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METHODOLOGICAL CONTRIBUTION TO CONTROL
HETEROSCEDASTICITY iN DISCRIMINANT ANALYSIS STUDIES
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ABSTRACT

We describe for two groups, the process of establishing an hetéroscedastic model in Monte Carlo discriminant
a..alysis studies. The simple model proposed allows, by the linear transformation, to extend the results of discriminant
analysis studies to a large variety of situations. The heteroscedasticity degree of the model is appreciated by a
parameter defined in the study, which can be computed not only on populations but also on data samples. This mode!
can then be used to express the results of Monte Carlo discriminant analysis studies as a function of the
heteroscedasticity degree observed on data samples.
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1. INTRODUCTION

Discriminant analysis is a statistical method whose objective is to define an allocation ruie to classify an unknown
observation in one of the g groups known as a priori, The rule is established on p characteristics or variables

observed on the g populations or samples related to the different populations. In many cases, this allocation rule can

misclassify observations, so that an error rate is associated to each classification rule established. The error rate can
be estimated in practice by several methods proposed in literature (McLachlan, 1974, 1992 ; Efron, 1983 etc.). One of
the relevant topics in discriminant studies is the comparison of classification rules or error raies -estimators for
homoscedastic or heteroscedastic models. ‘

The problem of how to simulate heteroscedastic model in two-group discriminant analysis has been addressed. by
many authors (Gilbert, 1969, Van Ness, 1979, Marks and- Dunn, 1974, Snapinn and Knoke, 1989 etc.). However, the
heteroscedasticity parameter proposed iii these studies cannot be computed on data samples. So, these studies have

limited use in practice because the effect of heteroscedasticity is related to the parameters of the populations, which
are usually unknown to the user.of discriminant analysis.

We propose here, for two-group heteroscedastic model, a simple parameter, which can be determined for the
‘populations as well as for data samples.

2. Lineartransformation

Let's define two p-variables populations, with mean veciors p,(i=1.2) and covariance matrices %, (i=1,2) .
Suppose A, any p-symmetric matrix and let's m a p-vector and V| a diagonal matrix so that:

X, =AA' |, p,=Am-+p, and La=AVA . 2.1
For any vector x belonging to population 1 or 2, let's consider the linear transformation:

L = AT (x-py) . (2.2)

The distribution of random vector y in population 1 has mean vector § and covariance matrix I . In population 2, the
mean vector and covariance matrix are respectively m and V.

Based on the invariability of the classification rule when applying the transformation (2.2) on observations, the
conclusions of discriminant analysis results related to observations vector x are also valid for vectors p .
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L@@'s wnsadea’ the' @bservatlons y s0 that, for p@pui‘atmn 2, we have:
= (m.0... .0)’ "and 'V, adiagonal matnx with vector v of diagonal eiements SO that

v,= (>0) f@r 1_ » .k and v,=1 for i= k+1 '(k_ ép ) (3.1)

\'n (3 1), A is cons ndered as.an hetero§cedast!mty pgrameter of the model and A= corresponds to nomoscedastluty

By comsldermg the snmple model study, censtltuted of vector ¥ such as deflned it |s possnble to cover a large variety
of real world problems with the inverse ot the lmear transformatron (22).

Th@ means veciors and covanance matrices of" the drstrmutton of random vector y when applymg this linear
transformatuon are linked by the relations (2.1). Some. remarks comé out of theses relations: ‘

. singe ‘A cdn be any matrix,- %, can take aii poss’ible‘forms of covariahce matrix; '
- since “X and k., in V can take different values, I, can also take different forms.

4 Apm%iaﬁan @f the heteroscedasticlty degree of the model

To aaprecuate the heteroscedastncnty of the model the “‘parameter X is' not useful in practlce because it carmot be
measured on data samples So it'is necessary to find another parameter dependmg on A, which will allow to
apprecnate the heterosCedastncnty degree of the model.

We then define a- parameter I" for two covariance matrices Z. and &, , as:

- j’;m (Z, NZD,

where Z is the pooled covarlame matrix of the modei For data samples, this parameter can be estimated by
replacing the thecretical covanance matnce.s by their estimated values.
In the case of random vectors y or their linear transformatlons x, the parametem [, k and A are hnked by the

rélation:

@

T(h 0=k [(Ml) }

4n

where & and ), are the parameters defined in (3.1). In the case of homoscedasticity, I'(1,k)= 0 for any value of

k

Bigof : far random vectors y the covariance matrices in populations 1 and 2 are respectively I and V' (defined in -

‘\‘(3;1));«%6 pocled qovar{lance matrix DI of the mdd{el is then a p-diagonal matrix with diagonal vector 7 defined as :

T ;‘%’iﬁ%m for stk and 7= 1 for i=k+,.,p (ksp)

We have then, |1[=1, |V | = ﬁvl, =M IR []r = (4.2)



mmmmmmwmm mmcsmsmmmmscmmmmvsnssmmss o | 109

VL L [y
“Biasedon(42 F()“k) lnl 5 ln!Zl kl[ i

- Figure 1 gives different curves of [ versus A for some values ‘of k. It can be noticed from this figure that, for each
_curve, the more the value of A is far from 1, the more T {A)is high. It can be then notlced that:

[ (k) = kln b =Tk @3)

Moreover, for a given value of k, the value I'(A). is insensible to the different pOsition‘s that can be taken by the k-
parameters A on the diagonal of the matrlx V. For example if k=2, the dcagonal vectors v, -(7» Al 1')' and
vy=(A 1A l) lead to the same value of ['(). }
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Figure 1. Curves of I' versus A for some values of & N

5. CONCLUSIONS AND LIMITATIONS

In- dnscnmmant analysis studies, the method used to obtain populations with control of mean vectors and covariance
_.matrices: depends on‘the hamoscedasticity or the heteroscedasticity of the model. In the case of the homoscedasticity,
, the mverée of ||near transformatuon (2 2) applied to observations vector y allows to cover all situations in practlce
‘ ‘But,.in the. case of heteroscedast:city we do not know a linear transformation that can transform any heteroscedastic
.model to the sumple model constituted of Y, (0, I) and Y,(m.V) proposed above. The linear transformation

applied to tms snmple model study leads to two populations whose mean vectors and covariance matrices are linked
by the.relation {2.1). Nevertheless, this model allows to extend the results of discriminant analysis studues to a large
variety of reél world problems, which are in our opinion’ sufﬁment for Monte Carlo experiments.
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In Monte Carlo expenments the chou:e of m and ] values depends on the aims to be reached by dlscnmmant
analysis studies. The choice of I" values can be done on.the basis of some values of the power function of the
homoscedasticity test related to [*. This power furiction can be established by simulation. In the case of m, this
choice can be done on the basis' of MAHALANOBIS distance between the two populations when -the model
considered is homoscedastic. With heteroscedastic model, this choice can be done on the basis of the distribution of
the first variable, the desired overlap of the two popuiatlons for this variable and the value of T ..

Since it is possible to compute [ on data samples, the Monte Carlo experiment related to discriminant analysis can
take into account the effect of heteroscedasticity on-a model and in empirical comparison of classification rules for
example, the effect of heteroscedasticity on the performance of rules can be related to the estimated value of I’
determined on the data samples.
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