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ABSTRACT

In this paper, some fixed point theorems were proved, to show the existence and uniqueness of a fixed point under
some weaker contractive conditions in a complete G-metric space settings. Moreover, we obtain the G-Cauchy

sequence for the unique fixed point. Our results extend and refine some recent results in the literature.
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INTRODUCTION

Most of the problems that occur in life are
nonlinear in nature but fixed point theory depends on the
linear structure of normed linear spaces or Banach
spaces setting. However, a nonlinear framework for
fixed point theory is a metric space embedded with a
structure.

In 2017, Rauf et.al. [10] introduced some new
implicit Kirk-type iterative schemes in generalized
convex metric spaces in order to approximate fixed
points for general class of quasicontractive type
operators. The strong convergence, T-stability,
equivalency, data dependence and convergence rate of
these results were explored. Their iterative schemes are

2. PRELIMINARIES AND DEFINITIONS

faster and better, in term of speed of convergence, than
their corresponding results in the literature. The results
also improved and generalized several existing iterative
schemes in the literature and they provided analogues
of the corresponding results of other spaces, namely:
normed spaces, CAT(0) spaces and so on.

Mustafa and Sim in 2006, [8] Introduced a new
notion of generalized metric space called G-metric
space, after proving that most of the result concerning
the topological properties of D-metric space were
incorrect. To repair this setback, they gave a more
appropriate notion of a generalized metrics, called G-
metric space. For more details on G-metric space, see
[6 & 9] and the reference
therein.

In this section, we recollect some basic definitions and overview of the fundamental results.

Definition 1 (Mustafa and Sim [8]): A G-metric space is a pair (X,G) where X is a nonempty set and G : X x X x
X = [0, ) is a function such that, for all x,y,z,a € X, the following conditions are fulfilled:

(G1) G(,y,2)=0 ifx=y=z
(G2) G(x,x,y)>0forallx,y € Xwithx # y;

(2.1)

(G3) Gl,x,y)<G(x,y,z) forallx,y,z€ Xwithz #y

(2.2)
(2.3)

(G4) G(x,v,2)=G(x,2y)=G6(y,zx)
(G5) G(x,v,2) <G(x,a,a)+ G(a,y,2)

(2.4)

In such a case, the function G is called a G-metric on X.

(2.5)
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Lemma 2.1 (Mustafa and Sim [8]): Let (X, G) be a G-metric space. Then, for any x,y,z,a € X, the following properties
hold:

1. G(x,y,2) <G(x,x,y) + G(x,x,2);
2. G(x,y,z) <G(x,a,a)+G(y,a,a) + G(z,a,a);
3. |G(x,y,2) — G(x,y,a)| < max{G(a,z 2),G(z,a,a)};
4. Ifn > 2 and x4, x, ...x, € X, then
n-1
6Cean ) £ ) G Xir, Xivn)
i=1
and
n-1
G(xy,%q, %) < Z G (x4, X Xi41)-
i=1
5. IfG(x,y,z) =0,thenx =y = z;
6. G(x,y,z) <G(x,a,z) + G(a,y,2);
7. G(x,y,2) sg[G(x,y,a)+G(x,a,z)+G(a,y,z)];
8. If x € X{z,a}, then |G(x,y,2) — G(x,y,a)| < G(a,x,2); and
9. Gx,y,y) <26(x,y,2).

Definition 2.2: (Agarwal et.al. [1]): Let (X,G) be a G-metric space, let x € X be a point and let {x,} £ X be a
sequence. We say that:

1. {x,} G-converges to x, and we write {x,} = x, if lim,, . G(x,, X, x) = 0, that is, for all &> 0 there exists
n, € N satisfying G (x,,, x,,, x) < € for all n,m € N such that n,m > n, (in such case, x is the G-limit of {x,,};

2. {x,} is G-Cauchy if lim, . G(xy, Xy, x,) =0, that is, for all >0 there exists n, € N satisfying
G (xp, Xm, xx) < € forall n,m, k € N such that n,m, k = ng;

3. (X, G) is complete if every G-Cauchy sequence in X is G-convergent in X.

Definition 2.3: (Agarwal et.al. [1]): Let (X, G) be a G-metric space, let {x,,} € X be a sequence and let x € X. Then the
following conditions are equivalent.

1. {x,} G-convergents to x;

2. limy, e G (X, Xy X)) = 0;

3. limy, ;e man G (X, Xm, %) = 0;

4. limy, ;e msn G () Xy X)) = 0;

5. 1imy, o0 G (X, X, X)) = 0

6. limy, ;e man G (X, X X)) = 0;

7. 1imy, ;e msn G (), X, X) = 0;

8. lim,, . G (X, Xp41, Xp4q) = 0 @nd lirnn,m—>°°,m>n G (X Xny1, Xm) = 0.
Definition 2.3: (Agarwal et.al. [1]): Let (X, G) be a G-metric space. We say that:
a. A mapping T : X - X is G-continuous at x € X if {Tx,,} - Tx for all sequence {x,} € X such that {x,,} - x;
b. A mapping F : X™ - X is G-continuous at (x4, x5, ..., x,) € X" if

{FOet xT o, i) = F(xq, X3, ) X0)

For all sequence {(x{*, x7*, ...,x1)} € X™ such that {x]"} —» x; forall i € {1,2,...,n};

c. a mapping H : X™ —» X™ is G-continuous at (x,x, ...,x,) € X" if t]* e H : X™ - X is G-continuous at (x,x,, ..., )

for all i € {1,2,..,m}, where /" : X™ — X is the ith-projection of X™ onto X (that is, n/"(ay,ay, ..., a,,) = a; for all

(ay, ay, ..., ay) €X™).

Theorem 2.1: (Agarwal et.al. [1]): If (X,G) be a G metric space. Then the function G (x, y, z) is jointly continuous in all
G G

three of its variables, that is, if x,y,z € X and {x,}, {y..}, {z.} € X are sequences in X such that {x,} - x,{v,} = v and

G
{Zn} - Z, then {G(xm' Ym; Zm)} - G(X, yr Z)'
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3. MAIN RESULT
Here, we study some results related to unique fixed point p, and show that mapping T is G- continuous at p. We shall
establish the results in sequel as follows.

Theorem 3.1: Let (X,G) be a complete G-metric space and let T : X - X be a mapping satisfying the following
conditions:

G(Tx,Ty,Tz) < aG(x,Tx,Tx) + G (x,y,7) 3.1
G(Tx,Ty,Tz) < aG(x,x,Tx) + pG(x,y,2) 3.2

Forall x,y,z € X where 0 < a + ¢ < 1, then T has a unique fixed point p inT; Tp = p.

Proof: Let @ and ¢ be a contraction constant of the mapping T; let x, be an arbitrary but fixed element in X. Define
the sequence of iterate {x,} in X as

Xn = T"x, Foralln>1 3.3

If x,41 = ¥ = 2, and since T is a contraction satisfying (3.1) or (3.2) we have
G (Xn, Xni1) Xnp1) = G(Txn_q, Txn, Txp) 34
< aG (xn—l! Xn, xn) + (pG(xn' Xn+1, xn+1)
=aCG(Txp_2, Txp_1,Txp_1) + @G (Txy_1, Txy, Txy)
< aZG(xn—Z!xn—l!xn—l) + (pZG(xn—l!xn! xn) 35
= aZG(Txn—Sr Txyp_2Txp_3) + (sz(Txn—Zr Txp_1,Txy_1)
< @G (X3, Xn_g, Xn—z) + @G (Xp_3, Xp_1, Xn_1)

Continue iteratively leads to

< aG(xg, X1, %) + @G (xq, X3, Xx3) 3.6
Hence
G(Xn Xnt1, Xng1) < @G (Xn1, Xp, Xn) + ™G (X, Xnp1) Xnt1)
and
an
G(xn'xn+1rxn+1) = m G (Xn-1,Xn, Xn) 3.7

“"_ Foralln € N where 0 < k™ < 1we have

If we let k™ =
1-¢

G(xn! xn+1!xn+1) < knG(xn—lrxn!xn)
< k™G (xg,%1,%1) 3.8

For all n,m € N,m > n, we have
G(xn! xm!xm) < G(xn: xn+1rxn+1) + G(xn+1'xn+2'xn+2) + -t G(xm—l! xmrxm)
< k"G (xo,x1,%1) + kn+1G(xo,x1,x1) + ot km_lG(xo‘x1;x1)
< KM+ R 4 e+ BTG (g, X, X1)

Applying sum of geometric progression we have

kn
G (Xn, Xn1 Xn41) < EG(xOlerxl) 3.9
lim G (xp,, X, X)) = 0 as n,m — «. Therefore the sequence {x,) is G-Cauchy sequence.

To show the uniqueness, suppose p # g such that Tq = q. Then
G(p.q,9) <aG(p,Tp,Tp) + ¢G(p.q,9) 3.10

This impliesp = q.m

Theorem 3.2: Let (X, G) be a complete G-metric space, and let T : X - X be a mapping satisfying (3.11) for which
there exist a monotonically decreasing function a, b, c from (0, «) into [0,1] satisfying a(t) + b(t) + c(t) < 1 such that,
foreachx,y € X; x #y.

G(Tx, Ty, Ty) < aG(x,y,y)G(x,Tx,Tx) + bG(x,y,y)G(y, Ty, Ty) + cG(x,y,y)G(x,y,¥) 3.11
Equivalently,
G(Tx, Ty, Ty) < aG(x,x,y)G(x,x,Tx) + bG(x,x,y)G(y,y,Ty) + cG(x,x,y)G(x,x,y) 3.12

Then, there exists a unique fixed pointp in T: Tp = p.
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Proof: For all x, € X and Picard iteration x,, = T"x, n>1,let x,,; =y, and since T is a contraction satisfying
(3.11) or (3.12) we have

G (X, Xn41, Xn41) = G(Txp-q, Txxn, TXy)
< aG(xn—lr Xn, xn)G(xn—lt Xn, xn) + bG(xn—ll Xn, xn)G(xnr Xn+1r xn+1) +cG (xn—lr Xn, xn)G(xn—lr Xn, xn)
=aG(Txp_3, TxXp_1, Ty 1)G(Txp_5, Txp_1, Txp_1) + bG(Txp_y, Txp_1, Ty 1)G(Txp_1, Txp, Txy)
+ G (Txp—2, TXp—1, TXn-1)G(TXp_3, TXp 1, Txp—1)
< aZG(xn—Zr Xn—1 xn—l)G(xn—2: Xn—1, xn—l) + bZG(xn—Zr Xn—1r xn—l)G(xn—l! Xny xn)
+¢2G (p_z, Xn—1, X-1)G (2, Xn_1, Xp_1)
= a*G(Txp-3, T2, TXn_3)G(TXy_3, TXp_3, TXn_2) + b*G(Txp_3, TXp_3, Tp—2)G(TXp—3, TXpp—1, TXp_1)
+ c?G(Txp_3, TXp-2 TXp_2)G(TXp_3, TXn_3, TXp_3)
< aSG(xn—3r Xn—2, xn—Z)G(xn—3r Xn—2, xn—z) + bZG(xn—3r Xn—2» xn—Z)G(xn—2: Xn—1, xn—l)

+ 26 (xp_3, Xn—2) Xn_2) G (Xp_3, Xn_2, Xp_2)

Continue iteratively in this manner, then
G(xn! xn+1!xn+1)
< a"G(xg, X1, x1)G (xg, X1, %1) + b"G (x0, X1, X1) G (X1, X5, X3) + "G (X0, X1, X1) G (X0, X1, X1) 3.13
(@™ + c™)G(xq, %1, %1) G (x0, X1, X1)

- 1 - bnG(xl,xz,xz)

By equating j" =a"+c", g"=1-b" and a" = ;—:. where 0 < a™ < 1 We have

G (X, Xn41, Xne1) < @G (xg, X1, X1) 3.14

Foralln,m € N, m > n, we have
G(xnrxmrxm) < G(xnrxn+1' xn+1) + G(xn+1' xn+2rxn+2) +ot G(xm—lrxm' xm)
< aG(xg, %1, x1) + a"TG(xg, %1, %1) + -+ @™ LG (%0, X1, X1)
<(@*+a™l+ -+ a™ G (xg, xq1,%1)

n
G(Xn) Xnt1) Xn41) < f_—aG(xo; X1,X1) 3.15

lim G (%, X, X)) = 0 as n,m — oo. Therefore, the sequence {x,,) is G-Cauchy sequence.

To show the uniqueness, suppose p # q such that Tq = q. Then
G(.q,q9) <aG(p,q,9)G(p,Tp,Tp) + bG(p,q,9)6(q,Tq, Tq) + cG(p,q,9)G(P. 9, 9) 3.16

This impliesp =q. =

Theorem 3.4. Let (X, G) be a complete G-metric space, and let T : X — X be a mapping satisfying (3.17) for which
there exist nonnegative number a, b, ¢ satisfying a + b + ¢ < 1 such that, for each x,y € X,

G(Tx, Ty, Tz) < aG(x,Tx,Tx) + bG(y, Ty, Ty) + cG(x,y,2) 3.17
Equivalently
G(Tx, Ty, Tz) < aG(x,x,Tx) + bG(y,y,Ty) + cG(x,y,z) 3.18

Forallx,y,z € X where 0 < a + b + ¢ < 1, then T has a unique fixed point (say p, thatis Tp = p) and T is G-
continuous at p.

Proof: Suppose that T'satisfies condition (3.17), then for all x, y € X, we have
G(Tx, Ty, Ty) < aG(x,Tx,Tx) + bG(y, Ty, Ty) + cG(x,y,¥)
3.19

G(Tx,Tx,Ty) < aG(x,x,Tx) + bG(y,y,Ty) + cG(x,x,y)

Let x,41 = ¥, and since T is a contraction satisfying (3.11) or (3.12) we have
G (X Xn+1, Xn41) = G(Txp—q, Txn, Txy)
<aG (xn—l' Xn xn) + bG(xnr Xn+1s xn+1) +cG (xn' Xn+1s xn+1)
=aG(Txp_p Txp_1,Txp_1) + bG(Txy_1, Txn, Txy) + cG(Txp_q, Txp, Txy)
< @G (Xp—2, Xn-1, Xn-1) + b?G (Xn_1, X, Xn) + c>G (Xp_1, Xn, Xp)
= a%G(Txp_3,TXp_2,TXn_3) + b2G(Txp_3, Txp_1, TXp_1) + c2G(TXp_2, Txp_1, TXn_1)
< @®G (o3, Xp_2, Xn_2) + b3G (n_2, Xn_1,Xp_1) + €3G (Xn_z, Xn_1, Xp_1) 3.20
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Continue iteratively implies

G (Xn) Xn41, Xns1) < @G (Xg, X1, X1) + DG (X1, X2, x3) + "G (x4, X3, X3)

G (xg, x1,%1)

1-pM—cm

where0 <a™ <1

let a™ =
1-pn—cn

Then

G (Xp, Xpy1) Xns1) < @G (xg, X1, %1)

Foralln,meN, m>n

But

an
G(Xn, Xns1, Xne1) < a G (xg, X1, %1)

lim G (x,, X, Xm) = 0 as n,m — oo. Therefore, the sequence {x,,) is G-Cauchy sequence.

To show the uniqueness, suppose p # q such that Tq = q. Then

3.21
3.22
G(xn'xm'xm) < G(xn'xn+1: xn+1) + G(xn+1: xn+2'xn+2) + -t G(xm—l'xm: xm)
< a™G(xg, %1, x1) + A"TG(xg, %, x1) + -+ @G (%0, X1, X1)
<(@*+a™l+ -+ a™ G (xg, x1,%1)
3.23
3.24

G, q,9) <aG(p,Tp,Tp) + bG(q,Tq,Tq) + cG(p,q,q)

This impliesp = q. m

CONCLUSION

This work is an extension of Banach fixed point theorem
to G-metric space. The existence and uniqueness of
some fixed points under some weaker contractive
conditions in complete G-metric space settings were
obtained. The results are therefore refinements and
generalizations of some recent results in the literature.
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