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ABSTRACT\
While transformations of the Bessel function J,(z) and its zeros j, are known which convert them
\into semicontinuous matrices that represent regular summability methods stronger than the (C 1)~
mean, there is no known transformation which can convert this cylinder function dr its roots into a
method of summability more efficient than (C,r) when r>1. A solution to this problem for j has

been found. Itis proved that o, - summability, is a more efficient method of summability than the

classical method of the (C.r) - mean, forallr>1 and n > r+3
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1. INTRODUCTION

Let J(z) be the Bessel function of the first kind, ju its zeros ordered by the inequality |Re ju|
< |Re jy, k1], k 2 1, and let (C,r) be the Cesaro mean of integral ordered r > 1. Forr =1 and some .
v 2 0, the Cooke-transformation,

20%, + « (1) = aw of J, (A) represents a conversion of Jy (1) into a regular infinite
semicontinuous matrix method of summability consistent with (C,1) [Cooke (1937)]. The (O,m)-

mean t(m)vk = B(m,v) J; ”', for a certain rational function 3(m,v) of v, offers a transformation of ju

into a regular semlcontmuous matrix method, consistent also with the (C,1)- mean [cf. Obi (1986)].
Itis natural to ask whether there is an analogue of this phenomenon when r>1? Precisely, is there
(or how can one construct) a transformation of either the cylinder function or its zeros that will
represent a semicontinuous matrix summability méthod which is more efficient than the classical
/ discontinuous (C,r), when r>1?

i 4 - ,
In §2, we give a sequence of solutions Eik =q1(d<)/ G,(0) to the problem concerning the

zeros, by manipulating the special fUnction,
1 ©o,= Z/\“" (v=0;n=1).

Thfs symmétric function of j is called the Raylef'gh function of order n > 1. Our results are

\
summarized in the theorem of §3. Meanwhile, we first summarize H:)\e'basic properties of op(v).

]
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The o,(v) is of interest in many ways. It is rational in v[Kishore(1967)]: o, = ¢n/ma, Where m,
(v) = 4" [Jr=+5)""" [n/k] being the integral part of n/k, and ¢, (v) is a polynomial (called the
k=1 °

Rayleigh polynomial)' whose explicit formula is unknown. The degree d, = deg ¢, of ¢, (v) has the
surprising property that d, — d..1 is ihe total number of nontrivial divisors of n, for every n>1. The
lcading coefficient e, turns out to be the nth Catalan number (a gem of combinatorial
mathematicians). Other curious properties of (1) (which can be found in Carlitz (1363) and Obi

(1978)) include its “local” relationships with the Bernoulli and Genocchi numbers at v = & 12, and

the uncanny congruence properties of the positive integers a, = 2%" nl(n-1)lo,(0) which caught the
attention of Carlitz (1963). The involvement of o, (v) in the solution of some Riccatti type of
differential equations can be found in Kishore (1967). Its role in analytic continuation of
holomorphic functions into partial star domains is given in Obi (1987). The real-analytic status of
oy (V) on v>-1 has been given in Obi (1980). In 'particular it is of the completely monotonic (cm)

subclass of real-analytic functions on v>-1, that is,(-1)™ o™ (v) >0 ori v >-1, Vm 2 0. The

inequality,

" (v )\< sn™ o, (v) (cf. Obi (1975) on v > 0, where s = s(n, m) =n(n + 1) ... (n+m-1),

with s(n, 0) = 1, will be used in the sequel. In §2 we give the basic lemmas that will be needed for

the main theorem.

2. BASIC LEMMAS

Let A and B be two matrix methods of summability. The method A is said to be at least as
efficient as B if A is consistent with B, and a sei‘ieé W is A-bounded (i.e. its A-transform A(W,x) is a
bounded function on x>0) whenever W is B-bounded (cf. Cooke (1950) and Obi (1988)). If Ais at

lcast as efficient as B and sums a series not B-summable, we will describe A as being more

efficient than B. Now for the Rayleigh function on(u), let ¢ and o,(W,u) be the matrix and the

series given by

|u] . GII(T[/() g
@)  Su T o (0) ((uk) e IR xZ" and o, (W, u):}:"k’ (u>0),

where W = Z Z, . If limo, (W,u)= Y exists, we will call y the o,-sum of W (or declare W as
ol u-0

being o, -summable to Y).
We will prove in Theorem 1 that oy,-summability is a more efficient method of summability

than the classical method of the (C,r)-mean, Vr > 1. The Lemmas of this section are to that end.
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Lemmai Foralin>1,
@) 0<g<n™" J(uk)"™ (u, k>0).
Proof Let us consider the structure theorcm of Kishore for the Rayleigh functions (cf. Kishore

(1964) whereby o, can be expressed in the form,

cfn)

(4) o, (u) :2;{22‘“""" p (W)}

" Catalan number, and

(4a) r[(LH‘b,,)“’( <b; <n;1<a; <n)

is a polynomial of degree 2n-1 for each i. The by like the a j, are integers. Now since
/1

L(’(/ =2n-1, then from (4) and (4a), we get, on u >-1,
J=)

@ s 2 I

c ‘
N )N, 2n 2n-1
EDIARCES VG (VR Yy
i1 .
But since 1< by < n , we similarly see from (4a) and (4) that

2]
(4c). (U) > (4] (l[—l—”) . ) (u=1)
Combining (4b-c), we get

e

e < B .
(%) o \” i ”)_// l /l( ) 4/1( )7/14 (u>-1)

In (5), consider the first inequality, with u=0; the second with u there replaced by uk (for any u,
k>0). ltfollows that

(1//\) ”?-/I“l < ”21/~—l
U(O) (1// 4—])”” -l (u /)% [ as required.

o bl
For the next two lemmas, hy, (u) is the first column matrix, & 1 -

+2

Lemma2 Letre N,andn > Then on u > 1, /"Y(u) is of the order of the function

-(r+a+1)

u , where a is any constant chosen from 0 <a <2n - (r + 2).
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;o2

Proof Fixr e Nand n > . Letu>1, andlet

sn,m=nn+1)y(n+2)... n+m-=1)ifm=1,s(n,0)=1.

Then (3a) together with Lemma 1 yields

Lol () o SO+ hn' o, (1)
o, (0) a, (o)

sCayr+ D!

20 ’

i

= s(n, r+1)n™" h, (u) <

the last inequality being due to Lemma 1. Since 2n-(r + 2) > 0 by hypothesis, we can select a

r+a+1

number, a, such that 0 < a < 2n-(r + 2). Multiplying both ends of (6) by u™, " we get

s(i, 4+ D™

2n-(r4+21a)

4

e g (1/)1 <

Ga) u !

2n-(r+2+a)

By the choice of a, 2n-(r+2+a) >0, and so in the interval u > 1 we also have u > 1. Hence

on u > 1, the right side of (Ga) is < s(n, r+1)n?"""

. I
(ril) _
) = O(——7); as required.
1

=D, a constant, with respect to u. Thus

. S |
Lemma3  GivenreN and n>-—— we have hy (u) = o(—) asu - .
2 1

Proof Lemma 1 applies again: When u>0,
,\/1]< B . : e .
O<u'h, (u) = U™ Su R = VWP 5 0 as u > o, since 2n-(r+1) > 0 by

data.

: . C(l‘) N
" (w)is its (C r)-transform, so that &, ~7the

it

N
As usual, @ = }_4 @, will be a given series, C
k=0

(C,r)-sum of ® as m — .
Lemma4  Given reN suppose h: (0,) — R salisfies
(a) he C*'Y (0,0);
1 (S VAR w_l_~
(b)  for some a>0, 1! (X>—qx”"” > on x> 1;
()  h(x) > 1as x —0, but x'h(x) - Oas x —».

Suppose finally that o is such that

S(x) = Z/’l(,\‘k)a)k
k=1



A NEW SUMMABILITY PROPERTY OF THE ZEROS OF BESSEL FUNCTIONS 469

exist at every x > 0, and C!” (w)is either (i) convergent as m —>e0, OF (i) finitely oscillating as m

—w». Then

lin

(7) Under case (i), +— ¢ S(x) = (C,r)-sum of w;

and

) li fin
(7a)  Under case (ii) '\T,(, S(x) and '\.__10 S(x) are finite, and S(x) oscillates finitely as x — 0.

This property of the Cesaro means is well-known and its proof may be found in e.g. Hobson

(1921) or elsewhere.

)
Lemma5 If o is (C,r)-bounded, then for every ;7>Lg;,a,,((u,11)is absolutely convergent at

SETEN

each u>0.

2. If » is (Cr)-bounded, then ox = O(k’), and so we can select a

Proof Let reN and n> l‘;

constant b, such that (Jok|/K")<b, for all k = 1. If now u>0, then from Lemma 1,

o on 201
> gl <l |+ D =5
Sk K o] " 2n I
k=0 o (uk)
20-1 o
n .)CU K l
= |y + - —
, l HZH | ;1 /CI/C 2a—-(r+1)
'7/1 |
20-(r+1)]
<\(q) Dl

which is finite since 2n-(r+1) > 1 from hypothesis. Thus oy, (o, U) is absolutely convergent as

asserted.
The inequality obtained in the above proof will be used again, and we identify it by (8) as

<42
follows: If r 21, and w is (C,r)-bounded, then for all »n >'——;i and u >0,

(8) IG“ (o, u)! < }(onl + :——T
u

where ¢, > 0 depends only on n, r, and is independent of u.

3. COMPARISON WITH (C,r)

We now match up o, with (Cr).
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Theorem 1
(a) [First comparative Efficiency] For all r > 1 and ;z>%g, the on- summability

mcthod is at least as efficient as the (C,r)-mean.
-

) [Sccond Comparative Efflcmn:y] If 0> then on is more efficient than (C,r).

A—

Thus the summation of divergent series by the oy,-matrices is more efficicnt than the

(C,n-mean for almost all .

2
[Note: A counter-example with gl = - — and the (C,5)- summable series
' (k4 1)k +2) ‘

v Y /‘ . 4 .l ’)
24(“1) (k+1)", explains why we want 7 > ;“
k=0 -~

4.0 .
Proof Fixr=1. Take any n > AT (C,r)-bounded, then by Lemma 5

el

3, a0, o
aa (,u) = E e Wy exist for u>0.
k=)

Writing Iy, (u) = op(u)/ 6,(0), we ob{ain from Lemma 2,

v/l (”) O(“ b ) .on u=1,

where a is fixed in 0<a<2n-(r+2). By Lemma 3 we also have u'h, (u)—0 as  u-> «». Furthermore,

since h, is completely monotonic on u > -1, then hy, € C"™M10,00) and h, is of course continuous at u

Tim ) lim () . '
= 0, with hy0) = 1. Sihce o is (C, r)-bounded \Iln C,,’, (@and '\T]ﬂcm (CU)are finite, and the

sequence ! (w) osanates ﬁmtely as m — , unless it is convergent. If, in particular, w is (C,r)-

i

summable, then ' (w)is convergont as m — . Thus all the conditions of Lemma 4 are

n

satisfied by h = h,, for any n >(r++2)/2. Hence (7) and (7a) apply to.

L/z (1//\)((), "o =0 (w)

k=0 k=0
By (7), the o,-summability will be.consistent with (C,r) when n > (r+2)/2. By (7a), oa(o,u) is
bounded near the origin (from the right). Pick a > 0 such that:

i On 0 < u <a, au(m,u) is bounded. Applying (8) to the interval u > a, we obtain:

C
i [Gu(m,W]<] o] + K’" . By (i) and (i), oa(m,u) is bounded on all of O<u<eo.

This proves (a).
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To prove (b), we will show instead that if r>1 and n>(r+2)/2 then o, is more efficient than
(C,r-1). For if in the latter we replace r by r+1, we obtain (b). So, assume r >1 and n > (r+2)/2.
Then by Theorem 1(a) the o,-method is consistent with (C,r), and hence with (C,r-1). But since
(C,r) can sum a séries not summable (C,r-1), so can o,. Hence o, is strictly stronger than (C,r-1).
It remains to show that whenever o is (C,r-1)-bounded, it is o,-bounded. But by part (a), since we
assumed above that n > (r+2)/2>[(r-1) + 2}/2, then o, is at least as efficient as (C,r-1). Hence
on(o,u) is bounded as desired. This completes the proof of (b) and the theorem.

Remark The first method of summability related to J, (z), given by Cooke (1937), is of the

“(C,1)-scope” only. The methods of this article are of every (C,r)-scope, for all r>1.

*
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