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ABSTRACT 
 
Let G be the Euclidean motion group G = ℝn ⋊ SO(n) realized as the semi-direct product of ℝn and SO(n). Let 

K = SO(n) be a compact subgroup of G. The set of positive definite spherical functions on G is studied. Among 
other things, a result of Bochner which characterizes a K- bi-invariant positive definite spherical function in any 
locally compact group, is extended to the Gelfand pair (ℝn ⋊ SO(n), SO(n) ).  
 
KEYWORDS: Euclidean motion group, Gelfand pair, positive definite functions, spherical function, Bochner's 
theorem. 
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INTRODUCTION 
 
Positive definite functions play significant role in 
analyzing the structure of convolution algebras and in 
the theorem of Bochner. This theorem, which is 
generally referred to as Bochner's theorem, 
characterizes positive definite functions on ℝn as 
Fourier transforms of non-negative Borel measures; 
and has a generalizability for Locally Compact Abelian 
(LCA) groups and for Gelfand pairs. The class of 
positive definite functions is closed under addition and 
multiplication with nonnegative constant. It has the 
structure of a cone and the cone is closed in the 
topology of pointwise convergence. It is also worth 
noting that every positive definite function ϕ on G is 
bounded, this is because |ϕ(g)| ≤ ϕ(e), ∀g ∈ G, where 

e is the identity element of G [15]. 
The focus of this paper is to state and prove Bochner's 
theorem for spherical functions on the Euclidean 
motion group. That is, characterizing positive definite 

K- bi- invariant functions on the Euclidean motion 
group is the focus of this paper. The spherical 
functions on (G,K) are identified with radial functions 
on the Euclidean plane([2], [7]). Specifically, the 
spherical functions for the Gelfand pair (M(n), SO(n)) 
are the spherical Bessel functions of order n ([6],[8]). 
The set of positive definite spherical functions, 
denoted by (G, K)+

τ , are identified with the positive real 
line. 
This paper is organized as follows. In section two, 
preliminaries on Semi Direct Product group is given 
and is narrowed to the Euclidean motion group which 
is an example of a semi-direct product group; its 
integration, Lie algebra and representation are 
discussed. Spherical functions on the motion group 
arising from its Gelfand pairs (G,K) are also 
discussed. Finally, a discussion on a set of spherical 
functions that are positive definite is presented. In 
section three, a result of Bochner, among other things, 
that characterizes positive definite spherical functions 
is stated and proved for the Euclidean motion group

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

551 

U. E. Edeke, Department of Mathematics, University of Calabar, Calabar, Nigeria. 

R. D. Ariyo, Department of Mathematics, University of Ilesa, Ilesa, Nigeria. 

O. C. Dada, Department of Mathematics, Redeemer University, Ede, Nigeria. 

 

© 2024 Bachudo Science Co. Ltd. This work is licensed under Creative Commons Attribution 4.0 International License. 

 

https://dx.doi.org/10.4314/gjpas.v30i4.13
http://www.globaljournalseries.com.ng/


 
 
 
Preliminaries 

Definition. A semi-direct product of two groups N and K is a group G such that ([12],[9]) 

G = N ⋊ K. 
 As a set, G may be written as 

G = N × K 
and any element g ∈ G can uniquely be written as g = nk for all n ∈ N and k ∈ K. N is a normal subgroup of G. This 

condition is usually written as N ◃ G. There is a homomorphism defined as 

ϕ: k ∈ K → ϕk ∈ Aut(N) 
such that the group law in N ⋊ K is defined by 

(n1k1)(n2k2) = n1k1n2k2 = n1ϕk1
(n2)k1k2 

Aut (N) denotes the automorphism group of N to itself. For k ∈ K the automorphism ϕk is given by the conjugation 

ϕk: N → N 
defined by 

ϕk(n) = knk−1 

The next theorem shows that ϕk is a homomorphism. 
 
Theorem. The map k ↦ ϕk is given as a homomorphism ϕ: k → Aut(N) 

Proof. For any k1, k2 ∈ K, it is shown that ϕk1
ϕk2

= ϕk1k2
. Since ϕk1

ϕk2
 and ϕk1k2

 are functions. Next we show 

that the two functions are equal. To this end, it will be shown that they take the same value on any element n of 
N , that is 

ϕk1
ϕk2

= ϕk1k2
 

for any n ∈ N. Now, since 

ϕk: N → N 
is defined as 

ϕk(n) = knk−1 
then 

ϕk1
ϕk2

(n) = ϕk1
(k2nk2

−1)

 = k1(K2nk2
−1)k1

−1

 = k1k2nk2
−1k1

−1

 

Similarly, 
ϕk1k2

(n) = k1k2(n)(k1k2)−1

 = k1k2nk2
−1k1

−1
 

Therefore, ϕk1
ϕk2

= ϕk1k2
 from the last two equations. 

The next theorem shows that given two groups N and K and a homomorphism, a semidirect product group can 
be constructed. 
 
Theorem. Given two groups N and K and a homomorphism K → Aut(N), there is a semidirect product group G 
based on this information. The group can be constructed as follows. The underlying set of G is the set of pairs 
(n, k) with n ∈ N and k ∈ K. The multiplication of this set is given by the rule 

(n, k)(n′, k′
′) = (nϕk(n′), kk′) 

The identity element is (1,1) and the inverse is given by 

(n, k)−1 = (ϕk−1(n−1), k−1) 

Let N and K be two groups, where N is abelian and K is compact. Let G = N ⋊ K be the semi direct product of N 

and K. The underlying manifold of G is N × K. Therefore, the Haar measure of G is the product of the Lebesque 

measure on N and the Haar measure on K. That is, if dn is the Lebesque measure of N and dk is the Haar 

measure of K, the Haar measure of G is dg = dndk. The next theorem summarizes the existence of Haar measure 
on a semidirect product group. 
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Theorem. Let G be a semidirect product group and let ϕ: K → Aut(N) be a homomorphism. If g = (n, k) ∈ G, then 

dμG(g) = ‖ϕ(k)‖−1dμN(n)dμK(k) 
and 

△G (g) = ‖ϕ(k)‖−1 △N (n) △K (k) 

proof. To see the formula for μG, we compute 

 ∫  
K

 {∫  
N

 f((n′, k′)(n, k)dμN(n)})‖ϕ(k)‖−1dμk(k)

= ∫  
K

 {∫  
N

 f(n′ϕ(k′)n, k′k)dμN(n)} ‖ϕ(k)‖−1dμK(k)

= ∫  
K

 {∫  
N

 f(n′ϕ(k′)n, k)dμN(n)} ‖ϕ(k′−1k)‖−1dμK(k)

= ∫  
K

 {∫  
N

 f(ϕ(k′)(ϕ(k′−1)(n′)n), k)dμN(n)} ‖ϕ(k′−1k)‖−1dμK(k)

=∫  
K

  {∫  
N

  (f(ϕ(k′−1)(n′)n), k) dμN(n)} ‖ϕ(k)‖−1dμK(k)

= ∫  
K

 {∫  
N

 f(n, k)dμN(n)} ‖ϕ(k)‖−1dμK(k).

 

The formula for △G can be used to integrate functions of the form 
f(n, k) = ν(n)ν(k) (1) 

To this end, 

∫  
G

 f(g)dμG(g) = ∫  
K

 {∫  
N

 f((n, k)−1) △G ((n, k)−1)dμN(n)} ‖ϕ(k)‖−1dμK(k)

 = ∫  
K

 {∫  
N

 f(ϕ(k)−1(n−1), k−1) △G ((ϕ(k)−1(n−1), k−1)dμN(n)}‖ϕ(k)‖−1dμK(k)

 = ∫  
K

 {∫  
N

 ν(ϕ(k)−1(n−1))ΔG((ϕ(k)−1(n−1), k−1)dμN(n)}ν(k−1)‖ϕ(k)‖−1dμK(k)

 = ∫  
K

 {∫  
N

 ν(n−1 △G (n−1, k−1)dμN(n)}ν(k−1)}dμK(k)

 = ∫  
K

 {∫  
N

 ν(n) △G (n, k) △N (n−1)dμN(n)} ν(k)ΔK(k−1)dμK(k)

 = ∫  
K

 ∫  
N

 f(n, k) △G (n, k) △N (n−1)ΔK(k−1)dμN(n)dμK(k)

 

Thus 
△G (n, k) △N (n−1) △K (k−1) = ‖ϕ(k)‖−1 

Given G = N ⋊ K, as mentioned earlier, the next result shows that the Haar measure on G is the product of the 

Haar measure on N and the Haar measure on K. 

Theorem. Let G = N ⋊ϕ K. Let mG, mN and mK denote their respective right Haar measures. If g = (n, k) then 

dmG(g) = dmN(n)dmK(k) 
That is 

∫ 
G

f(n, k)dmG = ∫  
N

∫  
K

f(n, k)dmK(k)dmN(n) 

A general description of the representation of a semi-direct product group is given as follows. Let G = N ⋊ϕ K be 

the semi direct product of a commutative group N and its automorphism group K. Let χ be the scalar function 

χ(n), or a characteristic of k, n ∈ N, such that 
χ(n1 + n2) = χ(n1)χ(n2) 
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For each automorphism a of N there is an automorphism â of χ, defined by the formula 

âχ(b) = χ(a−1b) 

where â1â2 = (a1, a2̂). Therefore, K is isomorphic to the group of automorphism k̂ for χ ⋅ χ is decomposed into 

transitivity classes for transformation K̂. Let Φ be one of those classes and let f(Φ) be a function given on Φ. With 
each element g = (b, a) of G, an operator T(g) is defined by the formula 

T(g)f(φ) = φ(b)f(â−1φ) 

Since, for g1(b1, a1), g2(b2, a2), we have 

T(g1)T(g2)f(φ) = T(g1)φ(b2)f(â2
−1)

 = φ(b1)â1
−1φ(b2)f2(â2

−1â1
−1φ)

 = φ(b1 + a1b2)f[(â1â2)−1φ]

 

and 
(b1, a1)(b2, a2) = (b1 + a1b2, a1a2) 

Therefore, T(g) is a representation of G in the space of function on Φ. 
The Euclidean Motion group is a Locally Compact topological Group [1]. It is a semi direct product of the additive 
group ℝn and the Orthogonal group O(n). There is also Special Euclidean Motion group, often represented as 

SE(n). This group is the semi direct product of ℝn and the special orthogonal group, SO(n). That is, 
SE(n) = ℝn ⋊ SO(n) 

where SO(n) = SL(n) ∩ O(n) 
This group is also called group of transformation of the Euclidean plane, which preserves the distance between 
points and do not change the orientation of the plane [5]. Our focus is on the special Euclidean group which, 
henceforth, shall be represented by M(n), for n = 2. Elements of M(2) are given by g = (a, A) ∈ M(2), where A ∈
SO(2) and a ∈ ℝ2. For any g = (a, A) and h = (r, R), the group law of M(2) is given as 

gh = (a, A)(r, R) = (a + Ar, AR) 

and the inverse g−1 is given by 

g−1 = (−ATa, AT) 
Elements of M(2) can be identified as a 3 × 3 homogeneous transformation matrix of the form 

H(g) = (
A a
0T 1

) 

where A ∈ SO(2) and 0T = (0,0), H(g)H(h) = H(g ∘ h) and H(g−1) = H−1(g). The mapping g ↦ H(g) is an 
isomorphism between M(2) and the set of homogeneous transformation matrices. That is, 

M(2) = ℝ2 ⋊ SO(2) ≅ B ⊂ GL(3, ℝ), 
where B is a closed subgroup of GL(3, ℝ).  Let 𝔇 be the space of infinitely differentiable functions f(x) on the circle 

x1
2 + x2

2 = 1. Let R be a fixed complex number. Each element g(a, α) ∈ M(2), where a ∈ ℝ2 and α ∈ SO(2) ≅
[0,2π] ≅ 𝕋, is associated an operator TR(g) that transforms f(x) into the function 

TR(g)f(x) = eR(a,x)f(x−α) (2) 

where x−α is the vector into which x is transformed under a rotation by an angle −α and (a, x) = a1x1 + a2x2 [11]. 

TR(g) is an irreducible unitary representation of M(2) [10] 
 
MAIN RESULT 

Let G be a locally compact group, let K be a compact subgroup of G and let L1(G) be a convolution algebra of G. 
Some basic definitions concerning Gelfand pair and spherical functions are required before the main result. 
 
Definition ([2]).  A function f: G → ℂ is said to be bi-invariant under K if it is constant on double coset of K . That 
is, if f(k1gk2) = f(g)∀k1, k2 ∈ K and ∀g ∈ G 

Let Cc(G)k (resp. L1(G)k ) be the set of continuous compactly supported (resp. L1 ) functions that are bi-invariant 

under K. Cc(G)k (resp. L1(G)k) is a subalgebra of Cc(G) (resp. L1(G)) 

 

3.2 Definition [2]. The pair (G,K) is called a Gelfand pair if L1(G)k in def. 3.1 above is a commutative algebra. In 
another formulation, the pair (G,K) is a called a Gelfand pair if the Banach * - algebra L1(K ∖ G/K) of a K-bi-
invariant integrable functions on G is commutative. 
Given a function φ ∈ C(G) (not necessarily compactly supported), we consider the linear functional 

χφ: Cc(G) → ℂ 

defined as 

χφ(f) = ∫ 
G

f(x)φ(x−1)dx 

This functional is what shall be used in defining spherical functions for the pair (G,K) as we make progress. The 
following proposition provides a condition for a certain pair (G,K) to be a Gelfand pair. 
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Proposition ([7], prop. 6.1.3). Let G be a locally compact group and K a compact subgroup of G. Assume there 

exists a continuous involutive automorphism ϕ of G such that 

ϕ(x) ∈ Kx−1K 

for all x ∈ G. Then (G, K) is a Gelfand pair. 

In a different formulation, functions on G that are bi-invariant under K can (by restriction) be identified with functions 
on ℝn satisfying 

f(k ⋅ g) = f(g) 
These functions are referred to as the radial functions and the convolution product of two functions of such 
corresponds with the ordinary convolution product on ℝn. This shows that the algebra of bi-invariant functions on 

G, denoted as Cc(G)k is a commutative convolution algebra. 
 
Definition [𝟐]: A spherical function 

φ: G → ℂ 
for the Gelfand pair (G, K) is a k-bi-invariant C∞ - function on K with φ(e) = 1 and satisfy one of the following three 
equivalent conditions 

1. ∫
K

 φ(xKy)dx = φ(x)φ(y) 

2. f → ∫
G

 f(g)φ(g)dg is a homomorphism of Cc(K ∖ G/K) into ℂ 

3. φ is an eigen function of each D ∈ 𝔇(G/K) ⋅ 𝔇(G/K) is the algebra of k -invariant differential operators on 

G/K 

Also, a function φ ∈ C(G), φ ≠ 0, is said to be spherical if it is bi-invariant under k and χφ is a character of Cc(G)K. 

That is, ∀f, g ∈ Cc(G)K 
χφ(f ∗ g) = χφ(f) ⋅ χφ(g) 

Alternatively, let G be a connected and simply connected unimodular solvable Lie group with Haar measure μ, 
and let K be a connected compact group acting on G as automorphism. A bounded continuous function φ on G 

is called a K -spherical function if for x, y ∈ G the following holds 

∫  
K

φ(x(ky))dk = φ(x)φ(y) 

and φ(1G) = 1, where dk is normalized. The Banach space L1(G) of integrable functions on G has a structure of 
Banach * - algebra with convolution and involution defined respectively by 

(f ∗ g)(x) = ∫ 
G

f(y)g(y−1x)dμ(y) 

and 

f ∗(x) = f(x−1) 

K acts on L1(G) as automorphism by f k(c) = f(k−1x) for x ∈ G, k ∈ K. Also, L1(G)k is a closed * - subalgebra of 

L1(G). For a bounded continuous function φ on G, we define a linear functional λφ on L1(G) by 

λφ(f) = ∫ 
G

f(x)φ(x)dμ(x) 

φ is called K-spherical if and only if λφ is multiplicative on L1(G)k. This multiplicity is defined as 

λφ(f ∗ g) = λφ(f)φ(g) 

for f, g ∈ L1(G)k 

The Laplace operator for M(2) is a Laplacian in cylindrical polar coordinate in three dimensional. It is given as 
∂2φ

∂r2
+

1

r2

∂2φ

∂r
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2
= 0 (3) 

The solution of the radial part of (3) is a Bessel function of order zero. It is given below 

Jλ(mr)  = Γ(1) (
√λr

2
)

0

I2−2
2

(√λr) (4)

 = I0(√λr) (5)
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There is a unique relationship between the Jacobi Polynomial and the Bessel function of the first kind [15]. For 

an arbitrary n, the limit of Jacobi polynomial PN
ν,β

 as N → ∞ is the Bessel function of the first kind of order ν given 

as ([13],[15]) 

LimN→∞

PN
ν,β

(Cosz (
z
N

))

Nν
=

Jα(z)

(
z
2

)
α (6) 

If ν = β =
n−2

2
, the LHS 0f (6) becomes the Gegenbauer polynomials which are orthogonal polynomials that 

correspond to the spherical functions associted with the Gelfand pairs (SO(n + 1), SO(n)). On the RHS of (6), the 

function 
Jn−2

2

(z)

(
z

2
)

n−2
2

 is the spherical function associated with the pair (SO(n) ⋊ ℝn, SO(n)). For n = 2, 

Jn−2
2

(z)

(
z
2

)

n−2
2

= J0(z) (7) 

and (6) becomes 

LimN→∞PN (Cos (
z

N
) = J0(z) (8) 

Definition [3]. A spherical measure for the Gelfand pair (G,K) is a non zero Radon measure m on G such that 
1. m is K-bi-invariant. That is to say, m(k1tk2) = m(t), t ∈ G, k ∈ K. 

2. f ↦ m(f) = ∫
G

 f(g)dm(g) is an algebra homomorphism Cc(K ∖ G/K)) → ℂ. That is, m(f1 ∗ f2) = m(f1)m(f2). 

In otherwords, m is a multiplicative linear functional on Cc(K ∖ G/K)). 

Definition[4]. A function f: G → ℂ is said to be positive definite (written as f ≫ 0 ) if the following inequality holds 

∑  

m

i,j=1

 αiαkf(gi
−1gk) ≥ 0 (9) 

for all subsets {g1, . . , gm} of elements of G and all sequences {α1, … , αm} of complex numbers. 
The integrable analogue of (9) is given as 

∫  
G

 ∫  
G

 f(gi
−1gk)φ(gi)φ(gk)dgigk ≥ 0 (10) 

where φ ranges over L1(G) or over the space Cc(G) of continuous functions with compact support. If f is a 
continuous function, (9) is equivalent to (10). Equation (10) can be re-written as 

∫  
∞

∞

 f(g)(φ ∗ φ∗)(g)dg ≥ 0 (11) 

where φ∗(g) = φ(g−1) and ∗ denotes the convolution operation. Equation(11) is often taken as the basis for 
defining positive definite distribution. Positive definite functions have the following properties. 
(i) f(e) ≥ 0 

(ii) |f(g)| ≤ |f(e)|, ∀g ∈ G. 
A positive definite spherical function for the Gelfand pair (G, K) is a positive definite function ϕ on G that is a 

spherical function for the pair (G, K). A radial function on ℝ2 is the spherical function for the Gelfand pair 
(M(2), SO(2)). This function is the Bessel function of order zero [see def. 3.4]. It is positive definite and bounded 
[12]. The next theorem found in ([10]) clearly establishes the relationship between the positive definite spherical 
function for (G, K) and the unitary representation of G. It will be used in the proof of a type of Bochner's theorem 
for positive definite spherical function for the Motion group. Here is the theorem. 
 
Theorem. The relationship between positive definite spherical functions for (G,K) and irreducible unitary 
representation of G with a K -fixed vector is given as follows 
(a) Let ϕ be a positive definite spherical function for (G, K). We write (π, u) for the corresponding unitary 
representation and cyclic unit vector such that ϕ(g) = ⟨u, π(g)u⟩. Then π is irreducible, π(k)u = u for all k ∈ K, and 

u spans the space ℋπ
k 

(b) Let π be an irreducible unitary representation of G such that ℋπ
k is spanned by a single unit vector u. Then 

ϕ(g) = ⟨u, π(g)u⟩ is a positive definite spherical function for (G, K), and (π, u) corresponds to ϕ up to unitary 
equivalence. 
Choquet's theorem for a locally convex space is required as well, it is stated without proof below. 
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Theorem (Choquet's)[14, Theorem. 2.2]: Suppose that X is a metrizable convex subset of a locally convex 
space E and xo is an element of X . Then there exists a probability measure μ (or Borel measure) on X which 

represents xo and is supported by the extreme points of X . 

Let B be the set of all normalized elementary positive definite spherical functions for M(n). B is isomorphic with 
ℝ+. Let B be endowed with weak ∗ topology induced from L1(G). The main result of this work is stated below. 
 
3.9 Theorem: Let ϕ be a positive definite spherical function on the Gelfand pair ( G, K ), where G = M(n) and K =
SO(n). Then there exists a Radon measure μ on B such that 

ϕ(g) = ∫ 
B

 ψ(g)dμ(ψ), ∀g ∈ G (12) 

Proof: Let the set of all positive definite functions ψ on G that satisfies the inequality ψ(e) ≤ 1 be denoted by T, 

where (0,1) = e is the identity element of G. Let Q be the set of all positive definite spherical functions. We show 
that Q is a compact convex subset of the unit sphere of L∞(G) and the non zero extreme points of Q coincide with 

the set B. Let us prove, first, that Q is a compact subset of the unit sphere S of L∞(G) in the weak * topology. For 

a representation π of G on a Hilbert space, let T be a positive definite spherical function that fulfils the properties 
of theorem 3.8 above, that is 

T(g) = ⟨π(g)ξ, ξ⟩, ∀g ∈ G (13) 
and 

π(k)ξ = α(k)ξ  ∀k ∈ K. (14) 

We want to show that Q is a closed subset of T. To this end, let us consider a sequence or net {ϕi} in Q, this 
sequence converges in the weak ∗ topology to an element ϕ ∈ T. Next, we show that ϕ(kgk′) = α(kk′) for all 

k, k′ ∈ K, g ∈ G. To this end, let k, k′ ∈ K and let f ∈ L1(G). Then 

∫  
G

 f(g){ϕ(kgk′) − α(kk′)ϕ(g)}dg = ∫  
G

 f(g){ϕ(kgk′) − ϕi(kgk′)}dg + ∫ 
G

 f(g){ϕi(kgk′) − ϕ(kgk′)}dg

 = λ(k′−1) ∫  
G

 (f(k−1gk′−1){ϕ(g) − ϕi(g)}dg + α(kk′) ∫  
G

 f(g){ϕi(g) − ϕ(g)}dg

 

where λ is the modular function on G. The RHS converges to zero and therefore, the LHS which is independent 

of i must be equal to zero for all f ∈ L1(G). Next we prove that the set of non-zero extreme points of Q coincide 

with B . To this end, we show that ψ1 ∈ T, ψ2 ∈ Q, ψ2 − ψ1 ∈ T imply that ψ1 ∈ Q. Let π be a corresponding 
representation of ψ2 as seen in theorem 3.8. Thus ψ2(g) = ⟨π(g)ξ, ξ⟩ for all g ∈ G. Since ℋ is a Hilbert space, 

there exists a bounded linear operator M on ℋ such that M commutes with every π(g) and such that ψ1(g) =
⟨π(g)Mξ, ξ⟩. Therefore, for k ∈ K, k′ ∈ K, g ∈ G 

ψ1(kgk′) = ⟨π(kgk′)Mξ, ξ⟩

 = ⟨π(g)Mπ(k′)ξ, π(k−1)ξ⟩

 = α(kk′)⟨π(g)Mξ, ξ⟩

 = α(kk′)ψ1(g)

 

Therefore, ψ1 ∈ Q. To conclude the proof, let ϕ ∈ Q. Applying Choquet's theorem[thrm 3.9], there exists a Radon 

measure μ on Q that concentrate on B(≅ ℝ+)such that 

ϕ = ∫ 
B

 ψdμ(ψ) (15) 

(15) is a weak Petit integral. For every f ∈ L1(G) 

∫ 
B

 f(g)ϕ(g)dg = ∫ 
B

  {∫  
G

 f(g)ψ(g)dg} dμ(ψ) (16) 

Applying Fubini's theorem to the RHS of (16), we have 

∫ 
G

 f(g)ϕ(g)dg = ∫  
G

 f(g) {∫  
B

 ψ(g)dμ(ψ)} dg

 = ∫  
G

 f(g)dg {∫  
B

 ψ(g)dμ(ψ)} .

 

Since f ∈ L1(G) is continuous, we have 

ϕ(g) = ∫ 
B

ψ(g)dμ(ψ) 

This completes the proof. 
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