
 DOI: https://dx.doi.org/10.4314/gjpas.v24i2.11

GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 24, 2018: 215-222
COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA ISSN 1118-0579

www.globaljournalseries.com, Email: info@globaljournalseries.com
PHEROMONE DEPOSITION/UPDATING STRATEGY IN A NETWORK:
USING ANT COLONY OPTIMIZATION (ACO) APPROACH

 FELIX U. OGBAN AND ROY NENTUI

 (Received 24 September 2018; Revision Accepted 26 October 2018)

ABSTRACT

The study and understanding of the social behavior of insects has contributed to the definition of some algorithms that
are capable of solving several types of optimization problems. The most important and challenging problems that the
ants encounters when routing through a network arc, is their ability to searching for the path with a shorter length as
well as to minimize the total cost incurred in the process of routing through the network. In this paper, we introduced
some features to the existing Ant Colony Optimization (ACO) algorithm to help tackle this problem. First, we defined
two kinds of pheromone and then we also defined three kinds of heuristic information to guide the searching direction
of ants for this bi-criteria problem. Each of the ants uses the heuristic types and the pheromone types in each iteration
based on the probability, controlled by two parameters. These two parameters are adaptively adjusted in the process
of the algorithm. Second, we used the information of the partial solutions to modify the bias of ants so that inferior
choices will be ignored. Finally, we tested the performance of the experimental results of the algorithm in an
application under different Deadline constraints and the performance of the algorithm prove to be more promising, for
it outperformed the performance of most of the algorithm we downloaded on line.

KEYWORDS: Ant Colony Optimization algorithm, Pheromone Deposition, Pheromone Updating strategy, Cost
 Minimization, Network Routing, Optimization problem.
 *Corresponding Author

INTRODUCTION

The application of an Ant Colony Optimization (ACO)
algorithm to a specific problem usually requires some
customization of the method. Ranging from simple
parameter specification to a more delicate problem
modification, such as the design of operators or
searching strategy. This is a crucial step for the success
of the optimization (Runka, 2009). As one aims at
maintaining the ability of the algorithm to perform a robust
exploration of the search space (Ogban, Asagba and
Owolabi, 2014), while granting it some specific
information that helps to efficiently discover good and
quality solution for a given problem.
Ant colony optimization (ACO) algorithm draws its
inspiration from pheromone-based strategies of the
foraging process of ants. Initially, it was conceived to find
the shortest path, soon after it was applied to different
types of combinatorial optimization problems (Dorigo and
Stuzle, 2004). Example of such situations addressed
includes both static and dynamic variants of academic
and real world problems. Usually, the problem is mapped
into a fully connected graph. When seeking for a solution,
the ants deposit pheromone while traveling across the
graph edges, thus creating a virtual trail (Diosan and
Oltean, 2009). A solution to the given problem will
emerge from the interaction and cooperation that is made
by the ants.

In this paper, we propose a framework to discover the
effectiveness of the pheromone updating strategies for
Ant Colony Optimization (ACO) algorithm. In the
approach, the algorithm seeks to fine candidate solutions
that can be used by the Ant Colony Optimization (ACO)
algorithm to apply the Travelling Salesman Problem
(TSP) (Diosan and Oltean, 2006). We will also use
different instances to access the effectiveness of the
proposed approach.
Finally, this paper is structured as follows: In section 2, a
general description of an Ant Colony Optimization (ACO)
algorithm was presented. Section 3 presents a detailed
synopsis of the system used by ants deposit pheromone
and the updating strategies. Section 4 reports the
experimental results and analysis. Finally, section 5
summarizes and conclusion and highlight future work.

PROBLEM DEFINITION/FORMULATION

Generally speaking, network flow application can be
modeled as a Direct Acyclic Graph (DAG), G = (N, A). Let
n be the number of nodes in the network with the set of
nodes given as N = (n1, n2… nm) corresponding to the
nodes on the network. And the set of arcs A represents
precedence relations. And the arc is written in the form of
(ni, nj), where ni is called the parent node of ni, and nj and
nj is called the child node of ni. Typically, a child node in a

 215

 Felix U. Ogban, Department of Computer Science Faculty of Physical Sciences University of Calabar, Nigeria.
 Roy Nentui, Department of Computer Science Faculty of Physical Sciences University of Calabar, Nigeria.

© 2018 Bachudo Science Co. Ltd. This work is licensed under Creative Commons Attribution 4.0 International license.

network cannot be executed until the execution of its
parent node has been completed. The set of parent node
of ni is denoted as pred (ni), and the set of the child node
is denoted as succ (ni). A very good example of a
network flow described by a Direct Acyclic Graph (DAG)
is given in figure (1).
For the sake of convenience, we have added to the
Direct Acyclic Graph (DAG) nstart to represent the start
node and nend to represent the end node. Also, for all ni,
1≤ i ≤ mt is given, if an only if pred (ni) is empty. We also
added ni to all succ(nstart), so that pred(ni) = {nstart}.
Similarly, anywhere we see succ(ni) empty, we added ni
to pred(nend), so that succ(ni) = {nend}.
Furthermore, each node ni (1≤i≤n) has an implementation
domain ni = {npi

1
, npi

2
… npim} where npji (1≤j≤mt)

represents the node implementation and mi is the total
number of available nodes implemented by ni. Also,
denoted the total cost incurred in the process of npi

j
as ci

j
.

Finally, the objective function of the scheduling problem
is to find an optimal schedule {k1,….,km}, which means
that ni is being executed by npi

kt
 (1≤i≤n), so that the total

cost of the network flow incurred in the process is
minimized as described in equation (1)

Minimized cost =

n
∑ c���
i = 1

 (1)

Moreover, the end time of the whole network flow must
not be later than the given deadline constraint (D). For
(D) is the deadline constraint required for use.

ANT COLONY OPTIMIZATION (ACO) ALGORITHM
FOR NODE CONNECTION PROBLEM

The general idea of Ant Colony Optimization (ACO)
algorithm is to simulate the foraging behavior of real ant
colonies. When a group of ants set out from their nest to
search for food, they deposit some chemical substance
called pheromone on the path to their food source. By
sensing this pheromone on the ground, other ants from
the same colony can follow the path to food source
discovered by the ants (Oltean, 2005). As this process
continues, most of the ants tend to choose the path to
food with the shorter distance knowing that there have
been huge amounts of pheromone accumulated on the
path. This collective pheromone deposition and
pheromone following behavior of ants becomes the

inspiring source of Ant Colony Optimization (ACO)
algorithm. (Runka, 2009)
In this paper, we applied the Ant System (AS) algorithm
which is the first Ant Colony Optimization (ACO)
algorithm developed to tackle network flow problem.
Informally, the algorithm can be viewed as interplay of the
following procedure:
(i) Initialization of the algorithm. All pheromone
values are parameterized and initialized.
(ii) Initialization of ants. Let us assume that groups
of M ants are used in the algorithm. At the beginning of
each of the iteration, all the ants are set to an initial state,
and each ant chooses a constructive type (say forward or
backward) and a heuristic type (say duration – greedy,
cost – greedy or overall – greedy), based on the
constructive type. Each of the ants builds its tackling
sequence accordingly.
(iii) Solution construction. M group of ants are set
to build M solution to the problem and the construction
procedure includes n steps. N is the number of nodes in
the network. At each step, an ant will pick up the next
node in its tackling sequence and map it to one
implementation outside the node implementation domain
using pheromone and heuristic information (Poli, and
McPhee, 2008). The algorithm also estimates the earliest
start time and the earliest end time in terms of the
information of partial solution built by each ant. This
information is what helps to guide the ant in its searching
behavior.
(iv) Local Pheromone Updating. As soon as an ant
finish mapping a node ni to npi

j
, the corresponding

pheromone value is updated by a local pheromone
updating rule.
(v) Global Pheromone Update. After all the ants have
completed their construction, the global pheromone
updating is applied to the best-so-far solution. The
completion search time and the total cost of all the
solutions are being evaluated and the pheromones that
are related to the best-so-far solution is significantly
increased. But in this case, some parameters are
adaptively adjusted.
(vi) Terminal Test. If the test is passed, the
algorithm will end. Otherwise, the algorithm will step up to
begin a new iteration.

The flowchart of the algorithm is given in figure (1).

216 FELIX U. OGBAN AND ROY NENTUI

Begin

Initialization of the algorithm

Initialize all ants

Step = 1

Selection of each ant

Local update

Step = step+1

Step< = n?

Iteration<=MAX? Evaluation

Global updating

Return the best

schedule

Yes

No

Yes

Fig. 1: The flowchart of the Ant System (AS) algorithm

PHEROMONEDE POSITION/UPDATING STRATEGY IN A NETWORK: USING ANT COLONY 217

(vii) Definition of Pheromone and Heuristic information

The problem considered is a bi-criteria problem. Therefore, it requires two types of pheromone to be used in solving
the problem. One of the pheromone quantities is used for road mapping (path creation) and the other pheromone

quantity is used to check the time spent (duration). We denote these two types of pheromone as c�ij and d�ij(1≤ i ≤ n,
1≤ j ≤ m1). While, initializing the algorithm, all pheromone values are initialized. That is,

c�ij= d�ij, d�ij= d�o, (1≤i≤n, 1≤j≤m1) (2)

where c�ijand d�ij are two parameters representing the initial values for c�ij and d�ij respectively. Similar to the Ant

Colony System (ACS) for Traveling Salesman Problem (TSP), we set c�o= 1(n. c
LB

) and d�o = 1(n.d
LB

). Note that c
LB

and d

LB
 are the lower bound estimation for the total cost respectively. Typically, c

LB
 can be set to the total cost when

every service is set to its lowest-cost implementation and d can be set to the duration. So we have

 c�o=1/(n.

n
∑�min������ c� �

i = 1
� (3)

 d�o=1/(n.d) (4)

Note: the heuristic information for road mapping (path creation) service si to spi
j
is denoted as ηij. Finally, we used

three different kinds of heuristic information to guide the searching direction of ants namely: duration-greedy, cost-
greedy and overall-greedy. However, the definition is given below

ηij =

1
d�

� if selection type = duration � greedy!

1 c�� if selection type = cost � greedy "
1 c��. d�

� if selection type = overall � greedy!
 (5)

Following this definition, duration–greedy heuristic bias the implementation with the shortest execution time, Cost–
greedy heuristic prefers the length with low-cost and the overall-greedy considers the both factors.

(viii) Initialization of Ants
At the beginning of each iteration, all ants are initialized and each ant chooses its type from any of the selection rule.
Either from duration-greedy, cost-greedy or from the overall-greedy according to equation (6)

Selection type =

duration � greedy, 0 ' ran ' p�
cost � greedy, p� ' ran ' p(
overall � greedy, p(' ran ' 1

 (6)

Where p1 and p2 (�0) p� ' p() 1� are two parameters and ran∊ [0, 1] is a random number. Apparently, the
probabilities of choosing duration-greedy, cost-greedy, and the overall greedy are p1, (p2,-p1) and (1-p2) respectively.
The selection type of an ant is corresponding to the type of heuristic information it used while constructing a solution.
Furthermore, each ant has to select its constructive type of solution randomly (from either the forward or the backward
ants) and builds its sequence of services. The tackling sequence is built following a simple illustration of a network
flow application with 9 tasks is given below.

Fig.2: A simple illustration of a network flow application with 9 tasks.

Also, forward ant begins from the start nodestart and applies a random depth-first search to orderly connect all the
nodes. For example, the possible sequence build by a forward ant in e-Economic workflow given by fig. 2 are
(n1.n2.n4.n7.n9.n5.n3.n6.n8), (n1.n2.n5.n7.n9.n4.n3.n6.n8), (n1.n3.n6.n8.n9.n2.n4.n7.n5) and
(n1.n3.n6.n8.n9.n2.n5.n7.n4), similarly, a backward ant begin its searching from the end node and uses a random
backward depth-first search to orderly connect the nodes. The possible sequence build by the backward ant in the
above example are (n9.n7.n4.n2.n1.n5.n8.n6.n3), (n9.n7.n5.n2.n1.n4.n8.n6.n3) (n9.n8.n6.n3.n1.n7.5n.n2.n4) and
(n9.n8.n6.n3.n1.n7.n4.n2.n5)
The reason for using a depth-first search scheme is the information of the partial solutions (that is the earliest start

n1

n7

n9

n8 n3
n6

n5

n4

n2

218 FELIX U. OGBAN AND ROY NENTUI

probabilities of selecting inferior components. The reason for constructing the tackling sequences from both sides
(forward and backward) is to diminish the influence exerted by the relative order of nodes.

(ix) Solution Construction

After initialization, M ants set out to build solutions to the problem in a parallel order according to their tackling
sequence. In step k (1.k.n), each ant picks up the k

th
 node from its tackling sequence and map it for an implementation

out of the node implementation domain. Assume that an ant is choosing one node out of spi={spi
1
, spi

2
 spi

3
,……spi

m
}

to map to si, the selection rule is as follow:
Step 2: Evaluate the overall bias desirability of all implementation in terms of equation (6)

Bij =

�dΤ���, -η��. ,β η�� = 1
d�

�"
if the selection type of ant is duration � greedy;

�cΤ���, 1cΤ��2,β η�� = 1 c��"
if the selection type of ant is cost � gree dy;

�cΤ���, 1cΤ��2,β η�� = 1 1c�� . d�
�2,!

if the selection type of the ant is overall � greedy;

 (7)

Where Bij represents the bias mapping of ni to npij(1≤j≤mi;)and are two parameters that determine the weight of the
pheromone and the heuristic information respectively.
Step 2: Adapt the values of Bij in terms of the information gotten from the partial solution. The earliest start time and
the earliest end time of the node can be estimated for the current partial solution build by an ant. We denote the
earliest start time of ni as ni.est and the earliest end time of ni as ni.eet. As the tackling sequence is built by depth-first
search, it guarantees that a node is only considered by a forward ant until one of its parent nodes is considered.
Similarly, a node is only considered by a backward ant until one of its child node is considered. We present a clear
discussion of the situation with forward ant in the following text. However, the situation with the backward ant comes
when regarding all parent nodes as child nodes and when regarding all children nodes as parent node.
Therefore, the forward ant which is considered as ni ni.est can be estimated as follow

ni.est = maxnk∊pred (nt) nk.eet (8)
For example, a forward ant uses the sequence of (n1. n2.n4.n7.n9.n5.n3.n6.n8) to build a solution for the workflow
given in figure 2. After mapping all the nodes of the first branch, (n1.n2.n4.n7.n9) to create a corresponding
implementation, we can then estimate n2.est = n1.eet, n4.est = n2.eet, n7.est = n4.eet, n9.est = n7.eet. Also, when
considering the next node n5, we have n5.est = n2eet. On the other hand, it is also important to know that sometimes
the earliest start time for the child node of ni may also have been estimated. For instance, when considering n5 in the
same example given in the last paragraph written as n7.est (n7 will be the son of n5) because it has already been
estimated. However, because the available time slot for n5 is limited by n2.eet and n7.est. We can then define slot as

Sloti =

undi3ined, if ⩝ ni ∊ succ n�
nk. est has not been evaluated
�min7� ∈ 9:;;.�7��<7= 7�.>9� ?<9 @>>7 >A<B:<�>= nk. est� � ni. est

otherwise
 (9)

Based on this definition, if ni is mapped to spi
j
 to satisfy di

j
> sloti, then si.eet = si.est + di

j
 will be larger than at least one

of its child’s estimated earliest start time. In this situation, the estimated earliest start time for all the child node of ni
must be updated to be at least not smaller than ni.est. Otherwise, for all the implementations that will satisfy di

j
 ≤ sloti,

will only be successful with the one with the lowest cost because all other choices will result to a higher cost solution
with the same path created. Therefore, the ants will ignore these inferior choices by modifying the preferences Bi

j

using equation (10)

Bij =

B��,
if d�

� > slot� or slot� = udi3ined
∑ B��

∀ np�� 1d�� ' slot�2
if d�

� ' slot� and c�
� = min∀ 7GHI 1=HI � 9BJ�H2 c��

o
if d�

� ' slot� and c�
� min∀ 7GHI 1=HI � 9BJ�H2 c��

 (10)

Step 3: An ant selects one implementation out of the following implementation
Spi = {spi

1
, spi

2
…spi

m
} and map it to si in terms of the following selection rule:

ni=
arg max∀7GH ������L�" B��, if q ' qN

routlette wheel scheme, otherwwise
 (11)

pi
j

=
OHP

∑
�L
OHI
�Q�

 (12)

PHEROMONEDE POSITION/UPDATING STRATEGY IN A NETWORK: USING ANT COLONY 219

equation (11) shows the pseudo random proportion selection rule. In this rule, a random number q∊[0.1] is generated

and is compared to a parameter qo(q0∊[0,1]). Only if q≤q0, that the implementation spi
j
 with the largest value of Bi

j
 is

chosen. Otherwise, a roulette wheel scheme is used. Also, the probability of mapping ni to npi
j
 is given by equation

(12). In other words, the probability of selecting npi
j
 is directly proportional to the value Bi

j

(x) Local Pheromone Updating
 Immediately after an ant maps npi

j
 to ni, local pheromone updating procedure is implemented. The updating

rule is given by equation (13)

dΤ�� = �1 � γ� . dΤ�� + γ . dΤN,
if selection type is duration � greedy;

cΤ�� = �1 � γ� . cΤ�� + γ . cΤN,
otherwise

 (13)

Where T∊ [0,1] is a parameter value. The function of local pheromone update is to decrease the pheromone value
corresponding to spi

j
 so that the following ants will have a higher probability to choose other implementation. Also,

Local pheromone updating procedure enhances the diversity of the algorithm

(xi) Global pheromone updating

Global pheromone updating takes place after all the ants have built their solutions. Global pheromone updating only
applies to the components on the best-so-far solution (Tavares and Pereira, 2006). Assume that the best-so-far
solution is {k1, k2,…..,kn}, which means that ni is being executed by spi

k1
 (1≤i≤n). the cost and searching space of the

best-so-far solution is denoted as cost
bs

 and search space
bs

. Hence, the global pheromone updating rule is given by
equation (14)

Setting of parameters and characteristics of the algorithm

The parameters of the algorithm are set apriory as follows: The weight of pheromone and the heuristic information in

equation (14) are set to U=1 and β=0.45, the probability of setting the implementation with the largest value is qo=0.8.

 P�,� = [XH,P]Z.[7H,P][
∑ \] H,P [XH,P]Z.[7H,P][(14)

Local pheromone updating rate is set at pL=0.1, Global pheromone updating rate PG = 0.1. In all the experiment, the
total iteration number is set to 200 and the number of ants is set at the range of 100 - 500. We configured these
parameters basically according to the Ant Colony System (ACS). The experimental result shows that these results still
have good performance.

Table.1. Performance Comparison of the best solution between the strategies, with 200 iterations

Strategies Iteration Best Tour
Length

Mean Best
Fitness

Deviation Branching

AS 200 198.00 159.10 7.46 5.25
EAS 200 199.72 147.37 9.76 3.54
RANK-BASE 200 189.40 146.17 8.83 2.77
MIN-MAX 200 199.00 143.00 9.50 2.50
DANTE 200 200.00 145.70 10.58 2.95

We compared the approach we proposed with other algorithms to tackle the routing problems. First, the algorithm
works by dividing the Direct Acyclic Graph (DAG) into partitions and distribute sub-deadline to each partitions. The
decision process is applied to find the best solution.

220 FELIX U. OGBAN AND ROY NENTUI

Figure 3: Mean Comparison for five different strategies at 200 iterations.

A clearer picture in fig. 4 of the closeness between the RANK-BASE strategy and the DANTE with respect to their
Mean Best fitness and a slim variation from that of Min-Max is shwon.

Figure 4: Best Tour Length and Mean Best Fitness compared.
The result obtained in the network flow application as illustrated in figures 3 and 4, can be seen that the performance
of the algorithm outperformed other algorithm proposed in the literature. The result obtained was able to meet the
deadline constraints and was able to make good use of the time to minimize cost.

REFERENCES

Diosan, L., and Oltean, M., 2009 Evolutionary design of
 evolutionary algorithm. Genetic programming
 and Evolving Machines (10) 263 – 306

Diosan, L., and Oltean, M., 2006 Evolving the structure
 of the particular swarm Optimization algorithms.
 In: EVOCOP Proceedings. PP. 25 – 36

Dorigo, M Stutzle, T., 2004 Ant Colony Optimization
 (ACO). MIT press

Ogban F. U, Asagba P.O, and Olumide O., 2014 An
 Efficient Clustering System for the measure of

 page (Document) Authoritativeness. Journal of
 Information Engineering and Application. ISSN
 2224-5782 (print) ISSN 2225.0506 (online) Vol.
 4. No. 6 2014.

Oltean, M., 2005 Evolving evolutionary algorithms using
 linear genetic programming. Evolutionary
 computation Journal 13, 387 – 410

Poli, R., Langdon, W.B., and MCPhee, N.F., 2008 A field
 guide to genetic programming. Published via
 http://LuLu.com and freely available at
 http://www. gp-field-guide.org.uk (with
 contribution by J.R. Koza)

0 50 100 150 200 250

AS

EAS

RANK-BASE

MIN-MAX

DANTE

Mean comparison for five different strategies at 200 iterations

Branching Deviation Mean Best Fitness Best Tour Length

-50

0

50

100

150

200

250

0 1 2 3 4 5 6

N
u

m
b

e
r
 o

f
It

e
r
a

t
io

n
s

Axis Title

MIN-MAX

DANTE

Linear (AS)

Linear (EAS)

Linear (RANK-BASE)

Linear (MIN-MAX)

PHEROMONEDE POSITION/UPDATING STRATEGY IN A NETWORK: USING ANT COLONY 221

Runka, A., 2009 Evolving and edge selection formula for
 Ant Colony Optimization (ACO) algorithm. In:
 GECCO proceeding. PP. 1075 – 1082

Tavares, J., Pereira, and F.B., 2006 Evolving Strategies
 for updating pheromone trails: a case study with
 the Traveling Salesman Problem (TSP). In:
 PPSN XI proceedings. Lecture note in
 Computer Science, Vol. 6239, pp. 523-532

222 FELIX U. OGBAN AND ROY NENTUI

