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ABSTRACT

With Feynman'’s path- integral method we can obtain the quantum mechanics of a quantum system
like a free patticle outside Schroedinger's method of differential equations and Heisenberg’s method of
algebra. The work involves obtaining the quantum propagator K;, of the system which leads to summation
over infinite number of paths. With Van Vleck’s formula in one dimension, the classical propagator Ky for a
free particle is computed as the analytical result. This then serves as a yardstick for justifying the theoretical
method used to compute the quantum propagator, k;, by.direct path summation. The. graphical display of
the results shows that the Feynman — Schulman’s checkerboard model used to enumerate the paths is
reliable. Furthermore, this work shows that by windowing off a large number of paths and weighting the rest
non uniformly we can compute the required propagator. The weights used in this case are the random and
exponential window functions, w; and w, respectively, which yield kw, and kw, to compare with k;.
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INTRODUCTION

Path Integral Quantum Mechanics
" In quantum mechanics, the probability amp!ltude y(q, t) of finding a particle near position q at time t

is related to yw(q,, &) by a convolution integral ( ltuen, 1997)
'W(q t) IKq t, o, o) W(qo» O)qu 1.1:1

The Kernel K(g, t, %o, to) of this integral denoted by < q, t | g, t, >is known as the propagator. in the path —
integral formulation of quantum mechanics by Feynman,
K=Y expliR(q, t, qo to)/ h] 1.1.2
i ;
wheré R; is the action on the " path connecting space-time (g, t,) with (g, t).
Rj= J.to L (g, q, t)dt 1.1.3

(ith path)
and where L is the Lagrangian of the system under consideration. In principle, K is the sum of equally

weighted exp(iR/ h) over all the infinitely many possibleé paths, including the-classical trajectory. (ltuen,

1997)

' The concept of path integral was first introduced to physicists by Feynman as a third formulation of
quantum mechanics equivalent to that of Schroedinger, as well as the one of Heisenberg and Dirac. While
the Heisenberg-Dirac method relies on algebra, Schroedinger’s approach is based on differential equations
and hence uses analysis. Feynman's innovation is mainly a “geometrical” way of expressing the quantum
superposition principle. It is intuitive since it allows us to visualize directly, the constructive or destructive
interference arising from many different paths (Khandekar, Lawande and Bhagwat 1893).

The “Checkerboard” Wodel

Whenever we have a solution of a Schroedinger equation we may look at it as analytic continuation
of a situation of the diffusion equation. This was remarked by Marc Kac who, in 1950, was the first to link
Feynman’s path integral with Wiener funciional integral used in Brownian motion. That is, evolution of a
Schroedinger or quantum particle is like diffusion, which is an example of Brownian motion or random walk.
As a random walk, the particle suffers displacement along the coordinate axis in the form of a series of
steps of same length each being taken in either direction within a certain period of time as 9eing
discretised. The model is the sarie as Schulman’s “Checkerboard” model with the motion of each point
particle representing a Feynman’s path in one space, one-time-direction. Feynman et al (1965) referred to
the same picture when he noted that the path is a zig-zag of straight segments with slope differing only in
sign from zig to zag. 1t is the case of very short-time scale as Schulman (1987, 1991) explained, otherwise
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(ie., at a wide interval) many reversals would have occurred unaccounted for. This would lead to
uncorrelated successive steps.

Basis of Windowing

Geometrically, Feynman's quantum paths are like rays of optics. They undergo diffraction and
interference as they move through the discretised space-time; a prototype of diffraction grating. Gutzwiller
(1980) had rightly put it that the propagator is a quantum-mechanical pulse spreads in a step-wise manner
satisfying its composition property; another form of superposition principle. This compares with ogtical
pulses obeying Huygen'’s principle and again like probability density obeying Chapman-Kolmogorov’s rule.
This stepwise spreading of the quantum mechanical pulse conforms with the adopted checkerboard model.
It follows from the constructive and destructive effects of the interference/diffraction on the paths that some
paths are enhanced at the expense of the others. The idea was pioneered by Feynman himself when he
proved that those paths with actions very different from the classical action really do not contribute. (ltuen.
1997) They cancel out owing to large phase difference with the classical path whereas only the
neighbouring paths contribute in phase and constructively interfere as the construct»ve or destructive
interference depends on the phases Ryh.

Using Fjas a measure of the contnbutxon of actlon R, to the expected value of the propagator, K,
Akin-Ojo (1996) has shown that

(Fp = 1) 1.3.1
' 1+ (rfa)?

where 1, = (R} — Run)h; Rmin being the classical action, and a is a set of n constants such that the
Hamiltonian of the system can be expressed as H (g, a). The deductions from equation (1.4.1)
consolidates that fact that Ry is the most important action while other actlons decrease in influence as R;
departs from Ruin.

{t is clear from the foregoing discussions that one can “filter off” some of the paths with no mgmﬁcant
error. This is the main idea of “Windowing” in path-integral quantum mechanics. It is a case of non-uniform
weighting of the paths. The window functions are expected to give zero weight to some of the paths and
thus screening them out. This is a great relief to the predicament of having to handle infinite number of
paths.

Another aspect of window effects include the following:

{0 From the picture originally given by Schulman (1987), we limit the region of contributing paths to a
particular rectangle as shown in Fig. 1.3. For the illustrative results required in this work, we had to stipulate
the number of time slices, N, as well as that of:space Ny, say. These numbers determine the number of
paths involved as

Number of paths = (No)", 1.3.2

In addition, we need to observe a further precaution namely that of avoiding any vertical or horizontal
motion because

O<(gr=as)(lhi—1ls) <c 1.3.3

is a very important requirement physically; ¢ being the velocity of fight. Hence for N; = Ny = 3 the plcture is
as in Figure 1.3

Figure 1.3 resembles an infinite potential well with the paths bouncing away from the walls. By
concentrating only on such prescribed set-up we have cut-off several paths. This is a type of windowing.

(i).

Time
A q
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Fig. 1.3: A set-up like an infinite potential well with paths bouncing away from the walls.
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Generally, anyone embarking on this direct path summation i is confrorited with trying to devise a means of
handiing infinite number of quantum paths. So far, many have resorted to Monte Carlo method especially
for the case of imaginary.time, which is closer to a Wiener process. (Scher et al, 1980) ' This method
involves random sampling of the paths which is also a way of leaving out some paths. Actually, only very
few have ventured into the real {ime case namely Scher et al (1980) as well as Salem and Wio (1986)
using, respectively, numerical matrix multiplication and matirx diagonalisation methods. - In such methods
too, there is always the cutting-off of some “wild" paths. '

RESULTS

The Propagator of Free Particle

The most fundamental and elementary application of quantum mechanics is to the system
consisting of a free-particle, or particle in a constant potential field. That is, its velocity and consequently
momentum and kinetic energy are constant. As such its Lagrangian is given by

L=mw ' ‘ 241
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Fig 2: Comparing the propagator of. ﬁée particle with analytical result:
(a) With space. (b) With time (N=3277) ’
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_The expression for the classical propagator is already known (Feynman et al 1965} as

Kala Qo te) = 72zih (1) Y* expi [ m{a—q) 212
' [' m - 2ha—m |

The resuits follow in the graphs of Figures .2.1, (a and b) as in ltuen (1997). K, is the analytical formula
while K¢ is from the model used for the theoretical computa’uons as displayed. For the variation with space,
we plot the real part of the propagator because |Kc|| gives a constant. This is in agreement with the work of
Feynman et al (1965) and Scher et al (1980).

Window Effects on Quantum Propagators

For the study, we specify the number of vertlcal segments Ni, to be 7 and. that of horizontal
segment, Ng, to be 4 and by equation (1.4.4), N = 3277. The possible links can be traced out as shown;
discounting paths with vertical and’ horizontal segments. Using this as the total number of paths in the
model, we study what happens when all the paths are uniformly weighted, that is, N = N,,, and’aiso the
case of ignoring some of the paths by glvmg N,, other values like 500, and even 5 which we consider
extremely small compared to N.

With the action of the free particle, we compute the quantum propagator, K; for N,

Nq%w=§emHMq%Wh 2.2.1
=1
We then compare the results to that of using the window functions to weight each term in the expressmn
KMQ%J)~§:NVam1RﬂJ%JVh] n<N - 2.2.2
M )

¢
¥

Note that the choice of Nw < N for further results, implies that W; = 0 for some paths; thus cutting down on
the infinite number. This produces the desired window effects, where M-is a normalization factor given by

~2 we 223
= .
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The results for each of the window functions involve the display of the uniformly weighted propagatoer, v
- and the corresponding weighted or non-uniform propagator, K,, versus time and versus space as in Figures
2.3 ~ 2.4 from ltuen (1997).

Random Window Function, w,

it is so called because it is randomly generated and it windows out paths at random. Besides,
unlike other cases, the weights were generated as complex numbers. The results are shown in Figures
2.3.1 = 2.3.2; as in ltuen (1997). Kw, is the non-uniform propagator to compare with'K. For this window

function W,, the available facilities for computations did not permit weighting all the 3277 paths. The
reason is that W, being complex has two sets of values. In this case the value of N,, is restricted to N,, <
3000.

Exponential window function w,

This is a type of Gibb’'s weight and is expressed as follows:
W, = exp - (RJ ~ Riin)Renin 2.4.1
Where Ry, is the classical action for the system. By the sketch shown in Figure 2.4, the aim is to eliminate
paths with large action. Such paths may be termed as wild paths referred to by Feynman et al (1965).

The results are presented in Figures 2.4.1 — 2.4.2; as in ltuen (1997). Kw, represents the non-
uniform propagator. There is no restraint on the choice of N, in this case. So we choose N,, = 3277, 500, £

We = EXP - (Rj - Rmin)/Rmin

——_/ (R] - Rmin)/Rmin

l Ll

fiig. 2.4: Exponential window function
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_ From the series of graphs in figures 2.1 - 2.4 whlch compares Ko with Kineoretica, We notlce a-
“reasonable agreement between the analytical and theoretical computations. This is a logical evidence that -
‘the model used for this work is reliable. Actually, the plot of the real part of Kc. for a free particle tallies with
those of Feynman et al (1965) and Scher et al (1980).

“in general, for the variation of the propagator with time, the factor, t"’2 tends to prevail which appears in the
Van Vleck’s determinant of the free particle. The explanation for this observation is clear, namely, that the
values of t must be appreciably large to avoid clumsy structures. Whereas, the phase takes sman values for
fuxed positions and thus its contribution to the waveform is negligible.

The arrangement is such that we can see at a glance the role played by the number of weighted
paths N,, compared to the total number, N. In all cases, the departure of the waveform of |K,|? from |K|?
becomes significant as N,, gets as small as N,, = 5. This distortion tends to disappear as N, gets large and
becomes minimum when N,, = N. In the aspect of variation with time, owing to the Iarge values of the time,

-the effects of the window functions are hardly observable graphically. :

_ CONCLUSI,ON

From the various results obtained in this work, we see that windowing is a useful tool in path integral
- guantum mechanics. We have seen that with the extreme case of N, = 5 compared with N = 3277, there is
-still a reasonable harmony between K and K,. This conforms to the idea that we can filter off some paths
‘with no significant error. It is a direct step out of the quantum mechanical doctnne of existence of inft mtely

many paths during an event; since all path< are probab|e

It follows that N,, = 5 is not too small compared to N = 3277 to get the same mformation fot a
‘required gquantum mechanical analysis. $|m|larly, in the usual case of N tending to infinity, one can work
with a countable N,, using a suitable windpw function for excellent results. .

REFERENCES:

Akin —~ Ojo, R., 1996. Life Beyond Differential -Equations. Unpublished Seminar Paper, Dephrtment of Physics, University of
Ibadan. s -

Barut, A. O. and Basri, S., 1992. Path Integrals Ard Quantum Interference. American Journal of Physics. 60(10): 896-899.

f)irac P. A M., 19 . Lagrangian In Quantum Methanics. Physikalische ZeitschiffSowjetienion, 3:64-72.
irac, P. A. M., 1935. The Prmclples ‘Of Quantum|Mechanics, 2™ Edition The Clarendon Press, Oxford.
Dirac, P. A. M., 1945. On The Analogy Between IClassical And Quantum Mechanics. Reviews Qf Modern Physics.17 (2- 3) 195-

199.
Feynman R. P. and Hibbs A. R. 1965. QuanturjMechanics And Path Intecrals. McGraw-Hill Inc.

. Gutzwmer M.C, 1990. Chaos In Classical And Quantum Mechanics. Sprmger Verlag New York Berlin.
ltuen, E. E., 1997. Window Etfects On Path Integral Quantum Mechamcs Of Free Particle, Bouncmo Ball, Simple Harmonic And
Anharmonic Oscillators. Unpublished Ph. D Thesis. Department of Physics, University o{ [badan.
- Kac, M., 1993. Brownian Motion: Path Integral Approach To Quéntum Physics; An Introduction By Gert Reopstorff: 1-37.
Khandekar, D. C., Lawande, S.. V. and Bhagwat K. V., 1993. Path Integral Methods And Their Applications. Bhabha Atomic
Research Cemre Bombay, India

Sa lem L. D. and Wio, H. S., 1987. On The Numerical Evaluation Of The Feynman Propaoator Physics Letter |14 (4): 168-173.

Scher;.‘ G., Smith M. and Baranger, M., 1980.Numericdl Calculation In Elementary Quantum Mechanics Using Feymnan Path
[ntegral Annals of Physics. 130: 290-306.

Schiff, L. I., 1968. Quantum Mechanics, 3 Edition. McGraw — Hill. .

Schulman. L. S., 1987. Introduction To The Path Integrai Proceedings of the Adriatico Reséarch Conference on “Path — Inteéra[
Method With Applications “Path Summation: Achievement And Goals. Eds. S. O. Lundquxst A. Ranfagni, V.
Sayankanit and L. S. Schulman, World Scientific, ‘London: 3-46

Schulman, L. S., 1991. Selected Topics In Path Integration. Lectures On Path Integration. Trieste 1991 eds. H. A. Cerdeira, S.
Lundquist, D. Mugnai, A. Ranfagni, V. Sayakanit and L. S. Schulman. World Scientific, London, 3-36. v



