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AXIAL VELOCITY DISTRIBUTION OF A TWO COMPONENT PLASMA IN A

 MAGNETISED TUBE OF SLOWLY VARYING SECTION
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(Received 22 August, 2002; Revision accepted 25 November, 2002).

ABSTRACT o | |

In this study we investigate the combined effects of channel indentation and presence of neutral gas.
(impurities) on the flow of a two-component plasma gas through a magnetized cylinder with indentation. For
small indentation, expressed in &, analytic solutions are obtained for the axial velocities, induced magnetic
fields, current densities and pressure gradients. The effects of the channel indentation and percentage
|mpurmes on the flow characteristics are shown graphically and discussed quantitatively.

Keywords: Indention, Neutral gas, Axial velocity, Magnetic field
INTRODUCTION

The growing need or requirement for confined plasmas is necessxtated by its application in fus:on 4
reactions for energy production. Magnetic fields are used to confine plasma, and the desired configuration
_is such as to make the plasma follow a desired geometry. The maintenance of flows in uniform geometry is
mainly achieved by a fair play between the plasma hydro magnetic pressure and the magnetic pressure
(Priest et al, 1981). “ An excess of the internal pressures over the external pressures resuits in flux tube -
bursting.™ Ordinarily, any sudden variations in the radius of a tube conveying a fluid results in pressure
variations. Therefore, a study along this line, viz, effect of channel variations on the flow variables, is
desirable and effort has been directed in this investigation to_a two-component plasma flow in a cylindrical
channel. In fact, the determination of flow through a tube, of varying section is a fundamental one with
obvious applications, not only in engineering but also in physiclogy. One of the initiators of the study,
Manton(1871), considered the ax symmetric flow in tubes of varying section. He obtained an asymptotic | -
series expansion in terms of a small parameter ¢ characteristic of the varying section, for the velocity,
pressure, and shear stress and found that his sclutions compared favorably with numerical resuits even for
values of € as large as 2. Other workers in this area include: Bestman (1983,1988), Burns and Parks
(1967), McMichael et al (1983), Haldar (1994) and Deshikacha et al (1987). Some of the fluids investigated - -
by {hese authors are blood and conducting non-gas fluids.

In the present study we adapt the methods devised by these authors (notably those of Bestman ﬂnd
Manton) to the problem of a two- component plasma flow in the presence of an external magnetic field. It
must be noted, however, that no attempt is made to solve explicitly problems encountered in pracnc:aﬂy
confined plasma geometry. The study is to theoretically show the existence of problems that may ariser due’
to tube wall variation and partially ionized gasses in confined plasmas. The study of variation in magnetic,
flux lines in confined plasmas is in the regime of the study of stability theory. Instabilities in practically’
confined plasmas have been globally observed and, in certain cases, corrections based on theoretical
models have been devised to contain these instabilities. The attempt here is, therefore, to show how the all
important axial velocity and plasma current density are affected due to the two factors, namely, the
presence of neutral gas (impurities) and unequal wall geometry. The plasma is cohsidered only partiaily
ionized. Two-component here refers to charged species (ions of both signs) and neutral non- -jonized gas.
The two species only interact through mutual collisions. A magnetic field applied to this bmar§ mixiure
interacts only with the charged species and the collision of the ions with the neutral gas is responsible for
indirect coupling of the magnetic with the bulk of the gas. This coupling of the two species to the to the
magnetic field has been discussed by Spitzer (1962).

In section 2 the mathematical formulations are given while in section 3 analytic solutions are -
devised and in section 4 results are presented quanﬁ‘aﬂve{y The solutions of the equations for the parti aflv
ionized gas flow variables are compared to those of the fully ionized gas and result presented for vﬂn« L
sections of the tube wall.
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Problem Formulation

We consider the flow of a two-component (partially ionized) gas in a cyllndncal channel of varying . - -
radius. The cylinder is magnetized such that as the gas flows the induced magnetlc field component are
-given by (H, 0, H,) and the velocity components by (u, 0, w) r =0 is the axis of symmetry of the channel
wh|le the tube wall is defined as:

r =ay(z,€) = ays(ez | ay) : M
 We introduce the following non-dimensional scaling: - ' o ‘
z= f.z'/\aq r=rlay . w,)=Winewin)lelU , - o V)
(Hl‘! HZ) - (H’agH )/gHO’ ptn - p’”/anz ﬂ pn/pt R o S S (3)

Here ¢ is a small parameter and a; is a suitable constant representmg the tube wall. ;
~ The composite non-dimensional MHD equations for continuity, momentum and electromagnetic fields for .-

- steady flow in cylindrical polar coordinates (r, 6, z) are g|ven as:
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4]
represent characteristic velocity and magnetic fields, respectively.

whe/re Re = (pUag/p,) is a Reynolds number and Ry, = (522} is a magnetic Reynolds number. U and H;:

Method of Solution
The concept of slowly varying radius enables us seek for series solutions about the small parameter ¢, as

’fo.lows

(u,,,, ”,) (u /n,Wrn)‘*'E(ll/n Wln)+ : ‘ ) (12)
(H, H)=(HWH ) +e(H'  H' )+ (13)
’=lp +p +gp® 4. ‘ (14)
‘ and consndenng that m? = 0(1/8) with the result that
e'm* =gy - (15)
On substituting equations (1 2 14) in (4—1 1), we obtam the basic. or zeroth order approx1matlons as follows:
e
l—a—(ru 1n)+aw,n =0 . : ) (16)

¥ or 'Oz . /
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_ 1o, ow' ‘ B |
'—ki=—~——(r )+0' B —w) (17)
~ror : : ‘ r
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~ ko= ——(r—2)= (71 B)(W’s ~w°,») (18)
r o or . .
where , : |
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ki,n:_ép_; p=Pn (19)
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r 6r( ) 0z (20)
0 o .
OH. _ 0 . Lo@21)
or SN
51171 o fu® Ir0 0 pr0N 270 - S \
Lo g WHY —ul HDH =0 (2
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0
P _y » | ., | (23)
or. »
with the result that 4 and p° are functions only of z. So writing H® = f(z),say, we obtain, from equation
(20) - - ;
e Vdf_ 1 .
Hr - 2 dz f ( ) (24)

where f(z)is a constant function of z which can be obtained from the conditions-imposed by the problem. If
~we assume that the boundary wall is of low conductivity or under vacuum condition, then the boundary
'condition for the magnetic field is given as:

(Hz, H)=1(=Hp) atr=s (2) (25)
and yields
“edz '
f@y=2[= (26)
s v

The velocity equations are subject to the no-slip conditions:
(Win, Wiin) = 00N T =5(2); (U0, W) <woONT=0 (27)
Equations (16-19, 27) are solved to give: ‘

W, = —(r - 57) + A(2)Ug(ar) ~ I (as)) ~ i (28)
where _ j"

ll ‘I IB + klal1 ) az = (O_lzﬁ + 0-3 /ﬁ) ‘ (29)

It is ewdent that w; = w, for the basic flow if k; = k,.. In this situation the induced magnetic fields do not affect
the flow velocities. The fluid is moved only by the pressure gradients, when ¢ = 0.
Substituting equation (28) in (16), after integrating and, applying the boundary c_onditions (27), we obtain:

aA(a) ](as)s +-§rss +~—( 1((15)+w] (ar)) ' (30)

IJI

where .
f!ﬁ+ ol (as)s A(z)  (k/4)oss. _o (31)

dz  asly(as)—21(as)  asly(as)~ 21, (as) '

Here, Iy and [, are the modified Bessel's functions of the first kind of order zero and one, respectively, and

_ds
z & .
Equation (31) yields .
k/8)as’®
A(z) = (k/ 8)es (32)

(as] (as) 2/ (as))
The solutions for the basic approximation are compiete
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Also the first order approximate equatlons are.given as:

1.0 awzln )
'—'67(}"2,{:,”)4'*‘52—— =0 (33)
S a(2) _
a’gr ;(1 O ru®)) 4y (HPHW + HHOW + HYHw! ~2H)Hu! (34)
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or 82 82'_ ror or -(35)
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Ru) 2 Rt D P L0, ”) T (wl —w)) (37)
6 0z 0z ror r A :
{
~r-~—( rH!) + %Iw_o )
1
%1— =R, (u H ~w/H)) (39)
V.

To solve for the velocities, w',,, the magnetic fields, H';,, and pressures p@,,, we substitute the

~ expressions for the basic approximations into equations (33-39).

, To reduce the tedious algebra we expand the Bessel's functions about the arguments (a, 1, 8) tO
order 0(ad). Wlth the result that equation (22) is mtegrated to yield:

: xka r? § rtop? ds “rds
: — s, (P = —s)s, | 40
£ 4 16 s ( 16)“s]~“s “0)
Similarly, the magnetnc fields are given as:
! - <—~——R‘1f§a ot
1 1 1 1 1 1 @1
¥ Fo F o Foy |
— —_— RN (U, USSR S +._. + Y PR (. — e b
{j [ < =) ] SO =g O O 5 0 =)
H[.'? +57 |-~ +ss., ——+2~— +
; me19 ( I )
'§ 1 .
(5.5 +35 08” ~—+s 87|+, s ——9 - (42)
50, J j )=
50 (A2 sl 5 'S,
az(m:s +5rs.s J.—;—%-IS::b J‘—S—+rs;5 )+i~2—s~,2~]
1 .
If we denote " = %‘Z the velocities w', and u', can be written as:
z
_ Rf
wh = BE ()~ 1 as) ~ R 2 - ) - & (L)
| | 4 B 64 (43)

qu 6 6 C;‘ 4 A
-y = + ——{y -5

-

36 .
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u) = B(z)ad, (a'r)rwv——~{ I(ar)— ~ I (as)— Rf,,rss b+ .
Rodfy 15 1 oy, “2 {dc' (" —i rs*y=Slpss 4 O w
4d4 2 645 dz 1277 16
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Sl o «
¢, :Z%’éﬁ‘i{(]’iiz;)? +ss_; fiii-u —C—Zi, ZR!;“ ‘{?ﬂ::iz} e

Here B (z) is a constant function of z only which, on applying the no slip condition, results in two
serarate equations: one relating the pressure ', and the other, the constant B (z).
After some tedious algebra we obtain:

1 )
B(z) = (- Jao,
(oI, (ets) = 251, (as))
g d 1 6 1 (“48)
(J IO( )dZ+ J 5.5°dz +~ J . d. cJoss "z + J. i oz + 2 c,s°s.dz)
and
A} N
%Zis“ +4fVs 57 =0 _ (49)

Equation (49) is reminiscent of the Reynolds equation for pressure in lubrication theory, and
following procedure by Bestman (1983), the solution is given as:

V,D, == 1~6—d~ (50)
Following similar procedure as before we obtain results for the velocity of the ionized species as follows:
W = D) ()~ Iy (as)) ~ a,(r* = s+ a,(r' =5 + a3 (r® = 5°) = a, (r* ~ s%) (51)
where

1
D(z)=-— _ - .
(as 1 (os) - 25/ (as))
da _ ' )
- ‘[as Y g +4Ja/als sidz + %I Las® figidz+ (52)
da 3 ? Z )

4 da
8}%6&3 S’dz + = j -f—d" H"’Ja as.s'dz — 5'[ 10 a’:dﬁ‘ 16 CIJS s’dz}
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/!
al = “1 O':ﬁRc .1—
2 G
a, =c¢,—0,
T 165
’ (83)
o S
a] = cl - n ~
364
c,o;f |
a, =—=
648
The mduced current density is glven by: v
- OH, 6H : .
J, = ' 54) -
¢ oz o ’ ' : ©4)

DISCUSSION OF RESULTS

In the last two sections, we have formulated and solved for the flow velocity, induced magnetic fields
and current densities of a partially ionized gas. We have also advanced approximate solutions for the
pressures.

A primary observation is the dependence of the velocity components on the Reynolds parameter R.,
Hartmann parameter y, the applied pressure gradients k and frequency parameter o® . The lnduced

" magnetic field depends,.in addition, on the magnetic Reynolds number R,
~ The choice of the small parameter ¢ (which is actually the ratio of radial to axial Iength scale) is
found to linearise the very non-linear MHD equations, but has its consequences on the induced fields; for,
in the limit >0, the flow is unaffected by the magnetic field and is given by the classical Hagen-Poiseuille
equation. (see equations (28-30)). The azimuthal current densities, however, appear in first order
approximations due to the fact that the basic flow crosses the applied magnetic field lines at an angle of the
order €. Thus an induced magnetic field appears at the higher approxxmatnons but has no influence on the

magnetic body force in the zeroth order approximation.

The coupling between the charged ‘and neutral species through their frictional behavnour have been

the reason for the appearance of the magnetic parameter M (x) in the expression for w', .

To obtain a physical feel of how these parameters affect the flow pattern, numerical results are

presented graphically for flow in locally dilated and constricted tubes defined as:
5(z) = exp(z&) (55)
In the numerical calculations, ¢ is taken in the range (0.01-0.05). The axial velocities are obtained in
equations (28, 43, 51) and the current densities are obtained from equation (54)

For purposes of companson we derive the expression for fully ionized plasma. This is achieved by
setting the frequency parameter o> = 0 in the relevant equations.
: We examine the combined effects of channel geometry and the presence of neutral gas on the ﬂow
behaviour. For this we have taken Re = 5; R, = 5; 3 = 5; k = 2 while we vary ¢ from 0.01 to 0.1, B from 0. 01
to 0.1; and o® from 1 to 2. Results are displayed in figures 1 to 8.

Figures (1-3) show the axial velocity profile plotted against the radial distance for the ionic specne
and display the effects of channel indentation and percentage composition of neutral gas in the mixture.

The collision effect between the two gas components is also displayed. Figures (4-5) show, respectively,

the magnitudes of the velocity profile for the composite gas and that for the fully ionized gas. We observe a

tendency to reversal of velocity of the ionized gas in the mixture with the neutral gas. This velocity reversal .

is attributable to the collision frequency and the indentation of the channel. The behaviour of the gas
velocity in the channel with indentation seems to differ between the two media, namely, the plasma with
impurity and that without impurity. Whereas, in the fully ionized gas the magnitude of velocity decreases
with € in the composite mixture the velocity increases with . The only common feature is the tendency for
higher velocity in a constricted channel section than that through a diverging section. in fact, the tendency
to velocity reversal is seen to occur only at a diverging section of the channel.

Flgures (6-7) show the plots of the current density J;, for the composite gas versus the channel
radius, while in figure 8, we show the current density for the fully ionized gas. We observe here. !ha/t /

whereas the magnitudes of the current densities remain unaltered for channel indentation € = 0, 01 they
vary considerably, W|th large number of impurities (i.e. large ra’no of B) and/the collision frequency o>

;i

Y,
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t and riear the throat of any channel indentation (i.e. at z = 1, 0.5, 0) them is an observed variation

of the current densities, espemaiiy at the higher value of the parameter ¢,
What is clear, however, is the enhancement of the magnitude of the velocity of the plasma gas and
the induced current density by the presence of the neutral gas (impurity) through their frictional behaviour. .
” The results of our analysis may be found useful in MHD flow problems, blomedlcane and plasma,

confmement
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