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ABSTRACT 
 
Intrinsically nonlinear models are models that cannot be made linear irrespective of the linearization method 
employed. Statisticians are often interested in estimating the parameters of nonlinear models but are faced with great 
difficulties since some nonlinear models cannot be solved analytically however, researchers have developed a way 
out of this difficulty using the Gauss-Newton Method via Kmenta approximation. This paper made use of classical and 
Bayesian approaches to estimate the Constant Elasticity of Substitution (CES) production function. The Metropolis-
within Gibbs Algorithm was used to carry out the analysis as shown in the empirical illustrations and the result showed 
that the Numerical Standard Error (NSE) is minimal while the posterior estimates converged to the region of the true 
values making the Bayesian approach more preferred. 
 
KEYWORDS: Intrinsically nonlinear model, Gauss-Newton Method, CES production function, Numerical Standard 
           Error, Metropolis-within Gibbs Algorithm. 
 
INTRODUCTION 
 
 A macroeconomic production function is a 
mathematical expression that describes a systematic 
relationship between inputs and output in an economy. 
The CES production function has been used extensively 
in many areas of economics in the past (Solow (1956) 
and Arrow et al. (1961)). This function assumes that the 
elasticities of substitution between any two inputs are 
the same, due to its highly undesirability for empirical 
applications, the multiple-input CES functions gives 
room for different (constant) elasticities of substitution 
between different pairs of inputs that have been 
proposed. The functional form proposed by Uzawa 
(1962) has constant Allen Uzawa elasticities of 
substitution and the functional form proposed by 
McFadden (1963) has constant Hicks-McFadden 
elasticities of substitution. 
 The CES production function due to Arrow et al. 
(1961) reported that estimates are consistent and 
Kmenta (1967) used the same estimation procedures 
applicable to the generalized version of the CES 
function which is restricted to the case of constant 
returns to scale, and concluded that the estimates are 
consistent if the input variables are non-stochastic or, if 
stochastic disturbance is independent in the production 
function. Nakamura and Nakamura (2008) confirmed 
Acemoglu and Zilibotti’s (2001) work by using a more 
general functional form for the intermediates’ 
productivities to show how a general CES production 
with elasticity above unity can arise from an underlying 
Cobb-Douglas technology. In their specification, two  
 
 
 
 
 

primary input factors are differentiated over a unit 
interval of intermediate inputs. Each input used just one 
of the primary factors. Productivity of the intermediate 
inputs depends on their position in the interval through a 
specific functional form. CES production function with an 
elasticity of exactly 2 in the two primary factors 
maximizes the profit with the choice of primary factor 
used for each intermediate input. Noda and Kyo (2011) 
proposed a new approach in analysis of factor 
augmenting technical change based on a constant 
elasticity of substitution (CES) production function. 
Smoothing priors are introduced in Bayesian linear 
models constructed to examine the technical changes in 
Taiwan and South Korea at the macroeconomic level 
and it was revealed that the Bayesian approach can 
capture the movements of technical change more 
rigorously than conventional approaches Noda and Kyo 
(2015). 
 Bayesian analysis is used by combining prior 
and likelihood functions to obtain posterior distributions 
of functions of interest. This makes estimation of 
parameters straightforward and reliable. However, there 
are two difficulties that may arise in working with fully 
specified macroeconomics models which are the exact 
form of the likelihood function of interest is generally 
unknown and its approximation known, this 
consequently makes posterior analysis impossible to 
obtain analytically due to the issues of not having a 
closed form. To resolve these difficulties, the Kmenta 
approximation (Kmenta 1967) was used to compute the 
likelihood function for the data given a log-linear 
approximation to the solution of the theoretical model,  
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and conduct posterior analysis using the Metropolis-
within Gibbs technique which is a part of the Markov 
Chain Monte Carlo (MCMC) technique developed in 
recent Bayesian literatures. 
 Rolando (2012) proposed a Bayesian Markov 
Chain Monte Carlo estimation of the capital-labour 
substitution elasticity in developing countries through 
prior elicitation and concluded that the Bayesian 
estimator of the Capital-Labour substitution elasticity 
was theory consistent, and can be used to properly 
calibrate computable general equilibrium models. Leon-
Ledesmal et. al, (2010) used Monte Carlo simulations to 
capture production function and its first order conditions 
jointly to identify the elasticity of substitution given 
biased technical change. Daan Steenkamp (2016) 
revealed that negative capital-augmenting technical 
change in several industries weighed on productivity in 
New Zealand based on Constant Elasticity of 
Substitution (CES) production functions that permit 
varying assumptions about factor augmentation and also 
allows for industry-specific values of the elasticity of 
substitution between inputs.  
 Jakub and Jakub(2015) showed that estimates 
are consistent which implied that the elasticity of 
substitution between capital and labor has remained 
relatively stable, at about 0.8–0.9, from 1948 to the 
1980s, followed by a period of secular decline in post-
war US economy by generalize the normalized Constant 

Elasticity of Substitution (CES) production function by 
allowing the elasticity of substitution to vary 
isoelastically. Jurgen (2014) addressed the relationship 
between technical change and the elasticity of 
substitution between factors of production and showed 
how the elasticity within a CES production setting can 
change due to technical change. Miguel and Mathan 
(2011) showed that allowing firms a choice of CES 
production techniques through the distribution parameter 
between capital and labor can result in a new class of 
production functions that are consistent with a balanced 
growth path even in the presence of capital augmenting 
technical progress which produces short-run capital-
labor complementarity but yields a long-run unit 
elasticity of substitution. The idea of MCMC simulation is 
to let the parameters perform a random walk in 
parameter space according to a Markov chain set up in 
such a way that its stationary distribution is the posterior 
distribution.  
 The aim of this paper is to investigate the 
sensitivity of the parameters of the multiplicative error 
based CES production function to varying sample sizes 
using the Bayesian and frequentist approaches. 
 The remaining sections are classified as follows; 
the Methodology is discussed in Section 2 while the 
Simulation Study and Discussion of Findings are 
presented in Section 3 and 4 respectively, Conclusion of 
the work is given in Section 5.
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2. METHODOLOGY  
 
Gauss Newton Method 
The Gauss Newton model is of the form 

  
( , )y f X uβ= +

   
………………………………………………………………………….  (1) 

y  is a 1N ×  vector of observation on  response variable, ( , )f X β is the nonlinear form comprising of  the X , an

N k×  matrix of observation on explanatory variable  and  β a 1K ×  vector of coefficients of the model, and u an 

1N ×  vector of  disturbance term with mean 0 and variance 
2σ . 

 
The matrix form of the model in equation (1) can be expressed as; 

1 11 21 31 0 1

2 12 22 32 1 2

1 2 3N N N N k N

y X X X u

y X X X u

y X X X u

β
β

β

       
       
       = +
       
       
       

M M M M M M  

 
y X uβ= +  

The Gauss Newton method begins by expanding ( , ) ( )i if X fβ β=  using Taylor’s series up to the first derivative 

around a set of initial values, 
0 0 0 0

0 1 2( , , )jβ β β β′ =  and representing the required parameters appropriately. Set 

0

j j jλ β β= − , 0 0 0( , )i i i jY f f x λ= = , and setting initial values 0 0 0 0

0 1 2, ,jλ β β β= .  

 
Using the OLS method, we obtain the estimates by 

$ ( )
1

0 0 0 ( ),Z Z Z Dλ
−

′ ′=
      

where; 
0D Y f= − , Since,

010

jjj ββλ += , the revised estimate  of jβ  is
1

jβ . 

Hence, $
0

1 0
jj jβ λ β= + , the process is  repeated to obtained  desired estimates as a general rule. 

 
 
The CES (Non-linear) Production Function Model with a Multiplicative Error term 
Given, 

  1 2(1 )
v

uy x x eρ ρ ργ δ δ
−− − = + −   ………………………………………………………….  (2) 

where, y  is the response variable, , , and vγ δ ρ  are the nonlinear regression parameters, 1 2x and x  are the 

explanatory variables.  u is the error component (well behaved, i.e.
2(0, )N σ  ). Also, parameter [0, )γ ∈ ∞  

determines the productivity, [0,1]δ ∈   determines the optimal distribution of the inputs,  [ 1,0) (0, )ρ ∈ − ∪ ∞  

determines the elasticity of substitution, which is 
1

(1 )
σ

ρ
=

+
 , and [0, )v∈ ∞  is equal to the elasticity of scale. 

The CES function can be written in the form 

 ln ln ( , )y f X uγ= +   ...................................................................................................             (3) 
 

where ( , )f X γ  is a N-vector of functions with ithelement given by ( , )if X γ and iX  is the ith  row of X  and γ  is a 

vector of parameters. The equation (3) can also be expressed as  
 

   1 1 2 2ln ln[ ]y x x uα α= + +  ………………………………………………………… (4)

  
 
Since, in the equation (4), the CES function is still nonlinear in parameters and cannot be solved analytically, that is, 
despite taking the logarithm of both sides, it is impossible to estimate the parameters with the usual linear 
techniques. 
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Hence, the CES function is often approximated by the “Kmenta approximation” (Kmenta 1967) which is then 
estimated by linear estimation techniques. 
 
The Likelihood function 

Using the multivariate Normal density function, the likelihood function for the nonlinear regression model can be 
written as; 

{ }
2

2

( / , ) exp ( , ) { ( , )}
2

(2 )

N

N

h h
p y h y f X y f Xγ γ γ

π

  ′= − − −      ……………………....……………….           (5) 

Where; 
2

1
h

σ
=  is the error precision, and any form ( , )f X γ is the mean of the distribution.

 

 
Estimating the CES function using Kmenta Approximation 
The first order Taylor series approximation around 0ρ = is; 

 
2

1 2 1 2ln ln ln (1 ) ln (1 )(ln ln )y v x v x v x xγ δ δ ρδ δ≈ + + − − − −  ……………………………….  (6) 

 
Derivative with respect to “Gamma” 

 

(1 ) 2

1 2 1 2

1
exp (1 )(ln ln )

2

v v udy
x x v x x e

d

δ δ ρδ δ
γ

−  = − − − 
 

  ………………………………  (7) 

 
Derivative with respect to “Delta” 

( ) (1 )

1 2 1 2 1 2

1 2 (1 )
ln ln 1 (ln ln )

2

v v udy v
v x x x x x x e

d

δ δ δ δ δ
γ ρ

δ
− − + − ≈ − − − 

 
  …………………….  (8) 

 
Derivative with respect to “v” 

(1 ) 2

1 2 1 2 1 2 1 2

(1 )
ln (1 ) ln ) (ln ln ) (1 ( ln (1 ) ln ))

2

u v vy
e x x x x x x v x x

v

δ δ ρδ δ
γ δ δ δ δ−∂ − ≈ + − − − + + − ∂  

…………..  (9) 

 
Derivatives with respect to “Rho” 

 ( )2(1 )

1 2 1 2

1
(0) (1 ) ln ln

2

v vf x x x xδ δ
ρ δ δ −= − − −   ………………………………………………….. (10) 

 
Substituting where necessary in the Taylor series approximation in equation (6), we obtain the Kmenta approximation 
below; 

 

2 2

0 1 1 2 2 11 1 22 2 12 1 2

1 1
ln ln ln (ln ) (ln ) ln ln

2 2
y x x B x B x B x xα α α= + + + + +  …………………….. (11) 

 

Where;   0exp( )γ α= , 1 2v α α= + , 1

1 2

α
δ

α α
=

+
 , 12 1 2

1 2

( )B α α
ρ

α α
+

= , and 12 11 22B B B= − = −  

 
For the purpose of this study, the equation (11) can be simplified as 

0 1 1 2 2 11 3 22 4 12 5* * * * * *y x x B x B x B xα α α= + + + + +  …………………………………………. (12) 

 

Where; * lny y= , 1 1* lnx x= , 2 2* lnx x= , 
2

3 1

1
* (ln )

2
x x= , 

2

4 2

1
* (ln )

2
x x=  and 5 1 2* ln lnx x x=  in order to have a 

model of the form below which can be solved using matrix techniques. 
 

 
* * *i iy x eλ= +

 ……………………………………………………………………………………… (13)
  
 

Therefore, [ *] * ( , )iE y x f Xλ γ= = , the mean of equation (13) where; 0 1 2 11 22 12[ ]B B Bλ α α α′ = , *ix  is the design 

matrix of N x K elements  and the error component is well behaved, i.e. 
1* ~ (0, )i Ne N h I−

 now the method of the 

OLS can be used directly to obtain the parameters of the equation (11), then substituted to their respective 
representations at the initial stating of the equation (11) to get the values of the estimates of the model, but of concern 
in this study is the Bayesian approach. 
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The following formulae is used to obtain the likelihood 

 

$ $
2 ( * * ) ( * * )y x y x

s
v

λ λ′− −
= ,  v N K= − , N is the sample size and K is the number of parameters. 

 

$ 1( * *) * *x x x yλ −′= , where; *x  the design matrix and *y  response variables 

 
 
The Likelihood Function of the Redefined variables 

Since the form of ( , )f X γ is known to be ( *, )f x λ which is linear in parameter and variables, then from equation 

(12) the likelihood function for this study becomes  

 

${ } $
2

2

( * / , ) exp * { * }
2

(2 )

N

N

h h
p y h y x y xλ λ λ

π

  ′ 
= − − −  

   
  …………………………….. (14)

 

 

Where; $ 1( * *) * *x x x yλ −′= , *x  the design matrix and *y  response variables and  
2

1
h

σ
=  still the error precision. 

 
The Prior of the Redefined variables  

The Independent Normal-Gamma prior is employed for this study depending on the form of ( , )f X γ which is only 

investigated using its non-informative aspect. 
Therefore, from the law of independent random variables we have that 

 
( ) ( ) ( ),P h P P hλ λ= ⋅  

 

Where, ( ) ~P Normalλ and ( ) ~P h Gamma  

 

( )
( )

( ) ( )
1

1
2

2

1 1
exp

2
2

k
P V Vλ λ λ λ λ

π

− − ′= − − −  
 

 and 

 

 

( )
2

1 2
2

exp
2

v

G

hv
P h C h

s

−
−

−

 −
=  

 
       

Where, 
1

GC −
is an integrating constant, it is deduced that: [ ]/ *E yλ λ=  is the prior mean of λ   and 

( )/Var h Vλ =  is the prior covariance matrix of λ with the mean of ,h as 
2

s
−

and v degree of freedom. 

 
The Posterior of the Redefined variables 

Let the Posterior (which is proportional to prior times likelihood) be denoted by ( ), / *P h yλ . 

Mathematically, using ( ) ( ) ( ) ( ), / * * / ,P h y P y h P P hλ λ λ= ⋅ ⋅ ,  

But note that ( ) ( ) ( ), / * / *, / *,P h y P y h P h yλ λ λ≠ ⋅  

Then, the posterior: 

( )
( )

$( ) $( )
( )

( ) ( )
212

1 1 22
2

2 2

1 1
, / * exp * * * * exp exp

2 2 22 2

N
v

GN k

h h hv
P h y y x y x V V C h

s
λ λ λ λ λ λ λ

π π

−
− − −

−

   −′  ′= − − − ⋅ − − − ⋅         

( ) $( ) $( ) ( ) ( )
2

1 2
2

1
, / * exp { * * * * } exp

2 2

N v
hv

P h y h y x y x V h
s

λ λ λ λ λ λ λ
+ −

−
−

   −′ ′∝ − − − + − − ⋅   
  

………………………...      (15) 

 

This joint posterior density for λ  and h  does not take any well-known distributional form; so it cannot be solved 

analytically but only through a posterior simulation method. 

By ignoring the terms that do not involve  λ  in equation (15) we obtain, 
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( ) ( ) ( )11
/ *, exp { }

2
P y h Vλ λ λ λ λ

− ′∝ − − − 
 

  ……………………………………………………………………       (16) 

 

Which implies that / , ~ ( , ),y h N Vλ λ a Multivariate Normal density 

 

Where, 
1 1( * *)V V hx x

− −′= +  and 
1

( * * )V hx y Vλ λ−′= +  

 
Similarly, by treating equation (15) as a function of ℎ ignoring terms that do not involve ℎ we can obtain 

 
( )

2
22/ *, exp[ {( * * ) ( * * ) }]

2

N v
h

P h y h y x y x vsλ λ λ
+ −

′∝ − − − +  ……………………………..        (17) 

  

This also implies that 
2

/ *, ~ ( , ),h y G s vλ
−

a Gamma density 

 

Where,  v N v= + and  

2
2 ( * * ) ( * * )y x y x vs

s
v

λ λ′− − +
=  

The formulae of equations (16) and (17) look familiar to those of the conjugate normal-gamma priors now but it does 
not relate directly to the posterior of interest. Therefore, the conditional posteriors in equations (16) and (17) do not 

directly tell us everything about the posterior, ( ), / *P h yλ . There is a posterior simulator called the Metropolis-

Within- Gibbs which makes use of the conditional posteriors to produce random draws 
( )sλ and 

( )sh for 1, 2,...,s S=
which can be averaged to produce estimates of the posterior properties just as the Monte Carlo integration. 
After obtaining the values of the posterior estimates, then substitute where necessary to obtain the real estimates of 
the model.  

Where; * lny y= , 1 1* lnx x= , 2 2* lnx x= , 
2

3 1

1
* (ln )

2
x x= , 

2

4 2

1
* (ln )

2
x x=  and 5 1 2* ln lnx x x=  

 
3. Simulation Study 
The data used for this paper were generated using a Monte Carlo Simulation technique in which the explanatory 
variables were drawn from uniform [0,1] distribution independently and the error term obtained from an independent 
and identical normal distribution with 0 mean and variance 1, the response variable which is the data of interest was 
obtained from the model by the incorporation of these explanatory variables and the disturbance term. 
 
 

Table 1: The Multiplicative Error Based CES Production Function for ( )0.5ρ  

Sample 
Size 

True  
Value 

GNM              (SE) KMENTA 
APPROXIMATION (SE) 

POSTERIOR (SD)       NSE 

N = 50  
 

( )1.0γ  

3.7924 (2.2863) 0.6997 (0.2295) 1.5867 (0.5683) 0.0090 

N=100 10.1134 (2.1808) 0.7754 (0.1564) 0.8927 (0.2718) 0.0043 

N=150 2.1722 (0.4637) 0.7559 (0.1297) 0.8130 (0.2337) 0.0037 

N=250 1.8019 (0.3121) 1.0616 (0.1264) 0.9729 (0.1585) 0.0025 

N=500 1.3197 (0.1175) 0.9123 (0.0780) 0.8509 (0.1049) 0.0017 

N=50  
 

( )0.6δ  

0.8226 (0.3449) 0.5578 (0.1974) 0.4920 (0.7944) 0.0126 

N=100 0.0565 (0.0697) 0.4272 (0.1114) 0.2393 (0.5049) 0.0080 

N=150 0.5317 (0.1290) 0.5532 (0.0958) 0.5227 (0.4054) 0.0064 

N=250 0.8648 (7.1978) 0.5327 (0.0436) 0.4502 (0.2323) 0.0026 

N=500 0.3482 (0.2773) 0.6202 (0.0350) 0.4688 (0.1132) 0.0018 

N=50  
 

( )0.5ρ  

2.6019 (6.2979) 1.6101 (2.0025) 0.9540 (0.3659) 0.0058 

N=100 5.3589 (4.9639) 0.4172 (0.7618) 0.0386 (0.1930) 0.0031 

N=150 -0.0321 (1.1221) 0.8202 (0.4576) 0.9131 (0.1143) 0.0018 

N=250 67.4378 (…) 0.3349 (0.1828) 0.1191 (0.0873) 0.0014 

N=500 2.9263 (5.4767) 0.5621 (0.1741) 0.4686 (0.0517) 0.00082 

N=50  
 
 

( )1.1ν  

2.7483 (1.6990) 0.8983 (0.3920) 3.1393 (0.8697) 0.0138 

N=100 11.9371 (2.5441) 1.0103 (0.2386) 1.2168 (0.2682) 0.0042 

N=150 1.7243 (0.5657) 0.8415 (0.1895) 0.9910 (0.1996) 0.0032 

N=250 0.9149 (0.1871) 1.2032 (0.1268) 1.0229 (0.1727) 0.0027 

N=500 0.6912 (0.1785) 0.9969 (0.0940) 0.8451 (0.1008) 0.0016 
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Table 2: The Multiplicative Error Based CES Production Function for ( )0.5ρ −  

Sample 
Size 

True  
Value 

GNM (SE) KMENTA 
APPROXIMATION (SE) 

POSTERIOR (SD)       NSE 

N = 50  
 

( )1.0γ  

3.6905(2.2217) 0.7003(0.2297) 1.5869(0.5683) 0.0090 

N=100 9.4318(2.0198) 0.7782(0.1569) 0.8904(0.2720) 0.0043 

N=150 1.9430(0.4679) 0.7579(0.1301) 0.8069(0.2335) 0.0037 

N=250 1.6830(0.2397) 1.0688(0.1272) 0.9487(0.1587) 0.0025 

N=500 1.3128(0.1325) 0.9106(0.0776) 0.8298(0.1043) 0.0016 

N=50  
 

( )0.6δ  

0.8345(0.3565) 0.5577(0.1976) 0.4920(0.7944) 0.0126 

N=100 0.05109(0.0686) 0.4258(0.1113) 0.2400(0.5049) 0.0080 

N=150 0.0550(6.2060) 0.5487(0.0986) 0.5557(0.4055) 0.0064 

N=250 0.4082(0.1174) 0.5384(0.0441) 0.4360(0.1645) 0.0026 

N=500 0.5065(0.0881) 0.6214(0.0362) 0.4702(0.1131) 0.0018 

N=50  
 

( )0.5ρ −  

2.5878(6.4596) 0.4610(1.6025) 0.6296(0.3659) 0.0058 

N=100 5.4330(4.8864) -0.5939(0.6231) -0.0824(0.1944) 0.0031 

N=150 5.3660(2.2180) -0.2146(0.2873) -0.0180(0.1144) 0.0018 

N=250 0.0045(0.8496) -0.3997(0.1370) -0.9129(0.0874) 0.0014 

N=500 -0.3736(0.4623) -0.3410(0.1027) -0.6633(0.0517) 0.0008 

N=50  
 
 

( )1.1ν  

2.6243(1.6589) 0.8971(0.3921) 3.1360(0.8697) 0.0138 

N=100 11.0315(2.3547) 1.0108(0.2385) 1.2039(0.2670) 0.0042 

N=150 0.9641(0.2985) 0.8173(0.1895) 0.9608(0.1992) 0.0032 

N=250 1.0511(0.2987) 1.1883(0.1267) 0.9420(0.1727) 0.0027 

N=500 0.7519(0.1820) 0.9618(0.0937) 0.7640(0.1004) 0.0016 

 
 

Table 3: The Multiplicative Error Based CES Production Function for ( )0ρ  

Sample 
Size 

True  
Value 

GNM (SE) KMENTA 
APPROXIMATION (SE) 

POSTERIOR (SD)       NSE 

N = 50  
 

( )1.0γ  

2.3234 (0.9431) 0.6999 (0.2295) 1.5885(0.5683) 0.0090 

N=100 2.2640 (0.4112) 0.7753 (0.1564) 0.8918(0.2720) 0.0043 

N=150 1.6500 (0.3420) 0.7568 (0.1299) 0.8080(0.2337) 0.0040 

N=250 1.5223 (0.1994) 1.0640 (0.1268) 0.9592(0.1586) 0.0025 

N=500 1.4920 (0.1536) 0.9126 (0.0781) 0.8393(0.1050) 0.0017 

N=50  
 

( )0.6δ  

0.3411 (0.4378) 0.7655(1.0821) 0.4343(0.7944) 0.0126 

N=100 0.0000 (0.0000) 2.4667(5.2400) -3.3346(0.5049) 0.0080 

N=150 4.7890 (4.4470) 0.7210 (0.3371) 1.1085(0.4054) 0.0064 

N=250 0.9999 (0.0372) -0.0744 (1.0146) 1.9114(0.1643) 0.0026 

N=500 1.0000(0.0002) 0.2813(0.3332) 0.9724(0.1132) 0.0018 

N=50  
 

( )0ρ  

0.1129 (4.3488) -6.2847(25.3891) 1.2346(0.3659) 0.0058 

N=100 -1.9720(1.1600) -0.0755(0.4100) -0.0680(0.0194) 0.003074 

N=150 0.0009 (0.0979) -1.0044 (0.9193) 6.5790(0.1144) 0.0018 

N=250 -5.8319(190.5931) 0.7170 (14.1992) -0.4263(0.0873) 0.0014 

N=500 -2.4710(2.5620) -1.0063(1.1970) 2.1179(0.0244) 0.0004 

N=50  
 
 

( )1.1ν  

0.6248 (0.7100) -0.2015(0.3921) 2.0419(0.8697) 0.0138 

N=100 0.6450 (0.3399) -0.0904(0.2387) 0.1107(0.2670) 0.0042 

N=150 -0.0025 (0.2307) -0.2644 (0.1895) -0.1306(0.2000) 0.0032 

N=250 -0.0980 (0.1348) 0.0919 (0.1269) -0.1219(0.1728) 0.0027 

N=500 -2.4710(2.5620) -0.1166(0.0940) -0.2977(0.1006) 0.0016 
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Table 4: when ρ  is positive  1σ⇒ <  

0.5ρ =  
GNM KMENTA 

APPROXIMATION 
POSTERIOR 

N= 50 0.2776 0.3831 0.5118 

N=100 0.1573 0.7056 0.9628 

N=150 1.0332 0.5494 0.5227 

N=250 0.0146 0.7491 0.8936 

N=500 0.2547 0.6402 0.6909 

 

Table 5: when ρ  is negative  1σ⇒ >  

0.5ρ = −
 

GNM KMENTA 
APPROXIMATION 

POSTERIOR 

N= 50 1.7010 0.6845 0.6136 

N=100 0.1554 2.4624 1.0898 

N=150 0.1571 1.2732 1.0183 

N=250 1.0045 1.6658 11.4811 

N=500 1.5964 1.5175 2.9700 

 

Table 6: when 
ρ

 is zero 1σ⇒ =  

0ρ =
 

GNM KMENTA 
APPROXIMATION 

POSTERIOR 

N= 50 0.8986 1.2523 0.4475 

N=100 0.6079 1.0994 1.0730 

N=150 1.0025 1.3594 0.1319 

N=250 0.9020 0.9158 1.7431 

N=500 -0.6798 1.1320 0.3207 

 
 
4. DISCUSSION OF FINDINGS 
 

Table 1 above is a scenario of when 0.5ρ = (positive 

value) which showed the estimates of parameters of the 
CES production function with varying sample sizes of 
50, 100, 150, 250 and 500 in all cases. The True values 
of parameters are shown in parenthesis under the 
column of the true values; the Gauss-Newton Method 
(GNM) estimates are given with each standard error. It 
shows that the estimates under the GNM are far from 
the true values. Therefore, Kmenta approximation has 
been used to correct the limitations of GNM, a close and 
careful look at the values of the standard errors under 
the Kmenta approximation section, showed that the 
standard errors decreased steadily as sample size 
increased. Also, Kmenta Approximation produced 
estimates that are close to the true parameter values 
while the Posterior estimates seemed to behave better 
producing estimates that are very close to the true 
values and the Numerical Standard Error (NSE) 
decreased steadily as sample size increased.  
 

Table 2  is a scenario of when 0.5ρ = − (Negative 

value) which showed the estimates of parameters of the 
CES production function with varying sample sizes of 
50, 100, 150, 250 and 500 in all cases. The true values 
of parameters are shown in parenthesis under the 
column of the true values; the Gauss-Newton Method 
(GNM) estimates shown as well with each standard 
error. It shows that the estimates under the GNM are not 
close the true values. The Kmenta approximation 
produced estimates that are close to the true values, it is 
also obvious that the standard errors decreased steadily 
as sample size increased. The estimates of the 

parameters of rho ( ρ ) do not behave well for instance; 

under Kmenta Approximation and Posterior where 
N=50, the estimates produced are 0.4610 and 0.6296 
respectively which are positive as opposed to the 
negative true value used or set. 

Table 3 above is a scenario of when 0ρ =  which 

showed the estimates of parameters of the CES 
production function with varying sample sizes of 50, 100, 
150, 250 and 500 in all cases. The true values of 
parameters are shown in parenthesis under the column 
of the true value; the Gauss-Newton Method (GNM) 
estimates shown as well with each standard error. It 
shows that the estimates under the GNM and the 
Kmenta approximation are not close to the true values 
as sample size increased. Also, the estimates and 
Standard error of the parameters of rho ( ρ ) do not 

behave well for both the Kmenta Approximation and 
Posterior results. 
 

From Table 4, When 0ρ >  (positive) for any valve of ‘v’ 

(Elasticity of scale parameter) greater than 1 i.e 1v > , 

then with the continual growth in Labour-Capital, the 
Elasticity of substitution (σ )  becomes positively less 

than 1 for large sample size. The CES production 
function in classical (Kmenta) and Bayesian approaches 
do behave well  while the GNM does not with the Law of 
diminishing marginal returns to both Labour and Capital. 

From table 5, when 0ρ <  (negative) for any value of 

' 'v (Elasticity of scale parameter) greater than 1, i.e. 

1v > , the Elasticity of substitution (σ ) exceed 1, 

measured the varying factors substituted. The CES 
production function for GNM, Kmenta and Bayesian 
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approach does not behave well with the Law of 
diminishing marginal returns to both Labour and Capital. 

From table 6, when 0ρ = , for any value of ' 'v               

(Elasticity of scale parameter) greater than 1( 1v > ) with 

the constant Elasticity of substitution( 1σ = ).The CES 

production function for GNM and Bayesian approach 
produced values that are greater than 1 andless than 
1.This implies that the elasticity of substitution obtained 
do not behave well. On the contrary, Kmenta’s elasticity 
of substitution does behave well. 
 
CONCLUSION 
 
 In Conclusion, the Bayesian Approach seems to 
be the most preferred in the sense that the posterior 
estimates produced are closer to the true values; with 
consistent decrease in the NSE as sample size 

increased. It is obvious that when 0ρ >   for any value 

of ' 'v ( Elasticity of scale parameter) greater than 1, i.e. 

1v > , the Elasticity of substitution (σ ) produced 

consistent values for both classical and Bayesian 

approaches while for 0ρ <   and 0ρ = for any value of 

' 'v ( Elasticity of scale parameter) greater than 1, then 

the Elasticity of substitution (σ ) produced inconsistent 

values. 
 From literatures, the rho ( ρ ) has always been 

the nuisance parameter of the CES production function, 
producing values that are outliers,  also past 
researchers (Iyaniwura, (1974)) who worked on CES 
(classical approach) had some similar agreement that 

the determinant of the Elasticity of Substitution, ( )ρ  

tend to pose much problems producing ambiguous 
values. Similarly, we encountered same challenge when 
using the classical approach; the reason for pegging 
(omitting some values of ρ  ) some values of rho but the 

Bayesian approach took care of this limitation; which 
makes the Bayesian Approach more suitable approach. 
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