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ABSTRACT 

 
In this paper, the concept of the class of �-Real power positive operators on a hilbert space defined by 
Abdelkader Benali in �1	 is generalized when an additional semi-inner product is considered. This new concept is 

described by means of oblique projections. For a Hilbert space operator 
 ∈ ��
� is ��, ��-Real power positive 

operators for some positive operator � and for some positive integer � if  

 
� + 
♯� ≥� 0, � = 1,2, . . .. 
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1 INTRODUCTION  
 
A bounded linear operator 
 on a complex Hilbert 

space is �-Real power positive operators if 
� + 
♯� ≥0. The class of ��, �� –power positive operators was 

introduced and studied by Sidi Hamidou Jah see �16	, 
from the definition, it is easily seen that this class 
contains power positive operators, in �12	 the authors 

O.A. Mahmoud Sid Ahmed introduced the class � – 

power quasi normal operators and study some 
properties of such class for different values of the 
parameter �. In �1	 we introduce a new class of 

operators 
 namely n-real power positive operator 

denoted by ��ℛ�	satisfying 
� + 
∗� ≥ 0, for � =1,2,3, . ... 
The purpose of this paper is to study the class of ��, ��-Real power positive operators in semi-hilbertian 

spaces, denoted by ��ℛ�	�. 

 
2  ��, ��-REAL POWER POSITIVE OPERATORS  
 

Definition 2.1 For � ∈ ℕ, an operator 
 ∈ ℒ�
� is said to be ��, ��-real power positive operator if 
� + 
♯� ≥� 0 or 

equivalenty ��
� + 
♯�� ≥ 0. 

 
Proposition 2.1 Let 
 ∈ ℬ��ℋ� and � ∈ ℕ the following properties hold  

(1)  if 
 ∈ ��ℛ�	� then so 
♯. 
(2)  
 ∈ ��ℛ�	� if and only if "#$
�%  |  %( ≥� 0    ∀    % ∈ ℋ. 
(3)  If 
 is invertible then 
 ∈ ��ℛ�	� if and only if 
*+ ∈ ��ℛ�	�. 
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Proof. (1) Obvious from the definition 2.1. 
(2)  In fact, it is well known that  
 ∈ ��ℛ�	� ⟺ 
� + 
♯� ≥� 0 ⟺ -�
� + 
♯��%  |  %.� ≥ 0      ∀    % ∈ ℋ 

                                              ⟺ $
�%  |  %(� + $
∗�%  |  %(� ≥ 0      ∀    % ∈ ℋ 
                                              ⟺ $
�%  |  %(� + $%  |
�%(� ≥ 0      ∀    % ∈ ℋ 

                                              ⟺ $
�%  |  %(� + $
�%  |  %(� ≥ 0      ∀    % ∈ ℋ 

                                              ⟺ 2"#$
�%  |  %(� ≥� 0. 
  
 
(3)Assume that 
 is invertible and 
 ∈ ��ℛ�	� we have   "#$
�%  |  %( ≥� 0    ∀    % ∈ ℋ. It follows that for all % ∈ ℋ, 0 ≤ "#$
�
*�%  |
*�%(� = "#$%  |
*�%(� = "#$
*�%  |  %(� = "#$
*�%  |  %(�. 
Hence 
*+ ∈ ��ℛ�	�. The converse is obvious. 
The following examples show that the two classes ��ℛ�	� and ��� + 1�ℛ�	� are not the same.  
 

Example 2.1 Let 
 = 01 01 1 1 , � = 00 −11 0 1 ∈ ℬ�ℂ4�.  A simple computation shows that  

 
♯ = 01 0−1 1 1      5�6     
� + 
♯� = � 01 00 1 1. 
For all �7, 8� ∈ ℂ4 we have  

 9�
� + 
♯�� :78 ; | :78 ;<� = 0 ≥� 0. 
 So 
 ∈ ��ℛ�	�. 
 

Example 2.2 Let 
 = =1 1 10 0 00 0 0 > , � = =1 0 00 1 00 0 1 > ∈ ℬ�ℂ?�. It is easy to see that 
 ∉ ��ℛ�	� for all � =
1,2, . . .. 
 

Example 2.3 Let 
 = 01 1−1 1 1 , � = 01 −11 1 1 ∈ ℬ�ℂ4�. A simple computation shows that  

 
♯ = 01 −11 1 1 , 
4 + 
♯4 = 00 00 0 1      5�6     
? + 
♯? = 4 0−1 00 −11. 
For all �7, 8� ∈ ℂ4 we have  

 9�
4 + 
♯4� :78 ; | :78 ;<� = 0 ≥� 0. 
Hence 
 ∈ �2ℛ�	�. 
 
On the other hand  

 9�
? + 
♯?� :78 ; | :78 ;<� = −74 − 84 ≤� 0. 
 So 
 ∉ �3ℛ�	�. 
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Proposition 2.2 If B, 
 ∈ ���
� are unitarily equivalent and if 
 is (A-�)-real power positive operators then so is B. 
 

Proof. Let T be an (A-n)-real power positive operator and S be unitary equivalent of T. Then there exists unitary 

operator F such that B = F
F♯ so B� = F
�F♯ 
We have  

 
 ∈ ��ℛ�	� ⟺ 
� + 
♯� ≥� 0 ⟺ �
� + 
♯��F♯ ≥� 0 

                         ⟺ F�
� + 
♯��F♯ ≥� 0 

                         ⟺ F
�F♯ + F
♯�F♯ ≥� 0 

           ⟺ B� + B♯� ≥� 0 

           ⟺ B ∈ ��ℛ�	� 
 

Theorem 2.1 Let 
, B ∈ ��ℛ�	� such that 
GB = −BG
 for H = 1,2, . . . , � − 1 with � ≥ 2, then 
 + B ∈ ��ℛ�	�. 
Proof. From the hypothesis it is clear that �
 + B�� = 
� + B� and so that  

 �
 + B�� + �
♯ + B♯�� = 
� + 
♯�IJJKJJLMNO + B� + B♯�IJJKJJLMNO ≥� 0. 
 
Lemma 2.1 Let 
, B ∈ ℬ�ℋ� such that 
 ≥� B and let " ∈ ℬ��ℋ�. Then the following properties hold  

(1)  "♯
" ≥� "♯B". 
(2)  "
"♯ ≥� "B"♯. 
(3) If " is �-selfadjoint then "
" ≥� "B". 
 

Proposition 2.3 If 
 ∈ ��ℛ�	� is such that 
♯
4 = 
4
♯ then 
♯
4 ∈ ��ℛ�	�. 
Proof. Since 
 ∈ ��ℛ�	� we have by Lemma 3.1 that  

 
� + 
♯� ≥� 0 ⟹ 
♯�
�
� + 
♯4�
� ≥� 0 

                              ⟹ �
♯
4�� + �
♯4
�� ≥� 0� QR�S#       
♯
4 = 
4
♯� 

                              ⟹ �
♯
4�� + �
♯
4�♯� ≥� 0. 
Hence 
♯
4 ∈ ��ℛ�	� as required.  
 

Proposition 2.4 Let 
 ∈ ℬ��ℋ�. Consider T = 
�*+ + 
♯ and U = 
�*+ − 
♯ for � ∈ ℕ. If 
 is normal then the 
following equivalence holds  

 
 ∈ ��ℛ�	�       RV  5�6  W�XY  RV       TT♯ ≥� UU♯. 
 

Proof. Since 
 is normal we have  

 TT♯ − UU♯ = �
�*+ + 
♯��
♯�*+ + 
� − �
�*+ − 
♯��
♯�*+ − 
� 

                       = 
� + 
♯�. 
 From which it follows that  

 
 ∈ ��ℛ�	� ⟺ 
� + 
♯� ≥� 0 ⟺ TT♯ − UU♯ ≥� 0. 
 

Proposition 2.5 Let 
 ∈ ℬ��ℋ�. 
(1)  If 
 is almost subprojection, then  

 
 ∈ �2ℛ�	�       RV  5�6  W�XY  RV     
 ∈ �4ℛ�	�. 
(2) If 
 is idempotent, then  

 
 ∈ �ℛ�	�       RV  5�6  W�XY  RV     
 ∈ ��ℛ�	�. 
 

Proof. (1)  T is almost subprojection, TZ = T♯4 for all x ∈ ℋ (see �4	) we have  "#$
4%  |  %(� = "#-
♯Z%  |  %.� = "#$%  |
Z%(� = "#$
Z%  |  %(� = "#$
Z%  |  %(� 

So  
 
 ∈ �2ℛ�	� ≥ 0 ⟺ 
 ∈ �4ℛ�	� ≥ 0. 
 (2) Since 
 is idempotent we have 
 = 
4 =. . . = 
� and so that  

 
� + 
♯� = 
 + 
♯. 
Hence the desired result. 
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The following examples show that an operator 
 ∈ ��ℛ�	� need not be almost subprojection and vice versa.  
 

Example 2.4 Let $ = 01 0

0 2 1      $$$     $ = 01 0

0 1 1 be an operator acting in two- dimensional complex 

Hilbert space. then $ ∈ �$$$	$ for all $ ∈ $. Now, by direct calculation $4 = 01 0

0 16 1 ≠ 01 0

0 4 1 =
$♯2 
 
Theorem 2.2 Let $, $ ∈ $$�$� such that $$ = $$ = $ + $. If $ and $ are in �$$$	$ for $ = 1,2, . . . , $ ,then 

$$ ∈ �$$$	$.  
 

Proof. For $ = 1 . Assume that $ and $ are in �??	$. We have  

 $$ + �$$�♯ = $ + $♯ + $ + $♯ ≥$ 0 
and so $$ ∈ �??	$. 
 
For $ = 2 . Assume that $ and $ are in �$??	$ for $ = 1,2. We have  

 �$$�2 + �$$�♯2 = �$ + $�2 + �$♯ + $♯�2 

                               = $2 + 2$$ + $2 + $♯2 + 2$♯$♯ + $♯2 

                               = $2 + $♯2IJJKJJLM$0

+ 2 �$$ + �$$�♯�IJJJJKJJJJLM$0

+ $2 + $♯2IJJKJJLM$0

 

and so $$ ∈ �2??	$. Assume that this result is true for $ − 1 and we prove it for $. Let $ and $ be in �$??	$ for 

$ = 1,2, . . . , $. Since $$ = $$ = $ + $ we have �$$�$ + �$$�∗$ = �$ + $�$ + �$♯ + $♯�$ 

   = $$ + $♯$ + ∑  1^$^$*1 _$

$
` �$$$$*$ + $♯$$♯$*$� + $$ + $♯$. 

 

It suffice to prove under the assumptions that $$$$*$ + $♯$$♯$*$ ≥$ 0,for $ = 1,2, . . . , $ − 1. 
 
For $ = 1 we have  

 $$$*1 + $♯$♯$*1 = $$$$*2 + $♯$♯$♯$*2 

                                   = �$ + $�$$*2 + �$♯ + $♯�$♯$*2 

                                   = $$$*2 + $♯$♯$*2 + $$*1 + $♯$*1IJJJKJJJLM$0

 

                                   = $$$$*3 + $♯$♯$♯$*3 + $$*1 + $♯$*1IJJJKJJJLM$0

 

                                  = $$$*3 + $♯$♯$*3 + $$*2 + $♯$*2IJJJKJJJLM$0

+ $$*1 + $♯$*1IJJJKJJJLM$0

 

                                  = ⋯        …        … 

                                 = ∑  1^$^$*1 �$$ + $♯$IJJKJJLM$0

+ $$ + $♯$IJJKJJLM$0

�. 
For $ = 2 we have  

$2$$*2 + $♯2$♯$*2 = $$$$$*3 + $♯$♯$♯$♯$*3 

          = $2$$*3 + $$$*2 + $♯2$∗$*3 + $♯$♯$*2 

          = $2$$*4 + $$$*3 + $$$*2 + $♯2$♯$*4 + $♯$♯$*3 + $♯$♯$*2 

          = $2$$*5 + $$$*4 + $$$*3 + $$$*2 +$♯2$♯$*5 + $♯$♯$*4 + $♯$♯$*3 + $♯$♯$*2 

          = ⋯        …        …        … 

          = �$$�2 + �$$�♯2 + ∑  1^$^$*2 �$$$ + 
♯B♯G�. 
 A simple calculation shows that  

 
BG + 
♯B♯G = 
 + 
♯ + ∑  +^c^G �Bc + B♯c�. 
We deduce that 
4B�*4 + 
♯4B♯�*4                       = �
B�4 + �
B�♯4 + d  +^G^�*4 �
 + 
♯ + d  +^c^G �Bc + B♯c�� ≥� 0. 
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Same way for e = 3, . . . . , � − 1. Hence �
B�� + �
B�♯� ≥� 0 as required.  
 

Example 2.5 Let B = 
 = =1 1 11 1 11 1 1 > , � = =1 0 00 1 00 0 1 >. it is easy to see that 
 ∈ �Hℛ�	� for H = 1,2, . . . , � 

and 
B ∈ ��ℛ�	�. 
The following example shows that Theorem 2.3 is not necessarily true if $$ ≠ $ + $. 
 
 
 

Example 2.6 Let $ = 01 1

1 1 1 , $ = 01 0

0 1 1 and $ = 01 1−1 1 1. We have $ and $ in �ℛ$	$,$$ ≠ $ + $ and 

$$ ∉ �2ℛ$	$. 
 
Proposition 2.6 Let $, $ ∈ ℬ$�ℋ�. If $ ∈ �$ℛ$	$ and $ is unitary equivalent to $, then $ ∈ �$ℛ$	$ .  
 
Proof. By assumption, there is a unitary equivalent operator U ∈ ℬg�ℋ� such that S = U*+TU, which implies that  

 $♯ = $♯$♯�$*1�♯ = $♯$♯�$♯�*1. 
Thus we have  

       $$ = $*1$$$*1$$. . . $*1$$ = $*1$$$ 
 

             −$♯$ = −$♯$♯�$♯�*1. . . $♯$♯�$♯�*1 

                            = −$♯$♯$�$♯�*1. 
 

Since $ is A-unitary and using the fact that $$ ≥$− $♯$ we conclude that  

 $*1$$$ ≥$− F♯$♯$�$♯�*1. 
Thus $$ ≥$− $♯$. 
 
Theorem 2.3 Let $ ∈ $$�$� the following properties hold  

(1)  If $$ is unitary equivalent to $♯$*1 then  
 $ ∈ �$??	$ ⟺ $ ∈ ��$ − 1�??	$, $ = 2,3, . . .. 
(2)  If $$ is unitary equivalent to $♯$*1 for $ = 1. . . . . $ then  
 $ ∈ �$??	$ ⟺ $ ∈ �??	$, $ = 2,3, . . .. 
 

Proof. (1) From the hypothesis there exists an operator U ∈ ℬg�ℋ�: U♯U = UU♯ = Pℛ�g� such that Tj = $♯$♯$*1$. 
Firstly, assume that $ ∈ �$??	$, it follows that  

 $$ + $♯$ ≥$ 0 ⟹ $♯$♯$*1$ + $♯$$*1$ ≥$ 0 ⟹ $♯�$$*1 + $♯$*1�$ ≥$ 0. 
By Lemma 2.1, we deduce that $$*1 + $♯$*1 ≥$ 0 and hence $ ∈ ��$ − 1�??	$. 
Conversely, assume that $ ∈ ��$ − 1�??	$. We have by Lemma 2.1  

 $$*1 + $♯$*1 ≥$ 0 ⟹ $♯�$$*1 + $♯$*1�$ ≥$ 0 ⟹ $$ + $♯$ ≥$ 0. 
Hence $ ∈ �$??	$. 
(2) From the hypothesis we have  

 $$ = $$
♯ $♯$*1$$     $$$     $ = 1,2, . . . . , $. 

If we assume that $ ∈ �$??	$ we have from (1) that $ ∈ ��$ − 1�??	$. Repeating the process with $ ∈ ��$ −
1�??	$ we obtain that $ ∈ ��$ − 2�??	$. Hence the following implications hold  

 $ ∈ �$??	$ ⟹ $ ∈ ��$ − 1�??	$ ⟹ $ ∈ ��$ − 2�??	$ ⟹. . . $ ∈ �2??	$ ⟹ $ ∈ �??	$. 
Conversely, assume that $ ∈ �??	. By Lemma 2.1 we obtain  

 $2 + $♯2 = $2
♯�$ + $♯�$2 ≥$ 0 ⟹ $ ∈ �2??	$. 

Also  

 $3 + $♯3 = $3
♯�$2 + $♯2�$3 ≥$ 0 ⟹ $ ∈ �3??	$. 
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Repeating the process we obtain  

 $$ + $♯$ = $$
♯ �$$*1 + $♯$*1�$$ ≥$ 0 ⟹ $ ∈ �$??	$. 

This completes the proof.  
 

Proposition 2.7 If $ ∈ �$$$	$ is such that $♯$2 = $2$♯ then $♯$2 ∈ �$$$	$. 
Proof. Since T ∈ �nℛ�	g we have by Lemma 2.1 that  

$$ + $♯$ ≥$ 0 ⟹ $♯$$$$$ + $♯2$$$ ≥$ 0 

                                   ⟹ �$♯$2�$ + �$♯2$�$ ≥$ 0� $$$$$       $♯$2 = $2$♯� 

                                         ⟹ �$♯$2�$ + �$♯$2�♯$ ≥$ 0. 
Hence $♯$2 ∈ �$??	$ as required.  
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