
o Combination of convolutions with different kernel sizes 
o Example module calculation: 
 1×1,3×3,5×51 convolutions combined 
Total Parameters: ~23.8 million. 
Here is a concise summary of the parameter counts: 

 ResNet-18: ~11.7 million parameters 

 ResNet-50: ~25.6 million parameters 

 VGG-16: ~138 million parameters 

 EfficientNet-B0: ~5.3 million parameters 

 Xception: ~23 million parameters 

 Inception V3: ~23.8 million parameters 
Comparing table 1 and table 2, it can be seen that there is an inverse relationship between parameter count and 
efficiency of a deep learning model due to the depth of their convolutional layers. 
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TABLE 2: Systematic Review of Published Research on Tuberculosis Detection Using Convolutional 
Neural Networks 

 
To further validate our assertion of fewer convolutional 
layers for efficiency of deep learning model, aside the 
algorithm complexity and parameters counts, this 
research also applied and experimental setup of a 
proposed Deep Convolution Neural Network which 
employed a pre-trained ResNet-18 architecture to 
develop a model for tuberculosis detection in chest X-
Ray (CXR) images with the mindset of having an 
efficient model with small sized (hidden) convolutional 
layers and the right hyperparameters. The strength of 
this approach also includes improved latency 
achieved by ResNet blocks which uses Identity 
shortcut and Projection shortcut in the basic 
building blocks of ResNet-18, this block is repeated 
throughout the network to prevent vanishing gradient 
problem during backpropagaton and also improve 
computational and time complexity which in turn 
guarantee efficiency of the deep learning algorithm 
compared to the related work in table 2. The ResNet-
18 deep learning model achieved an overall model 
accuracy of 99.5%,99.2% precision, 99.7% Recall and 
99.5% F1_Score having been trained with 900 images 
and validated 600 images of pre-processed chest x-
ray (CXR). The following hyperparameter tuning was 
adopted in the training and validation of the ResNet-
18 model:  

 
DISCUSSION ON CONVOLUTIONAL NEURAL 
NETWORK VARYING LAYER DEPTH AND 
PARAMETERS COUNT 
Synthesis of Key Points: The number of 
convolutional layers in a CNN significantly impacts 
model efficiency. While deeper networks can achieve 
higher accuracy, they require more computational 
resources and time. The balance between depth and 
efficiency is crucial for designing practical models. 
Implications for Practice: Practitioners need to 
balance the benefits of deeper networks with the 
practical constraints of available computational 
resources. Techniques such as pruning, quantization, 
and efficient architecture design can help manage 
complexity (Han et al., 2016). Additionally, employing 
architectural innovations like residual connections and 
inception modules can allow for deeper networks 
without a proportional increase in complexity 
(Szegedy et al., 2015). 
Future Directions: Future research should focus on 
developing methods to optimize the number of layers 
and overall architecture for specific tasks, considering 
both performance and resource efficiency.  
 
 

SN Author(s) Title Architecture Accuracy Precision Recall F1_Score 

1 Ahsan et al. 
(2019) 

Application of a 
Convolutional 
Neural Network 
using transfer 
learning for 
tuberculosis 
detection 

VGG 81.25% 94.1% 87.3%  
 
 
 
--- 

2 Wong et al. 
(2022) 

TB-Net: A 
Tailored, Self-
Attention Deep 
Convolutional 
Neural Network 
Design for 
Detection of 
Tuberculosis 
Cases from 
Chest X-ray 
Images 

TB-Net 99.86%  
 

99.71% 100.0% --- 

ChexNet 99.42% 100% 98.85% --- 

NASNetMobile 99.28% 91.84% 99.71% --- 

EfficientNetB0 99.98% 99.42% 98.56% --- 

3 Showkatianet 
al. (2022) 

Deep learning-
based 
automatic 
detection of 
tuberculosis 
disease in chest 
X-ray images 

ConvNet 0.87% 0.88% 0.87% 0.87% 

Exception 0.91% 0.91% 0.91% 0.91% 

Inception_V3 0.88% 0.88% 0.88% 0.88% 

ResNet50 0.90% 0.91% 0.91% 0.91% 

VGG16 0.90% 0.91% 0.91% 0.91% 

4 Sharma et al. 
(2023) 

 
Deep learning 
models for 
tuberculosis 
detection and 
infected region 
visualization in 
chest X-ray 
images 

Xception 99.29%,   99.30% 99.29% 99.29% 
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Adaptive architectures that can dynamically adjust 
their depth based on the complexity of the input data 
and computational constraints are a promising area of 
study (Tan & Le, 2019). For future research, Artificial 
Intelligence Experts may explore the possibility of 
developing adaptive Architectures that can 
dynamically adjust their depth based on the 
complexity of the input data and computational 
constraints.  As deep learning continues to evolve, 
understanding the trade-offs between model depth 
and efficiency will be crucial for developing more 
effective and practical AI solutions. The insights 
gained from this study can guide the design of future 
architectures that balance performance with 
computational efficiency. 
Summary and Conclusion: This article highlights the 
importance of the number of convolutional layers in 
determining the efficiency of deep learning models. A 
careful balance between depth and computational 
complexity is essential for optimal performance. 
Recommendations: Future studies should explore 
adaptive architectures that can dynamically adjust 
their depth based on the complexity of the task and 
available resources. Further research into methods for 
reducing the computational overhead of deep 
networks while maintaining high performance is 
essential. 
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