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ALSTRACT

We afternpt (o classily miaraction of nonilinear optical pulses ihat propagate in forrn of solitary waves in
single mode optical fibies wo sty waves launcized, by way of incidence, into an opiical fibre form
a single pulse if the pulses are in-phase as understood from results of inverse scattering transform
method applied to the cukic noilinear Schrodinger equations, (CNLSE's). The single CNLSE is then
understood to describe evolution of coupled pulses identified with one optical wavelength. More
general physical implications abound such that coupled nonlinear Schrodinger equations, (NLSE's),
have to be used to desciibe dynamics of the coupled pulses as in the effects of cross-phase
modulation, {XPM), and phenomenon of birefringence. Our governing NLSE's have the guintic terms.
Using a finite-difference method that coinbines forward- and central-difference approximation
- schemas, we give results of numerical simulations of coupled in-phase pulses in single pulse system
of the NL3E's, Simulations aie also given for the XPM in presence of walk-off from analytical restilts.
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INTRODUCTION

Ceontainly, anarves of couplod pulses, in monomode opticai fibres, constitute a wider arsa of
research efforts. Vhe efforts are necessitated by phenomenon of dynamics of coupled nonlinear oplical
pulses which have more device modelling and manufacturing applications, particularly, in opical
comimunication systems (Agrawal, 1995; Chaudhry and Moris, 2000). Considerable attention, in this ares,
continues to yield many more newer theoretical (Yeh and Bergman, 1999) and experimental resuils
{Starcdumioy, et al., 1998).

It is inferred from theoretical studies that the nonlinear Schrodinger equations, (NLSE's), may
be single ut coupled depending on the-dynamics of the pulses involved (Usman, 2000}. A single NLSE is
more approiiate to describe the physics of two or more coupled pulses if it is assumed theoretically or
experimentally that the pulses have the same magnitude of carrier optical wavelength. in this case, it may
be supposed that the pulses form a single beam of solitary waves or soltions providing that the opiical
fibre allows the pulses to remain in the same state of wave polarisation. According to the inverse
scatiering method, (ISM) as discussed in (Agrawal, 1995; Desam and Chu, 1992), which has been
confirmed by the variational approach (Anderson and Lisak, 1985), the puises will interact with each other
as classical particles. Numerical approach gives credence to this, with an inferable proviso that the puisas
will have to be in-phase (Hermasson and Yavic, 1983; Desam and Chu, 1992).

From practical stand point, however, there are many more physical situations such that
coupled NLSE’s are inevitable to explain the physics of the coupled pulses (Agrawal, 1995; Usman, 2000;
Desam and Chu, 1992). These can also be subclassified into two: cross-phase modulation phenomenaon
that is associated with coupled pulses that propagate with different optical wavelengths and thus tend to
walk-off from one another; phenomenon of birefringence is the other one of which two optical pulses
would copropagate with the same optical wavelength, but differ in polarisation states. The former can be
practically reaiised in pump-probe nxperimaents (Agrawal, 1995; Starodomov, et al., 1998; Agrawal, et al.,
1989) or as in communication systems of pulse amplification wherein the second pulse is generated
internally as a consequence of the gain sustained by stimulated Raman scattering (SRS), (Agrawal, 1995;
Desam and Chu, 1892). The later is also ubiquitous in practical applications (Usman, 2000).

Based on the forqone bnef classification of pulse coupling, the purpose of this communication
is o illustrate both the in-phase coupling of two pulses in single NLSE and the coupling of two pulses that
have different opfical wavelengths thiss requiring coupled NLSE's. For the single NLSE, simulation resuits
will be compared as obtained from data of cubic noniinear Schiddinger equation, (CNLSE), and cuibc-
quintic nonlinear Schrodinger equation, (CQNLSE) with application of a finite-difference scheme (Usman,
2000; Cowan, et. al.,, 1986). Simulations will also be given to illustrate how walk-off and XPM balance
each other, in maintaining coupled optical pulses distortionless in profiles, from analytical results of a new
coupled systermn of CQNLSE’s (Llsman, 2000).
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Propagation equationg

The governing equations for the physics of propagating pulses are derivable from the Maxwell's
equations, in differential forms, by several methods (Agrawal 1985; Kumar, 1990). In dimensionless form
the equations are
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Equation (1) is the CQNLSE for the single pulse systemn; equations (2) are the new coupled CQNLSE's for
wo copropagating pulses of differing optical wavelengths (Usman, 2000).

in {1}, & = ~1 would be used for anomalous dispersion propagation, U is the dimensionless
complex field oblained from (A&7 = A(&WA, where A(&7) and A, are respectively the subsequent
complex field of puise and the input pulse whose magnitude is given by Ay = Ne(B2iAAew2tniz) g in
which |3;] is the magnitude of the group velocity dispersion parameter, Ay is the effective mode cross-
sectional area of the single mode optical fibre; N, = (Lp/Ly)">, the soliton order as related to dispersion
length, Lp, and noniinear iength Ly, so that Ng = 1 implies fundamental solitary pulse; 1, is the real pulse
duration, o = 2nc/a, the angular frequency where ¢ is the speed of light and A is the optical wavelength of
the puise, ny = 3x®/(8ny), the third-order nonlinear refractive index where x® is the corresponding third-
order nonlinear susceptibility and ng is the linear refractive index. The dimensionless propagation distance
&= 2/l where z is the actual distance of propagation in metres; the shifted dimensionless time relates to
the actual time, t, by 7= (t - 2/vg)/t, where v; denotes the group velocity. The dimensionless constart, o=
Lplw/(4r) where © is a propagation constant of separation for modal and amplitude propagation

equations (Usman, 2000); wy = (4ngBA)Y (3nnits) where n, = 5x/(16no) is the fifth-order nonlinear

refractive index as related to ¥ the fifth-order nonlinear susceptibility of the optical fibre.

In equations (2), parameters L, 4 and , have the following definitions: L= (egyplp)/Lw Where
Lw is the walk-off length between the pulses as a result of group velacity mismatch parameter egup = (Vg1
¥g2)/ (Vg1 — Vgol) = £1 such that for vy, > v, One gets egyp = +1 and egyp = = 1 if'vgy < V2. The optical
wavelengths of the copropagating pulses are A; and A,; 5, = |B22//|Ba1| Where || and |By| are the group
velocity dispersion parameters of the respective two copropagating pulses; o, = o/0; = A/A,. The walk-off
length Ly is given by
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All variables and other parameters in (2) have the same meanings corresponding to the single puise
systern of equation (1).
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Solitary wave solutions
In equation (1), by putting ns = 0, n; # 0, the CNLSE is obtained of which solitary wave solutions are

weill known (see ref. 10 of Usman, et al., 1998). For n, = 0 and n,4 = 0, solitary wave solutions of (1) are
also available (Usman., et al., 1998). Here the relevant one of the solutions has an envelope profile of the
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where Uy is the input pulseheight, 7 is the centre of the solitary wave, and 7, the dimensionless pulsewidth
is given by (Usman, et al., 1998)
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Observe that the input pulse differs from the actual pulseheight for equation (1) in contrast to the case of

CNLSE.

By applying the symmelry/antisymmetry conditions (Usman, 2000; Wadati, et al., 1982) given
by Ui(5D = & a3, agy > 0, where o, is referred to as pulse envelope factor, the solitary wave
solutions of the coupled CQNLSE's (2) are
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where the dimensionless pulsewidths (also referred (o as solifonlengths (Usman, et al., 1998a)) have the
following expressions

Ty = [2fv, @2~ v} (73)
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Other parameters are
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It should be noticed that the dimensionless peak amplitudes are
Uy = Uy, [I + B, ]W2 (10a)
Uy = Uy, [l+ 1}2]‘“/2 (IOb)

Thatis, Un and U, defined by equations (8) are not the peak amplitudes as in CNLSE.
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Numerical siriulations

For a single pulse system, the dynamics of pulse envelopes, in the absence of loss, is govemed
by equation (1) when ng 0, in a monomode optical fibre. If n, = 0, however, the CQNLSE (1) becormes
CNLSE (Agrawal, 1995; Kumar, 1990; Hermasson and Yavic, 1983). The pulse envelope of the former
has expression given by (4). The corresponding expression for CNLSE is in (Agrawal, 1995; Kumar, 1990,
Hermasson and Yavic, 1983).

I the optical fibre of cross-sectional area Agy = 13.5 um?, np = 1.5, ny =1:2x1072 (M), 1y = —
4-4x107 (V)" is exited by two first-order solitary waves (i.e., solitons) at a carrier optical wavelength A
=14 um, with B, = ~12:5 ps¥km, the coupled system of the puises has an envelope described by the
expression

-2 -1/2
() =1 ,3597{1 +0.8487 cosh( T2 -J} +1.3597 expli6, ]{1 +0.8487 cosh[ Az ]} (12)
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With n, = 0, the envelope expression is given by
, ]U(r] =sech(r —7,)+ exp[i9p]sec Wr +17,) (13)

where in {12) and (13), 6, denotes the relative phase between the two pulses (Hermasson and Yavic,
1983). The parameters, A and B, yleld an input power P, = 0-624 W if the pulse duration ¢, = {-0 ps. The
nonlinear coefficient vy, = -0-113472. Thus, the separation of the pulses is 2z; in dimensionless units. The
pulses are in-phase if 8, = 0, as will be applicable here.

To have simulacra of the interactions between the solitary pulses, we have used the finite
difference scheme detailed in (Usman, 2000; Cowan, et al., 1986). We have implemented the scheine
with equations (13) and (12) as the initial sources of data implying the input pulses for n, = 0 and ng = 0
respectively. The results, to be discussed in the next section, are displayed in Figs. 1 and 2.

@
)

q(t&)

ig. 1. Evolution plots of amplitude profiles for in-phase solitary wave interaction of two pulses, g(.£) =
U(r,E)f: (a) interaction of pulses for vy = 0, i.e., ng = 0 in equation (1) implying CNLSE with equation (13)
s the input coupled pulses; (b) interaction of pulses for vy = — 0-044 in equation (1) with equation {12) as
he input coupled puises.

_ Figs. 3 display numerical simulations from analytical results given by equations (6) - (1(
which are f,he solitary wave solutions of the coupled CQNLSE)’S (2) describi?wg the dyynaqmics o? ir(netzrac(t:gfi
of two solitary ‘waves from different sources of distinct optical carrier wavelengths, Ay and A,, in the
monomode optical fibre. The parameters no, ny, ny, A, and |B,| are the same as those of the single pulse
. System. The mode cross-sectional area Aey ~ 12:566 um?, A, ~1-6pum and [B,| ~ 35-0 ps2/km. For a pulse
du_ratlon of 1.0 ps, the input power Pg, ~ 3-7186 W if the first pulse is considered to be the probe pulse '

With those paratrieters known, other relevant parameters appearing in coupled CQNLSE’s (2) aré
obtained for fundamental propagation, i.e., N = 1. These are: B~ 2.8, o~ 0.875,p,~ 022694, and u, ~ ~
0-19858; L= ~ 4 has been used for Lp = 4Ly and egyp = ~ 1 as most likely in experimental setup where the
pump pulse moves faster. lntugtively, therefore, one can use v; = 1 and v, = 0.25, i.e., vy = 4v, is assumed.
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Fig. 2. Interaction of solitary in-phase pulses with vy = ~ 0-113472: {a) equation (13) as the input coupled
pulses; (b) equation (12) as the input coupled pulses
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Fig. 3. Interaction of puises due o walk-off and XPM. Data were oblained from Q8 = (U0 8) + Uale B3k
(a) vy = 1.0, vy = 0.25, vyy~ 0-0 and vgg = ~4-0; (b) vi = .28, vy = 1.0, ©g = §-6 and vg = 0-0.

To implement the equations for the simulacra, a shoit distance is first ativanced followed h)_v ea;gulaﬁon of
data for the resultant pulse envelope. In other words, the implementation requires some intuition of the
vectorial behaviours of the pulses.

DISCUSSION OF NUMERICAL RESULTS

We first consider the single system of coupled puises depicted in Figs. 1 and 2. In ali of the Figures, 'the
centre of each pulse has been taken to be « = 4.0 units so that the initial separation 27, = 8.0 units. As the
propagation distance increases from £ = 0 the pulses attract each other and they poalesc:e at £~ 46-0 units

corresponding to actual distance of ~ 368 km (i.e., z = Lpé = szt‘(f /|B2l). 1t may be said that soliton has

appeared enroute to reappear in the next period. Fig 1a depicts coupled in-phase solitons of the CNLSE
obtained from equations (1) by symboiically requiring n, = 0 for the 1.0 ps puise duration. In Figs 1b and 2,
. value of n4 given eariier was used.

In Fig 2a, with the value of the nonlinearity coefficient vy, as given aarlier, equation (13) was used
as the input pulse profile while in Fig 2b, equation (12) was the input pulse profile. A closer look st the
Figures is required to observe some structural difference especially, at the cutput, i.e., at the end of the
propagation segment corresponding to the fibre length & = 78.0, though, they at first appear to be
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identical. The rnore obvious physical implication, when Figs 2 and Fig. 1a are compared, is that the period
of pulse coalescence is greatly reduced for values of vy > 0 (i.e., ng 0) depending on magnitudes of
carrier wavelength A, dispersion parameter |B,, and ultimately, the pulse duration 7, That is, these
parameters could be adjusted or even chosen at any particular instance of experimental condition to give
various values of wy. Just as could be seen in Fig 1b where vy, = -0-044 was used with separate runs of
the finite-difference scheme for the two input pulse profiles given by equations {12) and (13), the Figure
depicts larger distance of coalescence as compared to anyone of Figs 2.

The fibre length used, & = 78-0 units corresponds to actual cutput length L =~ 6:24 km. Beyond
this length scale, chaotic structures develop as a result of divergence inherent in the scheme (Cowan, et
al., 1986). A method calied bearn propagation method, (BPM), (Agrawal, 1995; Desam and Chu, 1992) is

o able to tolerate larger distance. It was used for the CNLSE in {Desam and Chu, 1992) with some details
in (Agrawal, 1995), from which it couid be estimated that the coalescence length is ~ 50.4 units whereas in
Fig. 1b, the length is ~ 30.0 units due to inclusion of ng = 0. Fig. 1a closely compares with Fig. 1 of
(Hermasson and Yavic, 1983). A notable difference, however, is that the distance traversed by the
coupled solitary puises is iager in Fig. 1a.

Theoretically, it is observed that the dynamlcs of the coupled solitary waves as described by
the pair of CQNLSE's (2) is aptly, in fact exactly, given by the solutions expressed by equations (6) - (10)
in anomalous dispersion regime of propagation (Agfrawal 1995). With values of v, and v, assumed based
on thie intuition of terdency of pump pulse to move faster, it could be seen that in Fig. 3a, at the input, (i.e,,

e £ = 0), the pulses are seen already walking away from each other after, in retroaction, they have
interacted. But, the interaction effect has persisted at the input which is graphically manifested by overlap
of the puise profiles as a remnant of XPM effect through the walk-off parameter L, The delay time
between the pulses is another factor. here 7y, = ~ 4 units and zy = 0 implying a delay of 4.0 units of
dimensionless shifted time. If the delay time is increased, the overlap, at the input, would be observed to
be more prominent. Inn Fig. 3b, the envelope velocity values are interchanged with 7, = 8.0 units and 7y, =
0-0 which thus produced prolonged fength of overlap of the two pulses before walk-off could be reached.
Interaction can occur once only due to the walk-off as observed in Figs. 3, (Agrawal 1995; Agrawal, et al.,
1989). B

CONCLUSION

Interaction of solitary pulses can be modelled either in singie NLSE's or coupled NLSE’s. Single NLSE's

are used when the pulses evolve in a monomode optical fibre, with the same carrier wavelength and the

* condition operating is that they have the same polarisation. When the pulses originate from different
optical sources or differ in polarisation states, coupled NLSE’s describe the dynamics.

Here, based on results of ISM, (Agrawal, 1995; Kumar, 1990; Desam and Chu, 1992) which can
be confirmed by the variationai methiod (Anderson and Lisak, 1985), we have shown that the period of
overiappiny is larger when a finite difference scheme is used than in the results of BPM (Hermasson and
Yavic, 1983; Desaim and Chu, 1992) for coupled pulses that are in-phase in single system of CNLSE. In
the single system of CQNLSE's, afier the first overlapping {i.e., coalescence), identical to CNLSE the
subsequent overlapping period is reduced. It would be noted, however that this in-phase interact. .. i8

¢ -..undesirable in many actual optical devices, (Agrawal, 1995; Hermasson and Yavic, 1983; Desam and
. Chu, 1992) inost especially in communication applications {Desam and Chu, 1992; Dianov, et al., 1986).

One way to avoid the interaction is to put the pulses out of phase (i.e., g, = n°,). There are other methods
-of overcoming the interaction (Dianov, et al., 1986). Our efforls here are to understand the, physics
involved in the interaction with an ultimate aim to find more practical methods of circumventing the effect
from-the interactions.

As depicted in Figs. 3, the descriptions of dynamics of coupled NLSE’s (2) for two pulses that
have distinct values of optical carrier wavelengths, which we have done here are yet to be completed.
That is, the studies are still in progress on simulation for which all possible theoretical and numerical
methods would be applied and results therein compared. Thus we aim to communicate further analyses
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