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ABSTRACT 

 
In this paper, we applied the Galerkin Finite Element Method to solve a damped, externally forced, second order 
ordinary differential equation with cubic nonlinearity known as the Duffing Equation. The Galerkin method uses the 
functional minimization technique which sets the equation in systems of algebraic equations to be solved. Various 
simulation on the effect of change on some parametric values of the Duffing equation are shown. 
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INTRODUCTION 
 
The Finite Element Method (FEM) is a 
numerical/computational analysis tool used in obtaining 
approximate solutions to boundary value problems 
which are governed by a differential equation and a set 
of boundary conditions. The main idea behind the finite 
element method is the representation of the domain with 
smaller subdomains called the finite elements. The 
distribution of the primary unknown quantity inside an 
element is then interpolated based on the values at the 
nodes, so far as nodal elements are used. The 
interpolation or shape functions must also be a complete 
set of polynomials. The accuracy of the solution 
depends, among other factors, on the order of these 
polynomials, whose order may be linear, quadratic, or 
higher. The numerical solution corresponds to the 
values of the primary unknown quantity at the nodes or 
the edges of the discretized domain. The solution is 
obtained after solving a system of linear equations. To 
form such a linear system of equations, the governing 
differential equation and associated boundary conditions 
must first be converted to an integro-differential form by 
using a weighted residual method as the Galerkin 
approach. This integro-differential formulation is applied 
to a single element and with the use of proper weight 
and interpolation functions called the shape functions, 
the respective element equations are obtained. The 
assembly of all elements results in a global matrix 
system that represents the entire domain of the BVP. 
The FEM was first used by Clough [1 – 2] and it was 
invented when aircraft engineers wanted to solve 
problems relating to structures, wheels and to calculate 
stress in structures. Since then, the FEM has been used 

by many researchers in areas such as Electromagnetics 
[3 – 5], Computational Fluid Dynamics [6], Differential 
Equations [7], implant dentistry [8], heat transfer [9] and 
incompressible fluid [10].   
 
THE DUFFING EQUATION 
The Duffing Oscillator or equation is a damped, 
externally forced, second order nonlinear oscillator with 
constant coefficients which has gained wide 
recommendations as the simplest equation which is 
used to study and describe the chaotic behaviour of a 
system. It is a nonlinear differential equation which 
describes an oscillator with a cubic nonlinearity [11].  It 
was developed by a German Engineer named Georg 
Wilhem Christian Caspar Duffing in 1918 who aimed to 
tackle problems of nonlinear oscillators in a systematic 
way by starting with the linear oscillator and also 
examining the effects of quadratic and cubic stiffness 
nonlinearities. He then emphasized the differences 
between the linear and nonlinear oscillators for both the 
free and forced vibrations while considering their 
damping effects. 
As a dynamical system that exhibits chaotic behaviour,  
� It has a periodic long term behaviour as 

t → ∞ making the system to have irregular pattern 

which does not oscillate nor repeat in a periodic manner. 
� It is always vigilant in the change of its initial 
conditions as any change will alter the trajectory thereby 
giving a significant difference in its long term behaviour. 
� The nonlinearity of the system makes it to 
exhibit irregular behaviour hence making it to be 
deterministic. 
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The general Duffing equation is given as  

( )3
cosx x x x tδ α β γ ω+ ± + =&& &        (1) 

where the unknown function ( )x x t= is the displacement at time t . The damping factor δ  controls the size of the 

damping. The α  controls the size of the stiffness and the β  controls the amount of nonlinearity in the restoring 

force. If 0β = , the Duffing equation describes a damped and driven simple harmonic oscillator. The quantity γ  

controls the amplitude of the periodic driving force. If 0γ = , we have a system without driving force. The quantity 

ω  controls the frequency of the periodic driving force. See [12 – 14].  When the Duffing equation has a negative 

linear stiffness, it is said to be a double-well potential. See [15 – 17]. The Duffing double-well potential equation is 
given as  

( )3
cosx x x x tδ α β γ ω+ − + =&& &        (2) 

 
THE FINITE ELEMENT METHOD 
The Finite Element Method is an element wise application of the weighted residual or Galerkin method which involves 
the following steps:  
a. Discretization of the domain 
b. Formulation or derivation of element equations 
c. Assembly of the element equations 
d. Imposition of the boundary conditions 
e. Solution of the assembled equations. See [18, 19] 
 
APPLICATION: 
Consider the given Duffing oscillator, 

 x� + δx� + αx + βx� = γcoswt        (3) 

Subject to x�0� = 0, x� �1� = l 
We seek for an approximate solution of the form 

( )
1

n

i i
i

X t α ξ
=

=∑           (4) 

The error or residue E  is given as  

 E = x� + δx� + αx + βx� − γcosωt                               (5) 
and by Galerkin FEM,  

 ( )
0

0
l

Ew t dt =∫  

 
Step 1: Discretization of the Domain  

Let the function be divided into four elements in the domain �0,1�.  Let w = w�t� be the test function and let s�ands� be 
successive node points.  

For each element e!, i = 1, 2, 3, 4, we have two nodes and from ( ' �x� + δx� + αx + βx��wdt()(* − ' γwcosωdt()(* = 0                   (6) 

⇒ + �−x�w� + δx�w + αxw + βx�w�dt()
(* = + γwcosωtdt()

(* − ,wx� -
(*

()
 

Step 2: Derivation of element equations 
Let 

( ) ( )
2

1

j j
j

w t tγ ψ
=

=∑  and ( ) ( )
2

1

i i
i

x t tαψ
=

=∑        (7) 

where i
ψ  and j

ψ  are shape functions; i
γ  and i

α  are coefficients for the particular node which is 1 and 0 at other 

nodes. 

 ψ! = (./*01(./*0(. ,         ψ!2� = 10(.(./*0(.                   (8) 

But  s� = s!, s� = s!2�, wheni = 1 andh = s!2� − s! 
Substituting (7,8) into (6), we obtain 

' 4−ψ5́ ψ7́ + δψ5́ ψ8 + αψ!ψ8 + βψ!�ψ89 dt(./*(. = γ ' ψ8cosωtdt()(* − ,ψ8x́:
(*

()
                         (9) 

Equation (9) can be written as 

 k!8< = g!<                  (10) 
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where k!8<  is the stiffness matrix and it is given as k!8< = ' 4−ψ5́ ψ7́ + δψ5́ ψ8 + αψ!ψ8 + βψ!�ψ89 dt(./*(.            (11) 

g!< =  γ ' ψ8cosωtdt()(* − ,ψ8x́:
(*

()
             (12) 

Then, from (11)  k�� = α h3 + βh5 − 1h − δ2 = k�� 

and 

( ) ( )12 2 1 2 1 21

1
2

2 2 20

h
k s s s s k

h h

δ α β = − − + + + = 
 

 

 
 
 
Hence, for a typical element, its stiffness matrix is  

11 12

21 22

e
k k

K
k k

 
=  

 
 

Step 3: Assembling of element equations 
For every element, 

( ) ( )

( ) ( )

2 1 2 1

2 1 2 1

1 1
2

3 5 2 2 2 20

1 1
2

2 2 20 3 5 2

e

h h h
s s s s

h h h
K

h h h
s s s s

h h h

α β δ δ α β

δ α β α β δ

 + − − − − + + + 
=  

 − − + + + + − −
  

 

 
The subscripts 1 and 2 are nodes 1 and 2 of a particular element. When we start assembling the matrices, the 
subscripts will be relabeled to take note of the element in question. 
Then 

1

4 4
12 20 2 80 2 8

4 4
80 2 8 12 20 2

K

α β δ β δ α

β δ α α β δ

 + − − − − + 
=  
 − − + + − − 
 

  , 2

3
4 4

12 20 2 80 2 2

3
4 4

80 2 2 12 20 2

K

α β δ β δ
α

β δ α β δ
α

 + − − − − + 
=  

 − − + + − − 
 

 

3

3
4 4

12 20 2 80 2 2

3
4 4

80 2 2 12 20 2

K

α β δ β δ
α

β δ α β δ
α

 + − − − − + 
=  

 − − + + − − 
 

 , 4

35
4 4

12 20 2 80 2 4

35
4 4

80 2 4 12 20 2

K

α β δ β δ
α

β δ α β δ
α

 + − − − − + 
=  

 − − + + − − 
 

 

The global system of matrices equals: 

1 1

11 12

1 1 2 2

21 22 11 12

2 2 3 3

21 22 11 12

3 3 4 4

21 22 11 12

4 4

21 22

0 0 0

0 0

0 0

0 0

0 0 0

k k

k k k k

K k k k k

k k k k

k k

 
 

+ 
 = +
 

+ 
 
 

     (13) 
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which gives to  

4 4 0 0 0
12 20 2 80 2 8

3
4 2 4 0 0

80 2 8 6 10 80 2 2

3 35
0 4 2 4 0

80 2 2 6 10 80 2 8

35 35
0 0 4 2 4

80 2 8 6 10 80 2 4

35
0 0 0 4 4

80 2 4 12 20 2

K

α β δ β δ α

β δ α α β β δ
δ α

β δ α β β δ
α δ α

β δ α β β δ
α δ α

β δ α β δ
α

 + − − − − + 
 
 − − + + − − − − + 
 
 = − − + + − − − − +
 
 
 − − + + − − − − +
 
 

− − + + − − 
 

 (14) 

The load vectors are given as (12) 
Then each of the load vectors gives: 

( )
2

1

1

1 2

cos
sin

sin cos
si

s

h
s h

h
G

t t
t s

h w

γ ω
ω

ω ω

γ ω ω
ω

  −    =    − +    

               (15) 

 
The global load vectors are summarized as thus: 

( )

( )

1

1

1 2

2 1

2 3

2 1

3 4

2 1

4

2

0

1

g x

g g

G g g

g g

g x

 −
 
 +
 

= + 
 

+ 
 
 + &

                   (16) 

 
which gives 

( )

( )

4
cos 0

4

2
sin

4

2
sin

4

2
sin

4

4 1
cos sin 1

4 2 4

x

G

x

γ ω
ω

γ ω
ω
γ ω
ω
γ ω
ω

γ ω ω
ω

 − − 
 
 
 
 
 =
 
 
 
 
   − +    

&

            (17) 

 
Then combining the equations together, we have  

1

2

3

4

4 4 0 0 0
12 20 2 80 2 8

3
4 2 4 0 0

80 2 8 6 10 80 2 2

3 35
0 4 2 4 0

80 2 2 6 10 80 2 8

35 35
0 0 4 2 4

80 2 8 6 10 80 2 4

35
0 0 0 4 4

80 2 4 12 20 2

u

u

u

u

α β δ β δ α

β δ α α β β δ
δ α

β δ α β β δ
α δ α

β δ α β β δ
α δ α

β δ α β δ
α

 + − − − − + 
 
 − − + + − − − − + 
 
 − − + + − − − − +
 
 
 − − + + − − − − +
 
 

− − + + − − 
 

( )

( )

5

4
cos 0

4

2
sin

4

2
sin

4

2
sin

4

4 1
cos sin 1

4 2 4

x

u

x

γ ω
ω

γ ω
ω
γ ω
ω
γ ω
ω

γ ω ω
ω

 − − 
 
  
  
  
   =
  
  
  

   
   − +    

&
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The first and last rows have been covered by the boundary conditions and hence  

2

3

4

3 2
2 4 0 sin

6 10 80 2 2 4

3 35 2
4 2 4 sin

80 2 2 6 10 80 2 8 4

35 2
0 4 2 sin

80 2 8 6 10 4

u

u

u

α β β δ γ ω
δ α

ω
β δ α β β δ γ ω

α δ α
ω

β δ α β γ ω
α δ

ω

   + − − − − +   
    
    − − + + − − − − + =    
     

   − − + + − −   
   

 

 

Then we solve for 
2 3 4
, ,u u u  which gives 

2 3 4
, ,α α α . 

1

2

3

4

3 2
2 4 0 sin

6 10 80 2 2 4

3 35 2
4 2 4 sin

80 2 2 6 10 80 2 8 4

35 2
0 4 2 sin

80 2 8 6 10 4

u

u

u

α β β δ γ ω
δ α

ω
β δ α β β δ γ ω

α δ α
ω

β δ α β γ ω
α δ

ω

−
   + − − − − +   

     
     = − − + + − − − − +     
      

   − − + + − −   
   

 

 
Therefore,  

2

2 22 2 2

2 23 35
sin 2 4

4 6 10 8 80 2 8

3 35
2 2 4 4

6 10 6 10 80 2 2 80 2 8

u

γ ω α β β δ
δ α α

ω
α

α β α β β δ β δ
δ δ α α

    + − − + − − +    
     = =

        + − − + − − − − − + − − − +        
         

 

3 32 2 2

2 145 3
sin 10

4 24 40

3 35
2 2 4 4

6 10 6 10 80 2 2 80 2 8

u

γ ω
α β

ω α
α β α β β δ β δ

δ δ α α

 + −  = =
        + − − + − − − − − + − − − +        

         

 

2 2

4 42 2 2

2 3 35 3
sin 2 4 4 5

4 6 10 80 2 2 80 2 8 80 2 2

3 35
2 2 4 4

6 10 6 10 80 2 2 80 2 8

u

γ ω α β β δ β δ β δ
δ α α α

ω
α

α β α β β δ β δ
δ δ α α

        + − − − − − + − − − + − − +        
         = =

        + − − + − − − − − + − − − +        
         

 

 
The general weak solution of the Duffing equation using FEM is given as: 

( )

2

1 22 2 2

2 23 35
sin 2 4

4 6 10 8 80 2 8

3 35
2 2 4 4

6 10 6 10 80 2 2 80 2 8

X t

γ ω α β β δ
δ α α

ω
ξ ξ

α β α β β δ β δ
δ δ α α

    + − − + − − +    
     = +

        + − − + − − − − − + − − − +        
         

32 2 2

2 145 3
sin 10

4 24 40

3 35
2 2 4 4

6 10 6 10 80 2 2 80 2 8

γ ω
α β

ω ξ
α β α β β δ β δ

δ δ α α

 + −  +
        + − − + − − − − − + − − − +        

         
2 2

42 2 2

2 3 3 35
sin 2 4 5 4

4 6 10 80 2 2 80 2 2 80 2 8

3 35
2 2 4 4

6 10 6 10 80 2 2 80 2 8

γ ω α β β δ β δ β δ
δ α α α

ω
ξ

α β α β β δ β δ
δ δ α α

        + − − − − − + − − − + − − +        
         +

        + − − + − − − − − + − − − +        
         

5
ξ+   

             (18) 
where 

( ) ( )1 5
0 0, 1x x lξ ξ= = = =&  

are the boundary conditions. 
Equation (18) is the finite element method solution of the Duffing equation. To obtain the numerical strings of 
approximate solutions, we give numerical values to the constants , , , ,α β γ δ and .ω  
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NUMERICAL EXPERIMENTS 
In this section, we would give some numerical values to the parameters of the Duffing equation whose solution was 
derived in (18) above. These approximating values will make the solution be in form of a polynomial. We take two 
examples.  

a.  Let 1, 5, 0.02, 8α β δ γ= = = =  and 

( ) 1 2 3 4 5
0.28079 0.03861 0.03812X t ξ ξ ξ ξ ξ= + − − +

b. Let 2, 0.1, 2, 3α δ β γ= − = = =  and 

( ) 1 2 3 4 5
0.00389 0.00125 0.00832X t ξ ξ ξ ξ ξ= − − − +

 
SOME NUMERICAL SIMULATIONS AND INTERPRETATIONS
We show the numerical simulations of the behaviour of the damped Duffing oscillator which was obtained by the use 
of the Galerkin finite element techniques. Using MATLAB ODE 45 package, we show in figures below, t

the change in damping factor δ , and the amount of nonlinearity 

stiffness α . 

 

  
 
 
 
 
 
 

 Fig. C and D: Duffing Oscillator with no linear term and when linearity is 

Fig. A and B: Duffing Oscillator with positive and negative 

effects on earthquake occurrence as the positivity helps to reduce the tremor. Negative 

damping factor increases its chaotic behaviour.
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In this section, we would give some numerical values to the parameters of the Duffing equation whose solution was 
derived in (18) above. These approximating values will make the solution be in form of a polynomial. We take two 

and 0.5ω =  then, the solution (18) becomes  

1 2 3 4 5
0.28079 0.03861 0.03812ξ ξ ξ ξ ξ= + − − +      

2, 0.1, 2, 3 and 1.2ω = , then, the solution (18) becomes 

1 2 3 4 5
0.00389 0.00125 0.00832ξ ξ ξ ξ ξ= − − − +      

NUMERICAL SIMULATIONS AND INTERPRETATIONS 
We show the numerical simulations of the behaviour of the damped Duffing oscillator which was obtained by the use 
of the Galerkin finite element techniques. Using MATLAB ODE 45 package, we show in figures below, t

, and the amount of nonlinearity β even at steady state and variation in size of 

 

Fig. C and D: Duffing Oscillator with no linear term and when linearity is less than 1.

Fig. A and B: Duffing Oscillator with positive and negative damping factor. The damping has 

effects on earthquake occurrence as the positivity helps to reduce the tremor. Negative 

damping factor increases its chaotic behaviour. 
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In this section, we would give some numerical values to the parameters of the Duffing equation whose solution was 
derived in (18) above. These approximating values will make the solution be in form of a polynomial. We take two 

(19) 

(20) 

We show the numerical simulations of the behaviour of the damped Duffing oscillator which was obtained by the use 
of the Galerkin finite element techniques. Using MATLAB ODE 45 package, we show in figures below, the effects of 

even at steady state and variation in size of 
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damping factor. The damping has 

effects on earthquake occurrence as the positivity helps to reduce the tremor. Negative 
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CONCLUSION 
 
In this research, we have applied the use of the Finite Element 
Method to solving the Duffing Equation of ground motion. The 
FEM has been seen as a powerful tool for solving nonlinear 
dynamic problems which have no definite analytical solution. 
This method gave us a promising iterative result that such 
equation can be reduced to a polynomial. 
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Fig. E and F: Duffing Oscillator with positive and negative stiffness gives no change. 
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