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ABSTRACT 

In this paper, we present a generalized form of the Cantor ternary set by studying the cantor  
 

    
  middle set where 1 

        and its fractal dimension. The paper also introduces the Heine-Borel set and shows that the cantor set and 

its generalised 
 

    
  middle set where 1        are Heine-Borel sets. 

 
1. INTRODUCTION 

The Cantor set is a compact, perfect, nowhere dense and totally disconnected subset of the real line with Lebesgue 
measure zero. It was discovered by the Russian born German mathematician Georg Ferdinand Ludwig Philip Cantor 
(1845 - 1918) in 1883 and hence, it was named after him [10], [5].   
The Cantor set has been defined in many ways and also been constructed in many different forms [See, [3],[11], [6], 
[12], [7],[4] and [1]]. However, it is not only the construction of the Cantor set that has seen a lot of versions, the 
determination of the endpoints has also been worked on by many researchers (see, [1] and [2]). Hornuvo and Obeng-
Denteh established a recurrence relation for the middle k

th
 of the Cantor ternary set where they defined k to be k = 2y 

+ 1, for y = 1, 2, 3, ...   [1]. From their construction the middle k
th
 was given by the recurrence relation  
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The Cantor set happens to be one of the most interesting mathematical phenomenon which seems to permeate every 
aspect of mathematics from topology, real analysis, fractal geometry, probability theory, dynamical systems and many 
other areas even outside mathematics. 
 In 1975, Benoit B. Mandelbrot introduced the term fractal to describe mathematical and natural objects that are self-
similar. And since then, fractals have become an essential tool to physical, natural and social scientist [13]. Fractal 
objects are mainly characterized by their self-similarity and non-integer dimensions. The cantor set is a fractal 
because it possesses the characteristics of a fractal by having a non-integer dimension and self -similar qualities. In 

this paper, we study the cantor 
 

 
 
 

   
 
 

 
 
 

 
 and 

 

  
 sets and in general the cantor 

 

    
  middle set where 1      . We 

will also state and prove some properties relating to this generalized cantor set. 
 

2. PRELIMINARIES 
2.1 Construction of the cantor ternary set 
Definition:   Quantum level (q): in this paper we define the quantum level of a cantor set as the gap left in the iteration 
process during the construction of the cantor-like sets. 

We now proceed to construct the Cantor 
 

 

rd
 middle set; it is constructed from the unit interval by a sequence of 

deletion operations sometimes called iterations. The Cantor middle third set is constructed by deleting the middle 
thirds from the closed unit interval on the real line. 
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We start with the closed set    ,   - and let     be the set obtained by deleting the middle 
 

 
   of   , such that    

consists of the two closed intervals 0  
 

 
1 and 0

 

 
  1. Again, deleting the middle 

 

 
  from each of the intervals in   , we 

obtain    which consist of four closed intervals 0  
 

 
1, 0
 

 
 
 

 
1, 0
 

 
 
 

 
1  and 0

 

 
  1. Continuing the iteration processes this 

way, we obtain a set of nested sequence         . From the construction, we can see that the number of closed 

intervals increases from    to    starting from     in   ,  
   in   ,  

  in    ,   
  in    …, to    in   of the     iteration. 

Hence, we obtain    closed intervals of length .
 

 
/
 

 . 

The cantor set is thus defined as the set of points remaining as the number of iterations tends to infinity. And so, we 
define the cantor ternary set as  
                                                        

    ⋂  

 

   

 

 
 

The geometric construction of the cantor one-third set is illustrated in fig 1 below 
     

 
Figure 1 
 
We now show that the total length of the Cantor ternary set is 0, and that the total length of the open intervals 

removed is 1. From the first iteration, an interval of 
 

 
 is removed from  . We removed 

 

 
 during the second iteration 

and 
 

  
  in the third iteration. As the iteration process continues, the length of the removed interval at each iteration 

level forms a geometric series 
 

 
 
 

 
 
 

 
 
 

  
   with the first term   

 

 
  and a common ratio of  

 

 
. This series has a sum 

     
 

 

  
 

 

  . This shows that the total length of the intervals removed is 1. However, we started with     ,   - with 

a total length of 1, Hence subtracting 1 from 1 gives the length of 0 which is the length of the Cantor ternary set.  

We now put forward a general relation as   approaches infinity. 
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Where   is the number of iterations and   is the quantum level. For example, when     and     
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   [  

 

  
]  [
 

  
 
 

 
]  [
 

 
 
 

  
]  [
 

  
 
 

 
]  [
 

 
 
  

  
]  [
  

  
 
 

 
]  [
 

 
 
  

  
]  [
  

  
  ] 

 
 
 
 

154                                                     F. ASANTE – MENSA, W. OBENG-DENTEH, R. K. BOADI AND Y. E. AYEKPLE 



 
 

 

2.2. Construction of the cantor 
 

    
 set for some selected  . 

When    , we have  
 

 
 which is the Cantor ternary set and when    , we have 

 

 
.  

Now let   
  ,   -.  Divide [0,1] into five equal open intervals and remove the 2nd and 4th open intervals 

(
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Figure 2: The first iteration for     
 

The process leads to the creation of   
  which is given as  
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It is easy to see that   
  is the union of      disjoint closed intervals. Next, divide each closed interval of   

  into five 

and remove from each interval the 2nd and 4th open intervals. Now, let   
  be the set remaining from   

  after 
removing  
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  . Then we have  
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Here, we note that   
  is the union of     9 disjoint closed intervals. If the process continues then we can construct 

    
  from   

  inductively. Now divide each of the    disjoint closed intervals of   
 , and remove from each one of them 

the 2nd and the 4th open intervals. It is now clear that what is left from   
  is     

  and that     
  is the union of      

disjoint closed intervals.  It is, therefore easy to see that     
      

  is true for all  . Hence, we define the Cantor 
 

 
th 

set on [0,1] as  

   ⋂  

 

   

 

We now show that, the total length of the Cantor 
 

 
th set is 0, and that the total length of the open intervals removed is 

1. From the first iteration, an interval of 
 

 
 is removed from   . We removed 

 

  
 during the second iteration and 

  

   
 in the 

third iteration. As the iteration process continues, the length of the removed interval at each iteration level forms a 

geometric series 
 

 
, 
 

  
, 
  

   
  . . . with the first term   

 

 
 and a common ratio of    

 

 
. This series has a sum     

 

  
 

 

 

 . This shows that the total length of the intervals removed is 1. However, since we started with    ,   - with a total 

length of 1, subtracting 1 from gives 0. This means the Cantor 
 

 
th set has a length of 0.  
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We now put forward a general relation as   approaches infinity. 
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Where    is the number of iterations and   is the quantum level. For example, when     and     we have 
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Figure 3: The first two iteration for     

 

When    , we let   
  ,   -.  Divide [0,1] into seven equal open intervals and remove the 2

nd
, 4

th
 and the 6th open 

intervals 
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This gives the closed intervals left in [0,1] as 
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Hence   

  becomes the union of    disjoint closed intervals. Next, divide each closed interval of    
  into seven and 

remove from each interval the 2nd, 4th and 6th open intervals  
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Again, let   

  be the set remaining after removing the open intervals above from   
 . Hence, we have 
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Here, we note that   
  is the union of    disjoint closed intervals. If the process continues then we can construct     

  
from   

  inductively. Now divide each of the    disjoint closed intervals of   
 , and remove from each one of them the 

2
nd

, 4th and the 6
th
 open intervals. It is now clear that what is left from   

  is     
  and that     

  is the union of      

disjoint closed intervals.  We notice here that     
      

  is true for all  . Hence, we define the Cantor 
 

 
th set on [0,1] 

as  
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Following the discussion so far, it is easy to see that the total length of the Cantor 
 

 
th set is 0, and that the total length 

of the open intervals removed is 1. From the first iteration, an interval of  
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during the second iteration while 
  

   
  was removed during the third iteration. As the iteration process continues, the 

length of the removed interval at each iteration level forms a geometric series 
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When    ,  we have 
 

 
. Now, we let   

  ,   - and divide [0,1] into nine equal open intervals and remove the 2nd, 

4th, 6th and the 8th open intervals. 
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This gives the closed intervals left in [0,1] as  
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Hence   
  becomes the union of     disjoint closed intervals. Next, divide each closed interval of   

  into nine and 
remove from each interval the 2nd, 4th, 6th and 8th open intervals  
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Again, let   
  be the set remaining from   
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Here, we note that   
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When    , we have 
 

  
. Now, we let   

   ,   - and divide [0,1] into eleven equal open intervals and remove the 2nd, 

4th, 6th, 8th and the 10th open intervals 
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 Hence   
   becomes the union of    disjoint closed intervals. Next, divide each closed interval of   

  into eleven equal 

open intervals and remove from each interval the 2nd, 4th, 6th, 8th and 10th open intervals. This leads to   
   with 36 

closed intervals.  

Following from the discussion so far, we note that   
   is the union of    disjoint closed intervals. If the process 

continues then we can construct     
   from   

   inductively. Now divide each of the    disjoint closed intervals of 
  
  into eleven equal open intervals and remove from each one of them the 2nd, 4th, 6th, 8th and the 10th open 

intervals. What will be left in   
   is     

   which is the union of      disjoint closed intervals. We notice here that 

    
       

   which is true for all. Hence, we define the cantor 
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th set is 0, and that the total length of the open intervals removed 

is 1. From the first iteration, an interval of 
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each iteration level forms a geometric series 
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3. The Fractal Dimension of the Cantor Set 

The cantor set is a self-similar object. This means that a small portion of it looks like the whole object. The cantor set 
can be characterized by means of its dimension. This can be done by defining dimension in terms of scaling 
properties of shape [13]. We know that in the construction of the cantor set, the magnification factor is 3, since each 
new iteration, the line segment produced must be stretched three times to be as long as the line segment of the 
previous iteration. 
At each iteration, there are two small lines segments that can be scaled up to reproduce the original line segment. 

Hence, the dimension of the cantor 
 

 
   set is given as:  

     
Where D is the dimension, 3 is the magnification factor and 2 is the number of copies. Now taking logarithm of both 
sides and solving for D, we obtain: 
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   set has a fractal dimension of 0.6309. 
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From the construction of 
 

 
, 
 

 
, 
 

 
, 
 

 
 and 

 

  
, we generalize the cantor middle 

 

    
 set for   

 

    
   , where       . 

We can now construct the cantor middle 
 

    
 set by following similar iteration process used in the above constructions. 

Start with the closed interval    ,   - and remove the middle open interval .
 

    
    
 

    
/  .

 

    
    
 

    
/          

.
 (    )   

    
    
 (    )(   )  

    
/ where q is as defined above.  After   iteration, we obtain 

[  
 

(    ) 
]  [

 

(    ) 
 
 

(    ) 
]  [

 

(    ) 
 
 

(    ) 
]            *

 (    )   

(    ) 
 
 (    )   

(    ) 
+ 

 Where   and   are as defined above. Hence, we define the cantor middle as  

 
 
     ⋂  
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4.1. The Fractal Dimension of the Cantor Middle 
 

    
 Set 

Generalizing for 
 

    
 for      , it is easy to see that the number of copies after   iterations is (   )  and the 

magnification factor is (    )  . Hence, the dimension of the cantor 
 

    
   set is:  

  
   (   ) 

   (    ) 
 
      

       
   

 

Definition 2: A set B    is called a cantor set if the following conditions are satisfied 
1. B is non-empty 
2. B is compact 
3. B is nowhere dense 
4. B has no isolated points 
5. B is a perfect set 
 
Theorem 1: Every non-empty infinite subset B of the real line is homeomorphic to the Cantor set if  
1. it is compact 
2. it is totally disconnected 
3. it has no isolated points 
4. it is a perfect set 
 
Proof: Let m and M be the infimum and the supremum of B respectively. Then the set    ,   - is the complement 
of B which is the union of countably many open intervals. Again, if we let C be the cantor one-third middle set, then its 
complement is    ,   -    which is also a countable union of open intervals. We now define a function F such that 

F maps B homeomorphically onto C as   ,   -  ,   -. Hence, we have   ,   -    ,   -     Clearly, both 

   ,   -    and    ,   -     are disjoint union of infinitely but countably many open intervals. Now we denote 
the collection of open intervals whose union is    ,   -    by   and that of    ,   -     by  . We can now 

construct a function         and let        be an interval of maximal length and define  (  )   .
 

 
 
 

 
/ where 

.
 

 
 
 

 
/      Next, we choose two intervals      and      such that       is to the left of     and      is to the right of     

such that they have maximal length in the set  . Hence, we have  (   )   .
 

 
 
 

 
/ and  (   )   .

 

 
 
 

 
/. Clearly, we can 

extend the definition of our constructed function    on the entire members of   since   contains only finitely many sets 

of length greater than some fixed     and since any two intervals in   or    have different end points because both 
B and C are perfect sets. Hence, our constructed function   is bijective and order preserving in the sense that if   is to 

the left of    then  ( ) is to the left of  (  ). For every    , we define a unique increasing map          ( )  such 

that   mapped bijectively onto  ( ). We know that both B and C are totally disconnected and hence are nowhere 

dense and so there exist a continuation   ,   -  ,   -. Now from the construction of  , the continuation 
  ,   -  ,   - is a well-defined function and is given by  ( )     * ( )        +. Let      , then      
  is a monotonic increasing continuous bijective map. Hence, we show that the inverse      exist and is 

continuous so without loss of generality, we can say   is also a monotonically increasing function. Let        , 

then the sequence       has a subsequence which is monotonic. Hence,    is monotonic increasing. Clearly, 

          (  )      (  )   ( ).  We now assume that    ( ). Since B is closed, we have      and 
   ( )   , hence       for large   and by monotonicity    (  ) which contradicts the statement 

         (  ). Thus  (  )    ( )  and continuity is achieved.  
All endpoints of the closed intervals at any stage of the iteration are  members of the Cantor set. Hence, we state and 
prove the following theorem. 

Theorem 2: Let    is the Cantor set as 
 

    
 turns to infinity and let     be the set of endpoints of the closed intervals 

in the Cantor 
 

    
 set such that    ⋃   

 
  is the union sets of   . Then an endpoint      if and only if         

   . 
 Proof: It is clear that          since    is the union of sets of   . Then there exist an open set    such that     
   . Since   is open and contained in    it follows that     . Hence,     implies that     . Again, if we let 

      and allow     , then   is an open set such that        . Since    is the collection of endpoints of the 

cantor set and the cantor set contains it endpoints, it implies that        . 
Definition 3: A subset A of a metric space   is nowhere dense if its closure has an empty interior.  

Lemma 1: For each    , if    is defined in the cantor 
 

    
 middle set, then there are (   )  closed intervals in    

each of which has a length of  (
  

 

    

  
)

 

, where      .  
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Proof: Let    ,   - with a length of 1. We start the iteration by removing 
 

    
 from    and obtain (   ) closed 

intervals of lengths  (
  

 

    

  
)

 

, Suppose we continue the iteration   times and obtain    , then there are (   )   

intervals remaining in    and each of these intervals will have  (
  

 

    

  
)

 

.  Now we need to show that there are 

(   )    intervals remaining in       each of length  (
  

 

    

  
)

   

. It is clear that the removing 
 

    
 from a closed 

interval divides the closed interval into (   ) closed intervals, hence in moving from    to      we have (  

 )(   )  (   )    intervals in     . Now by our assumption, each interval in    has a length of  (
  

 

    

  
)

 

 and 

since we removed the middle 
 

    
 portion of each interval in    to create     , the intervals left in      is 

 (
  

 
    
  

)

 

  
 

    
(
  

 
    
  

)

 

 
.  

 
    

/
   

(  ) 
 

 
because this is the amount of interval left in    intervals, the length of each remaining interval is  

 

  
[
.  

 
    

/
   

(  ) 
]   (

  
 
    
  

)

   

 

 Lemma 2: For each    , if    is defined in the cantor 
 

    
 middle set, then the length of each interval in    is 

.
   

    
/
 

 and it approaches zero as   approaches infinity for all      . 

Proof: Let    ,   - with length 1. We remove the open interval 
 

    
 from    and obtain     closed intervals with a 

total of length of (   ) .
 

    
/  

   

    
. Suppose there are      close intervals that remain in    then the total 

intervals will be  (   )   and each of these intervals will have .
 

    
/
 

 as its length. We need to show that the total 

length of the intervals is .
   

    
/
   

. It is easy to see that removing 
 

    
 from a closed interval divides the closed interval 

into      closed intervals, hence in moving from    to      we have (   )(   )  (   )    intervals in     . by 

lemma 1, each of the remaining intervals in    has a length of (
  

 

    

  
)

   

  Hence the total length of the intervals in 

     is   
 
 

(   )   (
  

 
    
  

)

   

  (
   

    
)
   

 

 

Where      . Since   
 

    
   , .

   

    
/
 

 converges to 0 as   increases without bound. Therefore, the total 

length of the intervals in     approaches 0 as   goes to infinity.                   

  Theorem 3: Given that      , let B be defined by removing the middle 
 

    
  portion of the real unit closed 

interval [0,1], then B is a cantor set.   
To prove this, we need to show that it satisfies the four conditions in our cantor set definition. 

Proof: 1. From the construction, each time we remove 
 

    
 of    to create      there remain exactly two points and 

since B is the intersection of each of   , B contains the endpoints of each subinterval and therefore B is non-empty. 

Again, it is easy to see that 0 is in each   . Hence B is non-empty.  
 2. We need to show that B is close and bounded. B is the intersection of closed sets and so it follows that B is closed. 
Again, we know that B is contained in [ 0,1] and [ 0,1] is bounded it follows that B is bounded since the subset of a 
bounded set is also bounded, hence that B is compact.  
 3. To show that B is nowhere dense, we must show that it contains no open intervals. Assume that B contains an 

open interval with length  . However, from lemma 1, each interval in    after   iterations is  (
  

 

    

  
)

 

, for      . We 

then find an    such that  (
  

 

    

  
)

  

   , for      , that is the length of each of the closed intervals in    is less 
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than  , implying that the entire interval   cannot be contained in     and so B contains no interval and hence B is 

nowhere dense.  
4. We must show that every point in B is a limit point. Suppose     , we show that for all    , there exist       

such that           and   is not equal to   . From lemma 1, let     and    , choose   such that  (
  

 

    

  
)

 

   . 

Since      and    ⋂  , then      . Let   be a component of    such that     and the length of   be  (
  

 

    

  
)

 

, 

this implies that         has two components    and    and   must be in either one of the two components but not 

both. Let assume      then    must contain a point in B say   . Then    is an endpoint of   . Hence,        

 (
  

 

    

  
)

 

  .  

5. From 2, B is closed and from 4 B has no isolated point hence B is a perfect set. And the proof is complete. 
5. The Cantor Set is Heine-Borel Set 

In this section we introduce and define what we call the Heine-Borel set and show that the cantor set is a Heine-Borel 

set which implies that the cantor 
 

    
  set is a Heine-Borel set as well. It should be noted that what we call Heine-Borel 

set is a derivative of the well-known Heine-Borel theorem. 

Theorem 4 [14]. A subset of    is compact if and if only if it is closed and bounded. 

Proof: Suppose that       is compact, then   is a compact subset of a Hausdorff space, hence   is closed. Since 

   is covered by the open boxes (    )  with    , finitely many of these boxes must cover A. So, A is bounded as 

well. Conversely, suppose that        is closed and bounded, then there is a positive integer   such that A is 
contain in the closed box  ,    - . We note that this box is compact because a finite product of compact spaces is 
compact by induction. In particular, A is a closed subset of a compact space, hence also compact. 

Definition 4: Let a non-empty set    be a closed subset of   , then a non-empty subset   of    is said to be a Heine-
Borel set if it is closed and bounded in  . 

Lemma 3: The cantor 
 

    
 middle set is a Heine-Borel set. 

Proof: From theorem 2, B is non-empty and bounded in [0,1]. Again [0,1] is closed and bounded in R and therefore B 
is a Heine- Borel set.  
Definition 5:  A set is a Borel set if it can be formed from an open or closed set by repeatedly taking countable 
unions, countable intersections and relative complements. 

Lemma 4: The cantor 
 

    
 middle set is a Borel set.  

Proof: Since arbitrary intersection of closed set is closed and the Cantor 
 

    
 set is the intersection of closed set. It is 

by definition a closed set and therefore a Borel set. 
 
6. CONCLUSION 

In this paper we have been able to construct a family of cantor middle sets using 
 

    
 as the generator for       

we calculated their fractal dimensions and concluded that, these fractal dimensions form an increasing sequence 
which converges to 1 as    approaches infinity. We have also defined a set from the Heine-Borel theorem called the 

Heine-Borel set and have shown that the cantor 
 

    
  middle set is a Heine-Borel set. Again, we have shown that for 

any                   , the cantor middle 
 

    
 set is homeomorphic to the cantor middle 

 

 
  set. 
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