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ABSTRACT

The total number of states of any system is produced by all the possible interactions of the particles in that system. It
follows therefore that there is need to obtain the states of the system before a model can be applied to it. Recently we developed a
simple method to obtain the electronic states in the tweo electron lattice systems in all the three dimensions. This method
encompasses rules formulated from a detailed study of each dimension. In the current study, the method will be.extended to
bosons which do not obey the Pauli exclusion principle like the electrons so that their interactions are different from those of the
latter. The need for the extension of the method to bosons is also discussed in the work.
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INTRODUCTION

The wave function of a physical system not only determines the properties of the system at the instant it is given but can
also be used to simulate properties of the system at other instants. This is because the wave function consists of ali the 'states of
the particles which are all their possible interactions. Apart from the separation between the particles, another quantity that
determines the interactions are the spins of the particles (Chen and Mei 1989; Petuhkov et al.1992: Eder et al.1996). Bosons have
zero or integral spins unlike fermions which have half integral spins. Bosons therefore have symmetric wave functions because the
states within them are symmetric. Fermions, on the contrary, have antisymmetric wave functions because the states within them
are antisymmetric. These wave functions are appropriate to systems containing identical particles (Libboff 1992). There is a
fundamental distinction between the classical and quantum descriptions of such systems. In the classical description, identical -
particles are distinguishable as such one may conceptually label such pariicles and follow their respective motions. At the quantum
level of description, identical particles are indistinguishable and this is why their spins become very impartant in determining their
intgractions.

Consider for example two ldenttcal particles (fermions or bosons) on a three dimensional (3D) Iamce }f the first one is on
site (x,y,2) and the second on site (x',y’, z') then the state will be

Ixyzo.x'y'z'a > (1.1)

whére x: 'y, z, x' , y and 2 represent the positions of the particles in spatial dimensions and

o (&) =(TH),d M, (TT) (¥4),(00) (i.e. spins)
ltis easily observed that the fermionic states‘ will be antisymmetric ;
Ixyzo,x'y'2'G >= —~/x'y'2'G xyze > (1.2)

while the bosonic states will be symmetric
[xyzo,x'y'z'G >=/x'y'2'5 , xyz0 > . (1.3)

Though there is no experimental evidence to the best of our knowledge that distinguish between two states obtained by
e-shanged of two identical particles, it is obvious from Egs. (1.2) and (1.3) that the behaviour of fermonic states are diffefent
from those of bosons. This is due to the Pauli exclusiom principle which holds that two fermions cannot exist in the same quantum
state. Recently we developed a method to obtain the states of a two electron interactions on any lattice in all the three dimensions
. (Akpojotor-et al. 2002 which is hereafter referred to as Pilot paper). That study has enabled us to developed a highly simplified
formulation of the correlated variational approach. (CVA) for the two electron Hubbard interactions on any lattice size in all three

- dimensions (Akpojotor and Idiodi 2004). The formulation can be extended to bosonic system. The need for this extension emanates
from the growing opinion that both the conventional Bose Einstein condensation (CBEC) and the non-conventional Bose Einstein
c:ondensatlon (NBEC) can be obtained by an appropriate repulsive and attractive interactions of bosons respectnve!y (Van den
Berg, Lewis and deSmedt 1984: Zagrebnov 1999: Bru and Zagrebnov 2000a: 2000b).

. Consequently, there is need to first extend the method of obtaining the two electron states to a two mteractahg charged
=bogons. This is the goal of our study here. The plan of the study is as foliows. We will introduce some of the parameters needed to
.adopt the rules to determine the various separations in sec li. Then the rules to obtain the total number of states in the various

separations will be set up in sec. lli. In that sec. also, we will also compare the method with that of the two electron problem This
wul be followed by aconclusion. . ‘
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~ RULES TO SET UP THE VARIOUS SEPARATIONS |

T9 enh?nce our. undeérstanding of the study, we would like to study the two bosons, four sites (N=4) problem which is a one
dirhensional (1‘D) system before simulating for larger lattices and higher dimensions. For the bosonic states of a 1D lattice, Eq (1.1)
has to be rewritten only for the x direction as ' ' '

/x.x' > ‘ 2.9)

Thus the separation, L, ‘between the two parﬁtleé will be

L= lx ~x'lu ‘ | 2.2)

Where a is the usual lattice separation between a pamclé and its nearest neighbour (kittel 19986).

i 2 3
G . é
(@)

Fig.2.1 The 1D lattice with four sites (N=4): (a) without periodic boundary conditions so that there are edge effects to the left side
of site 1 and to the right side of site 4, and (b} with periadic boundary conditions so that there is no edge éffect on any site thereby
making the lattice to be continuous.

Observe that in Fig 2.1b, the two bosons can both be on site 1,2,3 or 4 giving us onsite bosonic states with separation that is zero
i.e L= 0. Consequently, the onsite states will be

li,i>=111>,/22>/33>,/44>. (2.3)

Alsa, int Fig 2.1b, the two particles could also have separation L. = a, iraplying that if one is in a given site i, the other will be in the
nearest neighbouring site, j say, thereby producing intersite bosonic states,

Jinj>=112>/23>/34>/14>. (2.3)
Furthermore, the two particles couid be separated by L = 2a, implying that if one boson is in site i, the other will be in the next
nearest neighbour site, | say, consequently, the intersite bosonic states will be

licj>=113>,/2,4>. (2.3)*

Observe that there is a total number, n, of ten states (i.e. n = 10). If we follow the same procedure of determining the

states in-other lattices in all the three dimensions, then it can be shown that the total number of states of any two boson lattices with
petiodic boundary conditions will be

; Cn=fCr+K =R +K) (2.4)
where K =N for 1D lattices, .
'K ='N? for 2D lattices, (2.5)

ang K = N’ for 3D lattices,
which is different from that of the problem of two electrons in which the total number of electronic states is (Pilot paper)
n=%®c,+K) =K (2.6)
‘ where K is also as in Eq. (2.5). ) !
The variation in total number of states constitutes the major difference between the fermonic and bosonic systems of the
same lattice size. For it ¢an be shown from lattice diagrams of bosonic particles in all threé dimensions as done for efectrons in the
Pilot paper that the total number of possible separations, S in 10 lattices is
. N+2
S ==

(for even N sites), 2.7

N+l

2

ls'v =

(for odd N sites), (2.8)
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while for 2D Iattuces it |s
(N + N +4)(N+7)

S = -8———— (for.even NxN sft-es). o . TR ' . o (2:9)
X/ r N . .
8= “__\_j_});f\__*ﬂ (for odd N x N sntes) . o N ALY

and for 3 D lattices it is .
(N +6)(N+4)(N + 7)

S= T - (for even N x'N x N snes) - L2170 v
/ : : '
S = (A * J)(N4; HN+D (for odd N xN x N sites). - - ' (2.12)

The |mpllcat|on is that we can adopt for the present study the rules to set up the various separations formulated for the two
electrons. Before stating these rules, we will introduce the quantities used.
It has been stated above that a separation will be denoted by L: The longest linear separation will be denoted by Li. It Jsually _
: produce the longest separation for the ID lattices while for the 2D and.3D lattices, it produces the longest dlagonal lengths denoted
by Lio which are the longest separations for those dimensions. Every other diagonal length produced from L. is donated by Lp
while those produced by linear lengths, L, smaller than Li are denoted by Lq with the longest of them denoted by L. The total
nember of diagonal separation depends on the linear length. It is denoted by Ng for Ly and Np for Ly.

Using the above notations, the rules for setting the various separations are as follows
| The longest linear separation L. for all dimensions is

-1
¢ for odd lattices.

N
L, = -—2— d for even lattices and L, =
i, The number of possible\ 20D diagonal lattice separationé, from any linear separation is

L L

20 2

N;” =L and N}/’ ==L |
oA a

while for the 3D, it is

Y A )
Y] O 3 :
N‘II = 2" _I and N/'\)“ =‘: Z_I_ .
Lza A 4,=a &
1. The various diagonal Iattice .separations are given by

[ —L,, \/(‘x xa) +(|y y|a) +(| — 7'

*with the longest of them as
Ly=~Li+L+L and L, =L +1 +L .

where x, y, 2, x' y and z' retain their earlier definitions as the spatial positions so that the distances between the two bosons in -
the respective dlrectlons will determine the separatlons between the two bosons in the three directions. The spatlal positions take
values from 1,2,3,... L, for Lyand 1,2,3,... L for Lp .

! The arrangement of separatnons should be by a sequential increment of the lengths of the separations, that is, if the first
boson is placed on a selected site, say site (iii), then the other boson will be on the same site(iii) for onsnte interaction and for
intersite interactions, on

. sutes,[(l«e—l)u],[(z+l)(i+1)i].(i+1)(i+l)(i+l)],[(i+2)ii],...,[(i+—-1'—)(i+i)(i+——"—)]. .

- To enhance the neatness of the work, we adopt a convention that the various separauons shall be labelled from Lc =0,1,2,..., S~ 1,
where S'is as defined in Eqs 2.7)~(2.12). !

'RULES TO DETER_MINE THE TOTAL NUMBER OF STATES IN. THE VARIOUS SEPARA’(IONS.

it has been stated in the preceding sec;?a't the variation in the total number of states constitute the major difference
between fermonic and bosonic systems. This variation occurs as a result of the variation in the number of states in the equivalerit
- separations of the respectwe lattice sizes. Consequently the rules to obtain the total number of states in the various separatlons for
the bosonic lattices will be different from those for the electronic lattices. By drawing out the lattice diagrams for some sizes in all

thrée dimensions, it is s«_een-t_h_at if we denote the total number of states in the various separations by n.. and the number of
n@restngighbqu'r; toa ”sit"‘o"for‘these separations by P, ,, » then the total number of states in a separation will be:

= PoxK ‘ . | @)

o
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where K is as defined earlier. o \ . R v ' :
The P  of the various separatvon of any lattice in all the three dnmensmns can be obtained from the. followmg rules::

A, For any even 1D Iat‘hc& the nearest neighbour (s) for ch =0is P, =1 whlle for Lca >0, P, . 1 except for Lea = Ly
+ in which- PM =4/2. |
For any odd 1D lattice, the nearest heighboUr (s) for Leg = 0 is"'\P,'w_” =1 while forall Lcs >0, P, , =1
g, For any even 2D latice, the nearest neighbour’(s) for Leg = O is P’ = 1 for Leg =L, P W = 2;forleg = La, £} =4
., i o Le L {v ! o
forles =L, £, = 2, for Lep =Ly, ,P, , =liforiee=io, P = 2 and for Les = Li, P,_‘,“ =1/2.
For any odd 2D Iamce the nearest nelghbour (s) for Lew=0is P = 1; forLea = Ly and. Leg = Ly, me = 2: for L,(';;;‘= La
and Les = Lo, P, =4;for Lea = Lisand for Lea = Luo, B, =2. ‘
g. For any 3D cubic Iamce the nearest nelghbour (s) for Lca = Q'is P —1; for Les =L, P‘(‘ =3; for LCB —-»Lf,", P ,  =12; ;
for L/;,, = P, =6 for L,= Lj,]), B =12whenx=yzz, xsy=zorx=z#y and 24 when x #y=z;for
o i, B A1/ e T g2 ‘ 20 ' ‘ 3
L,=L], P,“ =4; for Le =L, P, s -IA, for Loy =L, P,M 6; for Loy = L)), P,W ﬂ%;fer Ly = L‘,ﬁ).
B =6when xsy=z, P, =3whonx=y=zard B, =12whenxsyszandfor L, = ), B, =112
For any odd 3D lattice, -the nearest neighbour (s) for L *-'O'is P,M =1; for Les=Ly and Lep=Ly, P,W =3; for Ly = 3"‘ .
P, =12ifor L, = Lil” , P/w =6; for L., = L, P"ft =12 whenX=y=2 X#y=z0rx=z#yand 24whenx=y =z,
30 2D 20 g _ 3 p - :
for Ly =Ly, P, =4; for Loy =Ly, B, =12ifor Ly =L}, B, =6ifor L, = L,)),P,“ =12 whenx = y = 2,
K#y=zorx=z%yand 24 when x = y % z and for Loy =1L, B, =4
By c;orﬁpas;ing these rules with those for the two‘ elecuwon problem, it is easy to observe that the P,,(w is related to that of

the electrons, P, as follows;

For even 10 lattice, when L = LL,VP;,(,” = }1 . - when L¢ >0, P }/2 CandwhenLc =L, P, e }{1 Loy

Ck
Aﬁd for any odd 10 lattice, when L¢ = 0, P;,ﬂ(‘," = fi{%, while for all " Leg > 0, P }é Ly
For even 2D and 3D lattices, When e =0, le = PL”; while for all - Lc >0, P,‘(,H = }é except for the longest
 diagonal length Lyp in which b, =1 4PL(~1«; . |

And for odd 20) and 3D lattices, when L¢= 0, P, = PZ _ while forall L¢ >0, P, = }é Lo

Alw it is easy 1o show that like the case of the electroris, the total number of states in a lattice w:ll be

ZP x K (,3.2)

, K+1 .
where «P oz «w—E«—w for bosons and P = K for electrons.

Eq (3.2) agrees wnth Egs. (2.4) and (2 6) obtained in sec.ll for the total number of states for bosons and electrons

respectlvely .
The rules obtaméd in this sec. are applied to N =10, 11, Nx N = 10 x 10, 11 x 11 and NxNxN=10x10x10 and 11 x

11 %11 and the results shown in Tables I-lil.

Table l: A 'table. showing the total number of states in the various separations for even N =10 and odd N = 11.
jee B, 00 w00 [P an |, an
Jo T 10 1 11

EIREE 190" 1 11

2. A 110 1 11

-3 11 10 1 11

4 11 1.10 1 11
18 - 12 5 1 11

' Z [)/-'.‘u =5 1/2 zn/«'/f =55 Z [)’l('ll =6 Z n/‘('lf =66
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Table ll: A téb?e showing ‘the iotal number of states in thé various sepa"rations for gven N ﬁ( N=1i0x10and odd N x N=11 X 11
Los | p o) n, (107 | P A (1) '
0 i e i 121

1 3 200 172 247

2 2 200 2 242

3 2 200 ) 247

4 3 400 4 484

3 2 200 T2 242

6 2 1"200 ) 242

7 4 400 4 T 284

8 4 400 3 484

9 3 200 2 242

10 2 200 2 242

1 4 400 T2 484
12774 400 4 484

13 4 400 4 484

14 |2 200 2 242

15 17 100 Z 242

16 2 200 2 242

17 2 200 4 484

82 500 4 484

19 2 200 4 484

20 T 50 2 242

nP, =50 |¥n, =550 |zP =61 |ZIn =7381

Table ill: A table showing the total number of states in the various separations for e.vé,n NxMNxMN=10x10x 10 and odd N x N x

N= 11 X 11 x11.
beo F,, o) . (109 1y 119 ., (419
0 i 1600 i 1337
i 3 TT3000 3 3993
? 6 6000 6 7986
3 ) 40600 ] 5324
4 3 3000 3 3993 ‘
5 12 12000 12 15972 il
8 12 12000 Y 15972
7 8 6000 6 7986
8 12 12000 12 15972
) 4 4000 4 5324
10 3 3000 3 3693
11 12 12000 12 15972
12 12 12000 12 15972
13 iz 12000 12 16072
14 24’ 24000 24 31944
15 12 12000 12 15872
16 3 000 ) 7986
Y 12 12000 12 15972
18 12 12000 12 15672
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18, S (T R A TR
30 ’ 3 3000 . 3 3563
7 T2 T 1z000 T T isg72
2 B 000 2T | 15972
23 12 , " 12000 ' , 12 | 15972
34 24 ‘ 24000 24 37944
25 12 o - 12000 ' 12 . 15972
% 13 T a0 12 - 15972
37 24 24000 ' 34 31944
38 2T , 24000 T ' 31944
9 12 i 2000 12 T ise72
307 6 000 G B 7986
31 T2 12000 ’ 12 CTT8972
32 12 12000 . » 12 TTT15972
33 12 13600 TR 15972
34 i 4000 T 4 5324
35 2 1500 ‘ 3 ‘ ‘ 3993
36 6 6000 12 , 15972
37T 6 6000 12 15972
38 3 6000 12 15972
39 12 12000 T 31944
40 6 8000 2 15972
41 6 6000 127 TTisg72
Iy 13 12000 ! 31944
43 T2 12000 ' 24 ’ 31944
44 3 ‘. TT8000 2 15872
@5 6 6000 12 15672
4 12 12000 34 T 31944
&7 12 TTTTTR000 24 31944
8 Tz 12000 2 37944
19 6 76000 12 15972
50 32 1500 6 ~ 7986
51 3 ' 3000 12 - 15972
52 ) 3 3000 12 15972
5 3 3000 _ P E ' 15672
54 ‘ 3 3000 ' 2 15672
55 12 500 4 5324
§;P’-"~ =5001/2 5w 2500500 ZP""" = 666 s - gegass |
CONCLUSION -

Physicists rarely consider systems of more than two interacting particles, unless they skip directly to infinity (Goldstein
2002). The method we have developed here has extended to bosonic systems our quest for a method to obtain the states of any
two particle interactions on any lattice size in all the three dimensions. It will now be straightforward to extend the highly simplified
correlated variational approach under the Hubbard Hamiltonian to bosons with some maodification of the Hamiltonian. , This is
expected to provide an insight into the physics of Bose Einstein Condensation. We have commenced such an investigation and a
preliminary report is ready (Akpojotor and Ojobor, 2005).
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