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ABSTRACT 

 
The main objective of wastewater treatment is to purify the water by degradation of organic matter in the water to an 
environmentally friendly status. To achieve this objective, some effluent (waste water) quality parameters such as 
Chemical oxygen demand (COD) and Biochemical oxygen demand (BOD5) should be measured continuously in order 
to meet up with the said objective and regulatory demands. However, through the prediction on water quality 
parameters, effective guidance can be provided to comply with such demand without necessarily engaging in rigorous 
laboratory analysis. Box-Jenkin’s Auto Regressive Integrated Moving Average (ARIMA) technique is one of the most 
refined extrapolation techniques for prediction while Artificial Neural Network (ANN) is a modern non-linear method 
also used for prediction. The Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean 
Square Error (RMSE) and Correlation coefficient (r) are used to evaluate the accuracy of the above-mentioned 
models. This paper examined the efficiency of ARIMA and ANN models in prediction of two major water quality 
parameters (COD and BOD5) in a wastewater treatment plant. With the aid of R software, it was concluded that in all 
the error estimates, ANNs models performed better than the ARIMA model, hence it can be used in the operation of 
the treatment system. 
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INTRODUCTION  
 
Inadequate management of a Waste Water Treatment 
Plant may cause serious environmental and public 
health problems, as its effluent when discharged into a 
receiving water body can cause or spread various 
diseases to human beings. Operation of a wastewater 
treatment plant is often affected by a variety of physical, 
chemical, and biological factors. In order to follow the 
treatment plant performance during the operation, 
effluent measurements would not be sufficient. 
Predicting any of these parameters, depending upon the 
influent water quality, will help the operator to control the 
system and to take necessary precautions before any 
problem comes up. Modeling a waste water treatment 
plant is considered a difficult task due to complexity of 
the treatment processes. A better control of a system 
can be achieved through developing a mathematical 
technique for predicting plant performance based on 
past observations of certain parameters.  
 
 
 
 
 
 
 
 
 

The complex physical, biological and chemical 
processes involved in wastewater treatment may exhibit 
non-linear behaviors which cannot be described by 
linear mathematical models. 
In recent years, several water quality models such as 
traditional mechanistic approaches have been 
developed in order to manage the best practices for 
conserving the quality of water. Most of these models 
need several different input data which are not easily  
accessible and make it a very expensive and time-
consuming process. ANN has been observed to be a 
suitable approach for water quality modeling (Chen et 
al., 2003; Jan-Tai et al., 2006). 
In addition, ANNs provide different advantages over 
traditional modeling approach of a wastewater treatment  
plant. For instance, when ANNs are applied to prediction 
of wastewater treatment plant performance task they will 
result in reduction of cost for undertaking laboratory 
tests. And also, parameter such as BOD5 could be 
predicted from the model instead of waiting for five days  
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for its analysis, thereby saving time in addition to the 
advantage that efficiently predicted values of parameters 
will provide for proper operation and control of the waste 
water treatment plant. In a related study Areerachakul, 
(2012) opined that “several other modeling techniques 
such as; Fuzzy Inference System (FIS) and Neural 
Network (NN) be employed for the production of 
forecasting models to estimate water quality 
parameters”.  He compared the predictive power of the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) model 
and the ANN model to estimate the BOD5 on a data set 
from eleven sampling stations of the Saep channel in 
Bangkok, Thailand. Somvanshi et al. (2006) investigated 
two fundamentally different methods of ARIMA and ANN 
to design a model and predict behavior patterns in 
rainfall events based on past behavior. The study 
showed that the ANN model can be used as a predictive 
forecasting tool to estimate rainfall, which improves the 
ARIMA model. Sharma and Singh (2011) studied 
forecasting models to make comparisons between 
models to identify models suitable for forecasting rain, 
concluding that the ANN approach is better than other 
models. Rene and Saidutta (2008) developed several 
empirical relationships, between COD and BOD5 with 
TOC (total organic carbon) using a combination of 
regression and artificial neural network analysis. The 
essence was to use TOC to estimate the accompanying 
BOD5 or COD in water quality monitoring in a refinery’s 
wastewater system.  It was observed that the three 
models they developed gave accurate results, which 
indicates the versatility of the developed models. 
This paper examined the efficiency of Auto regressive 
integrated moving average (ARIMA) and artificial neural 
network (ANN) models in prediction of two major water 
quality parameters (BOD5 and COD) in a wastewater 
treatment plant 
 
MATERIAL AND METHODS 
Study area and data collection 
The data for this study was generated by an oil and gas 
consultancy firm that actually carried out the field and 
laboratory work which involves collection of weekly 
waste water samples (Produced water) for the analysis 

of principal parameters BOD5, COD, Conductivity, 
Temperature, pH, etc. using the Standard method for 
the examination of water and waste water (APHA, 1998) 
from the wastewater treatment plant located between 

Longitude 4
o
34.276 and Latitude 8

o
 25.557 at the Gulf 

of Guinea. 
The water quality data (five years, total of 260 
observations) were divided into two data sets. The first 
data set containing former 4-year records was used as 
the training data for model development; the second 
data set containing the remaining year’s records was 
used as the testing and validating data to evaluate the 
performance of the established models. In this paper, 
only 52 data points from the test data set for forecasting 
is considered. The models were built using the Times 
Series Forecasting System tool of the R software 
packages.  
Autoregressive Integrated Moving Average Model 
(ARIMA) 
Box and Jenkins (1976) developed a practical approach 
to construct ARIMA models, which have fundamental 
effects on the applications of time series analysis and 
forecasting. Their methodology includes the following 
three iterations: model identification, parameter 
estimation and diagnostic testing. The autocorrelation 
function (ACF) and partial autocorrelation function 
(PACF) of the sampled data are used as the basic tools 
to identify the order of the best ARIMA model.  
For the models obtained, diagnostics tests are 
performed using (a) Residual ACF (b) Ljung Box test. 
The residuals after fitting an ARIMA model should be a 
random noise. Therefore if the autocorrelations and 
partials of the residuals are obtained, there should not 
be any significant autocorrelation and partial 
autocorrelations. In this study, the various correlations 
for BOD5 and COD are up to 41.6 lags each, were 
computed and their significance is tested by Box-Ljung 
test as shown in Table 1. Since the p-values for BOD5 
and COD are all above 0.05, indicating not significantly 
different from zero at a reasonable level, the selected 
ARIMA models are the appropriate models.

Table 1. Parameters estimation of ARIMA model. 
 

 
 

Model type r
2
 BIC Ljung Box Q(18)  

Statistics DF P-value 

BOD5 (1, 0, 1) 0.098 2.74 29.6296 38.6 0.84973 

COD (2, 0, 0) 0.23 2.71 38.935 38.6 0.45463 
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Artificial neural network (ANN)  
In this study, artificial neural network algorithm was 
applied to evaluate the effluent quality parameters 
(BOD5 and COD).The ANN models are increasingly 
being used for prediction or simulating water resources 
variables because they are often capable to model 
complex systems with unknown or difficult behavioral 
rules or underlying physical processes. Most of these 
studies showed that ANNs performed better than 
traditional modeling techniques (Zhang et al, 2002). 
Artificial neural networks (ANNs) provide a method for 
solving many types of non-linear problems that are 
difficult to solve by traditional techniques (Leahy et al., 
2008, Haciismailoglu et al., 2009). All inputs and outputs 
are normalized between 0 and 1 in artificial neural 
network software. A proper process of data 
normalization and defacement is required before and 
after the execution of the program. The best and 

simplest way to normalize is to divide it by the maximum 
and after the execution of the program, multiply the 
result by the same amount. There are several neural 
network models for various applications available in 
research, but the ANN considered in this study is a fully 
connected multilayer perceptron (MLP), a network 
composed of neurons which consists of three layers of 
neurons: (1) an input layer; (2) a hidden layer, and (3) 
output layer. Each neuron has a number of inputs (from 
outside the network or the previous layer) and a number 
of outputs (leading to the subsequent layer or out of the 
network). Dawson et al., (2006) in their study have 
averred that “a neuron computes its output response 
based on the weighted sum of all its inputs according to 
an activation function”, hence the neuron structure for 
this study is shown in Figure 1 and 2 below. MLP neural 
networks were used to estimating BOD5 and COD in the 
treated waste water. 

 

 
 

Figure 1: Artificial neural network structures for weekly BOD5 prediction parameter 
 

 
Figure 2:   Artificial neural network structure for weekly COD prediction parameter. 
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The MLP-ANN proposed in this study had three layers: 
an input layer, a single hidden layer, and an output 
layer. The number of neurons in the input and output 
layers was determined by the number of input and 
output variables considered in the model, respectively. 
The number of neurons in the hidden layer was selected 
by analyzing the root mean squared error (RMSE) of the 
trained ANNs when a different number of hidden 
neurons in the ANN were used. To reduce the 

randomness of the training process, 100 repetitions of 
the experiment were performed for each number of 
hidden neurons. The activation function used in the 
proposed ANN is the sigmoid function (Equation 1) for 
the neurons of the hidden layer as well as the output 
layer. Because the input layer does not receive signals 
from other neurons, their neurons do not have an 
activation function because they only send input 
variables to neurons of the hidden layer.

 

)exp(1

1
)(

x
xSig


                                                           (1) 

ANN training was performed by applying the resilient back propagation with the backtracking algorithm employing the 
R software. 
 
PREDICTION USING ANN 
ANN model building process was performed using the 
significant water quality parameters. The best-suited 
architecture of Feed Forward Neural Network Model for 
our weekly BOD5 and COD data were selected by 
comparing methods and changing the layer and number 
of neurons in each network. The BOD5 model had an 
input environment with significant water quality 
parameters, one hidden layer with 6 neurons and one 
neuron in the output layer (see Figure 1 above) while 
COD model had an input environment with significant 
water quality parameters, one hidden layer with 7 
neurons and one neuron in the output layer (see Figure 

2 above). The number of neurons in the hidden layers 
was varied, as shown in Table 2 and 3 below.   The 
number of hidden neurons (six and seven) for BOD and 
COD respectively with the smallest value of RMSE is the 
best fit. A resilient back propagation with weight 
backtracking algorithm was used for training the 
multilayer neurons until the best combination was 
achieved. A sigmoid activation function was used in the 
hidden layer and output layer.  Set of random values 
distributed uniformly from 0 to 1 were utilized to start the 
weight of the neural network models. The best-fitting 
networks selected for BOD5 and COD are N (5×6×1) 
and N (5×6×1) respectively. 

 
Table 2: Neural network performance (BOD5) using different number of hidden neurons 

  

Number of  hidden  neurons Training  (RMSE) 

4 28.09486 
5 30.46437 
6 26.81779 
7 33.83007 
8 31.51882 
9 30.18726 
10 30.93310 

 
Table 3: Neural network performance (COD) using different number of hidden neurons 

 

Number of hidden  neurons RMSE 

4 24.29487 
5 25.56701 
6 23.62751 
7 21.94817 
8 24.95865 
9 32.14235 
10 32.14235 
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Evaluation Criteria for ANN and ARIMA Predictions 
Four statistical criteria were applied to evaluate the performance of ANN and MLR models. These criteria were root 
mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE) and correlation 
coefficient (r). The expressions for these measures are as follows: 
 
Mean absolute error (MAE)     





N

i

i PO
N 1

1
     (2) 

Root mean square error (RMSE):   

    

 

i

N

i

ii

O

PO
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
1      (3) 

Mean absolute percentage error (MAPE):   

    


N
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ii

O

PO

N 1

1
     (4) 

 

Correlation Coefficient (r) 

    (5) 
 
 
Where N is the number of data, Oi observed values, Pi 
predicted values at time i and the bar denotes the mean 
of the variable. For the best prediction, the MAE, RMSE 
and MAPE values should be small i.e., close to 0. The 
recital of water quality parameters forecasting models 
had been evaluated on the basis of R packages. 
 
RESULTS AND DISCUSSION 
The development of ARIMA and ANNs models were 
carried out to assess the predictive performance of the 
models. The water quality data (five years, a total of 260 
observations) were divided into two data sets. The first 
data set containing former 4-year (2007-2010) records 
were used as the training data for model development; 
the second data set containing the remaining year 
(2011) records were used as the testing data to evaluate 
performance of the established models. All the models 
were built using the Times Series Forecasting System 
tool of the R software package  

Auto Regressive Integrated Moving Average 
(ARIMA) 
An ARIMA modeling of BOD5 and COD data quality 
parameters of the wastewater were performed. The 
weekly time series of wastewater quality parameters of 
BOD5 and COD were plotted which show that the time 
series data sets are stationary so they do not need any 
transformation in the data sets as shown in Figure 3 and 
4 below. Then the autocorrelation function (ACF) and 
partial autocorrelation function (PACF) of the weekly 
BOD5 and COD time series are utilized to quantify the 
values of p and q of the ARIMA models.   As the 
previous section, we found the best fitting models for 
BOD5 and COD are ARIMA (1, 0, 1) and (2, 0, 0) 
models, which are ARIMA model with autocorrelation 1, 
with integration of order 0 and moving average of order 
1 and ARIMA model autocorrelation 2, with integration of 
order 0 and moving average of order 0, respectively, 
represented by Equation 6 and 7 

 
 
  yt  =  98.7543 + 0.79149yt-1 -  0.5907wt-1 + wt  (6) 
 
                        yt  =   91.7946  +  0.3357y(t-1) + 0.2267y(t-2) + et                    (7)     
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Figure 3: Time series plot of BOD5 

 

 
Figure 4: Time series plot of COD 

 
 
A suitable model to predict water quality time series was 
built using ARIMA. As shown in Figure 3, although 
ARIMA models vary with the range, the model 
predictions are not adequate. This is due to the limitation 
of the linear modeling algorithm in the ARIMA model 
which is unsatisfactory in identifying and predicting 
nonlinear time series of water quality parameters. 
 
Artificial Neural Network (ANN) 
As described above, network training is done using a 
resilient back propagation with weight backtracking 
algorithm. A sigmoid function is used as the transfer 
function in both the hidden layer and output layer due to 
its suitable application. The best results were obtained 
for the ANN composed of six (6) and seven (7) neurons 
in the hidden layer for BOD5 and COD respectively. The 
best-fitting networks selected for BOD5 and COD are N 
(5×6×1) and N (5×6×1) respectively.  
 
 
 
 

 
Comparative Performance of ARIMA and ANN 
The performance of the ARIMA and ANN models are 
shown in terms of the correlation coefficient (r), i.e., the 
strength of the linear relationship between the 
observation and prediction for all parameters, as shown 
in Table 4 and 5 below. The r values of ARIMA is linear 
positive but weak for both BOD5 and COD. These 
values are not satisfactory in common model 
applications. This is due to the limitation of the linear 
modeling algorithm in ARIMA model which is 
unsatisfactory in identifying and predicting nonlinear 
time series of water quality data. For the ANN model, 
the r is strong and positive. The results indicate that the 
neural network that was developed is able to detect the 
pattern in water quality parameters to provide prediction 
of the daily variation data. This means that they are 
satisfactory in identifying and predicting nonlinear time 
series of water quality data. In other words, the ANN 
model was able to detect and identify the pattern of 
water quality parameters to provide desired and valid 
predictions better than the ARIMA model.  

 
Table 4: Comparative performance of ARIMA and ANNs models (BOD5 data) 

 

Model RMSE MAPE MAE r 

ARIMA 27.1513 22.9013 22.7897 0.09 

ANNs 23.0524 20.8972 19.1746 0.75 
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Table 5: Comparative performance of ARIMA and ANNs models (COD data) 
 

Model RMSE MAPE MAE r
 

ARIMA 29.741441 27.01971 24.51272 0.23 

ANNs 27.506245 24.415084 20.9486 0.65 

 
Again comparison on the basis of error, the results 
revealed that the ANN has  the lowest root mean square 
error (RMSE),  mean absolute percentage error (MAPE) 
and mean absolute error (MAE)  for predicting BOD5 
and COD as compared to ARIMA (Table 4 and 5 
above). It is found that the ANN model could probably 
predict BOD5 and COD with a better performance owing 
to their greater flexibility and capability to model linear/ 
nonlinear relationships. Figure 5 and 6 shows the 
observed and predicted values of ANN for BOD5 and 
COD respectively and Figure 7 and 8 shows the 

observed and predicted values of ARIMA for BOD5 and 
COD respectively. They show that ANN technique is 
more feasible as the observed and predicted values 
tend to be closer more in predicting BOD5 and COD 
than the ARIMA technique. This study aimed at the 
comparison of ANN and ARIMA models for BOD5 and 
COD predictions showed that ANN model proved to be a 
better technique for accurate prediction of BOD5 and 
COD with minimum value of RMSE, MAPE and MAE 
rather than ARIMA.

 
 

 
Figure 5: Comparison of the observed values and those predicted by the ANN model (BOD5 data) 

 

 
 

Figure 6: Comparison of the observed values and those predicted by the hybrid model (COD data) 
 

 
Figure 7: Comparison of the observed values and those predicted by the hybrid model (BOD5 data) 
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Figure 8: Comparison of the observed values and those predicted by the hybrid model (COD data) 
 
CONCLUSION  
This study used ARIMA and ANNs models to predict the 
water quality (BOD5 and COD) time series data. The 
results obtained showed that ANN model is more 
reliable and suitable in predicting effluent quality. The 
ANN model developed in this study can be more useful 
in water quality management efforts to ensure that water 
resource is sustainable for the future. In this study, four 
accuracy measures, the RMSE, MAPE, MAE and r were 
formulated in order to demonstrate the performance of 
the developed models in predicting effluent quality time 
series. The ANN model performance as compared with 
ARIMA model gave the least values of MAE, MAPE and 
RMSE and also an improved performance in predicting 
effluent quality time series 
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