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ABSTRACT

This paper presents an iterative approach based on hybrid of perturbation and parametrization methods for
obtaining approximate solutions of optimal control problems governed by some Fredholm integral equations. By some
numerical examples, it is emphasized that this scheme is very effective and it produces approximate solutions with
high precision. Convergence of the given iterative scheme is also discussed.

KEY WORDS: Optimal control problem; Fredholm integral equation; Perturbation method; Parametrization;
Approximation.

INTRODUCTION
Trace of numerical approaches in optimal control problems can be found in many applications and academic

literatures. One can see in (Schmidt, 2006), an overview of numerical methods for solving optimal control problems
described by ODE and integral equations. Despite rapid progress in providing numerical methods for solving optimal
control problems, these methods are not much developed for optimal control of some classes of integral equations as
Fredholm integral equations. An analysis of finite-element Galerkin discretizations for a class of constrained optimal
control problems governed by Fredholm integral and integro-differential equations is given in (Brunner and Yan,
2005). The excellent work of Rubi c ek (Rubi c ek, 1998) is one of the best references on the theoretical view of these
problems where analytical discussions about existence and uniqueness of the optimal control solution governed by
Fredholm integral equations can be found in it.

The current work intends to combine the method of parametrization, (Mehne and Borzabadi, 2006; Teo, et al.
1991; Teo, et al. 1999), and perturbation method, (Biazar and Ghazvini, 2008; Ghasemi, et al., 2007), both are
successful methods for solving some classes of optimal control problems and differential-integral equations,
respectively, to provide a numerical scheme for approximate optimal control of systems governed by a class of
Fredholm integral equations described by the following minimization problem:
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 where )]([0, RR TCf  and )][0,]([0, R TTCk . Thereafter, without loss of generality we suppose
1=T .

Required perturbation scheme
Recently, the idea of coupling the traditional perturbation method and homotopy in topology (He, 2000), i.e.

homotopy perturbation method (HPM), which was proposed first by J. Huan He in 1998 (He, 1998), has been
extended and improved by many scientist and engineers as an applicable tool for obtaining approximate solution in a
wide range of problems in applied mathematics. Because this method continuously deforms the difficult problem under
study into a simple problem which is easier to solve (see e.g. (Saadatmandia, et al., 2009)). Especially, this method
has been applied for solving an extensive class of integral equations and we address only (Biazar and Ghazvini, 2008;
Dehghan and  Shakeri, 2008; Ghasemi, et al., 2007; Javidi and Golbabai, 2009; Saberi-Nadjafi and Ghorbani, 2009).

In this section, we review to apply this method for solving Fredholm integral equations as follows:
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 where   is a real number and )],[],([ R babaC . For this purpose, first a homotopy as
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 may be considered where it is assumed that the solution of (4) has the form
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 and 1,2,=),( itX i  are unknown functions which must be determined. The initial approximation )(0 tX  or )(0 tx
can be freely chosen, so considering
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 and with substituting (5) into (4), it can be concluded that
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 Now the approximate solutions of (4), can be obtained by assuming 1=p , i.e.
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Combination of the approaches
In this section, we present a new scheme based on the homotopy perturbation method and method of

parametrization. First we consider )}({ tek  as a basis, which is dense in the space of ([0,1])C . The continuous

control function )(tu  can be approximated by a finite combination from elements of this basis (Rudin, 1976) and
hereby a parametrized form of control function is considered. By a perturbation equation same as (4)
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 our scheme in the k th iteration considers the control parametrized form as
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 and a power series such as (5), where ,1,2,=),,,,,( 10  iccctX ki  are unknown functions which must be

determined. The initial approximations to the solutions )(0 tX  are taken to be )(ty  as (6). Thus the coefficients of p
with the same power lead to
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 The approximate solutions of (2), which are dependent on the parameters kjc j ,0,1,=,  , can be obtained by

setting 1=p  as follows:

.=lim=),,,,( 210
1

10  


XXXXccctx
p

k (12)

 Substituting the trajectory and control (10) and (12) in (1), the solution of an optimization problem as
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may give rise to approximate trajectory and control. It is natural to wonder when iterations in the given procedure can
be determined. Assuming *

kJ  as optimal value of (13) in the k th iteration, a stopping criteria may be considered as
follows:
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for a prescribed small positive number   that should be chosen according to the desired accuracy or if the number of
iterations exceeds a predetermined number. Note that, there is only one difficulty in the process of applying approach
which is to obtain the unknown functions in (11) may be difficult, specially for large n  and we consider it in the
process of the approach. The above results has been summarized in an algorithm. This algorithm is presented in two
stages, initialization step and main steps.

Initialization step:
Choose 0>  for the accuracy desired and a dense basis, )}({ tem , for the space ([0,1])C  and parameter p  in the

interval [0,1] . Set 1== kn , )(=0 tyX  and go to the main steps.

Main steps:
Step 1. Set )(su  by (10), and go to Step 2.

Step 2. Compute ),,,,( 10 kn ccctX   by (11) if it is possible and go to Step 3, otherwise, 1= kk  and go step 1.

Step 3. Compute kk Jargcc min=),,( 0   in (13) by (12) and go to Step 4.

Step 4. If the stopping criteria (21) holds, stop; Otherwise, 1= nn  and go to step 2.

Convergency of the approach
Let Q  be the subset of product space ([0,1])([0,1])  CC  containing all pairs ))(),((  ux  that satisfy the integral

equation (2). Also let kQ  be the subset of Q  consisting of all pairs ))(),((  kux  where )(x  and )(ku  are a

parameterized control function and trajectory function, respectively obtained in the end of k th iteration of the given
algorithm. Let's consider the problem in the Step 3 which is minimization of J  on kQ  with k

jjc 0=}{  as unknowns. This

is obviously an optimization problem in 1k  dimensional space
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and ),( kuxJ  may be considered as a function ),,,( 10 kcccJ  .

Lemma 1 If J
kQk inf=  for 1,2,=k , then 

1=}{ kk  is a convergent sequence.

Proof: By definition kQ  we have
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Now it can be concluded that }{ k  is convergent because it is a nondecreasing and bounded from below

sequence. W
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 Proof: By Lemma 1, let }{ k be convergent to namely  ˆ . By contradiction if  >ˆ , then 0>
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 From the continuity of J , there is a 0>  where
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 Here PP  is a norm on the vector space ([0,1])([0,1])  CC  which can be defined as follows:

,)()(=))(),((    wvwv
and one can easily check the properties of the norm for it. On the other hand, the set of all polynomial pairs are dense
in ([0,1])([0,1])  CC , so there is a pair of polynomials )(t  and )(tk  of the degree at most k  such that
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Whereas the pair ))(),((  k  does not satisfy
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Numerical examples
In this section, some numerical examples are given to show the efficiency of the proposed algorithm. In all examples,

510=   and monomial functions }{ kt  have been considered as dense basis of ([0,1])C .
Example 1. Consider the following optimal control problem which is minimization of the functional
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The exact optimal trajectory and control functions are 2* =)( ttx  and 2* =)( ttu , respectively. Results of applying the
proposed algorithm in the previous section have been shown in Table 1. Also the obtained approximate optimal
control and trajectory which has been compared to the exact ones can be seen in Fig.1.

Table.1. Numerical results in Example 1.

  k  n *
kJ

 1  6  0.0074
2  6

4104.7656 
3  6

5103.6412 
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Figure  1:  The control and state functions in Example 1.

 Example 2. Consider the following optimal control problem
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The exact optimal trajectory and control functions are ttx =)(*  and ttu =)(* , respectively. Results of applying the
given algorithm are presented in Table 2. Also, comparison of the exact and approximate optimal control and
trajectory may be seen in Fig.2.

Table.2. Numerical results in Example 2.

  k  n *
kJ

 1  3  0.0109
2  3

4105.6505 
3  3

6102.1254 
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Figure  2: The control and state functions in Example 2.

Example 3. In this example an optimal control problem with different objective function and kernel respect to previous
examples is considered as follows
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where tetutx =)(=)( **  are the exact optimal trajectory and control functions, respectively. The results of applying
the given algorithm is presented in Table 3. Also, one can observe the approximate optimal trajectory and control
functions which is obtained in some iterations of the given algorithm and compared to the exact solutions in Fig.3.

Table.3. Numerical results in Example 3.

k  n *
kJ

1  3  0.0049
2  3

5102.7836 
3  3

5102.3422 
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Figure  3: The control and state functions in Example 3.

Example 4. In this example the following optimal control problem is considered
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The exact optimal trajectory and control functions are ttx cos=)(*  and ttu =)(* , respectively. The results of
applying the algorithm have been shown in Table 4. The comparison of the exact and approximate optimal control and
trajectory may be seen in Fig.4.

Table.4. Numerical results in Example 4.

k  n *
kJ

1  3
23102.3370 

2  3
23102.1750 
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Figure  4: The control and state functions in Example 4.
CONCLUSION

In this article, the perturbation method and parametrization approach are combined for solving optimal control
problems governed by a class of Fredholm integral equations. The proposed procedure is very simple and effective
and some numerical examples show that the given scheme can produce the approximate solutions with high
precision.
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