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ABSTRACT

We present preconditioned interval Gauss-Siedel method and interval LU decomposition for finding solution to
the interval linear system of equation Ad=b where the nxn coefficient matrix A lies between two bounds

AandZandbe[l_),l;]. It is found out that preconditioned interval methods of Gauss-Siedel and LU have

substantial reduction of excess widths of the interval hull of the solution set. In particular we also give our results in
terms of midpoint-radius arithmetic for Gauss-Siedel method in the sense analogous to (Rump,1999) and (Gargantini
and Henrici,1972) circular interval arithmetic.
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INTRODUCTION

Across all branches of Engineering and Sciences, computational methods provide the quest for reliable
results. Reliability is achieved only if all sources of errors, approximations and uncertainty are accounted for (Hayes,
2003), (Moore, 1966) and (Rump, 1999) are good references behind this theory. Measurements are always not 100%
accurate. Any one working in Engineering discipline, Physical Sciences, Technical discipline will surely inquire about
the effect of rounding error and propagated error due to inexact initial data or uncertain values of parameters in any

mathematical models, (Kreinovich and Longpre,2004). To describe this, consider the measurement x; made by a
manufacturer of an equipment. Due to this measurement error defined as Ax, =X, —x,, the image

y= F()?l,fz,...,fn) of data processing became generally different from the actual error A =y — y of the result of
the data processing y. With this we are able to understand some information about errors of direct measurement.
Assuming we perform a measurement and obtain a measurement result X,. We can find the exact (unknown) value

X, of the measured quantity which belongs to the interval {xi,xl}, where x, =X —A,, x, =X, + A,.

Let [)_c] be replaced by [a]=[a,,b,] and X be replaced by [b] = [az,bz]e IR where IR is the set of intervals

with real components, then the properties of interval arithmetic operations can be found in (Alefeld and
Herzberger,1983), (Kreinovich and Longpre,2004), (Moore,1966), (Neumaier,1990 and 1986) as follows:

a+b=[a, +a,,b +b,],
a-b=[a, —-b,,a,-b],

axb=[ min(a,a,...,bb, ), max(a,a,....b,b, )]

a 1 1
E:[al,bl]x{—,b—}b =0

a, b,

The use of interval arithmetic has some important advantages in numerical computing. See for example, (Gau and
Stadtherr,2002), (Oishi and Rump,2002), (Kearfott,1996) and the cited references therein. However, the operations of
this interval arithmetic are so delicate that wrong interpretations can lead to utterly wrong results. Other reason is that
interval arithmetic cannot eliminate round off errors, but it can fence it in. Thus when a result d falls between two

floating point values, those nearest representable numbers become the lower and upper bounds of the interval [d, (7]_
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However, subsequent computations could yield a new interval for which d andd are themselves numbers that have

no floating point representation (cf, Rump, 2001) and ( Hayes, 2003).

Another area where interval arithmetic distinguishes itself from ordinary floating point arithmetic is that in general, an

interval has no additive inverse, that is, given a non degenerate interval {d,d} there is no interval for which

[Q,c?]+ [g, E]: [0,0]. Interval arithmetic does not possess multiplicative inverse too, that is there exists no pair of
degenerate intervals for which [Q,c?]x [g, E] = [1,1].

Since we will be dealing mostly with interval vectors and interval matrices, then we define R",R™, IR, IR" ,IR™

to signify the set of real vectors with n components, the set of real nxn matrices, the set of intervals, the set of interval
vectors with components and the set of nxn interval matrices, respectively (Kearfott 1996) and, ( Neumaier 1990).

Consider a given interval linear system in the form:

Ad=b (1.1)
where
Ad =[Ad, Ad] (12)

In (1.2), we have expressed Ag in terms of end points of elements of A because we know the signs of the
components of d. Thus we have a system of interval linear equation in the form

Ad =|ad,4d|=[p.6] (13
We expect that the variable 67 must be such that the intervals intersect. It follows that
Ad >band Ad <b (1.4)

One assertion of interval arithmetic is that it can be used to test naturally the Brouwer fixed point theorem, (Ning and
Kearfott,1997). The Brouwer fixed point theorem in interval arithmetic asserts that , if /D is a homeomorphism to the

closed unit ball in /R" and G is a continuous mapping such that G maps ID into ID, then there is d € IR" for
which d=G(d).

Rump’s interval matrix operations
Rump’s operations as defined in (Rump,1999) on interval matrix are quite similar to circular interval arithmetic

introduced by (Gargantini and Henrici,1972). In these formulas every interval [a]= [al,az] is represented by its

midpoint a_ = (WTGZJ and its half-width (radius) r = (al ;az ] , thus a = [ac —-r,a, +r]. The corresponding
arithmetic operations for two intervals a =[a, —r,,a. +r,],b =[b. —r,,b, +r,] will now take the form given by

[ac —h.4. +’3]°[bc —715,b, +7’2]= [Cc —15C +7”3]

where

aocb=a+b,wehavec, =a, +b, andr, =1 +r,,
acb=a-b,wehavec,=a,—b andr, =1 +r1,,

acb=a-b,wehave c, =a, -b. andr, =

a

c

-ty +|b |+,
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- a r
We also define the inverse disk (ac,r) ' tobe — > |-
a,—r° a,-r

The purpose of this paper is to show that preconditioning the interval linear system (1.1) before employing the interval
Gauss-Siedel method and LU factorization has substantial gains in reduction of excess widths than using crude
interval Gauss-Siedel method and LU factorization especially for intervals whose widths are small since experience
also showed that it can produce utterly overestimated results when the interval widths are large.

The Methods

In this section we will describe interval Gauss-Siedel method and the LU factorization as approximate solution
set to the interval linear system (1.1). For detailed description of Gauss-Siedel method one can consult (Ortega and
Rheinboldt, 2000) see also (Ning and Kearfott, 1997), (Alefeld and Herzberger,1983).
In the case of LU factorization one solves a kind of linear system
LUd=b (3.1)

by an explicit splitting as follows:

Forward solve in the following steps:

1 0 Z; b,

m,, 1 0 z, B b2 (3 2)
mn,l mn,2 mn,n—l 1 Zn bn

Backward solve
U Uy e U, d, N
0 uy, .. u,, |ld, ¥,
= (3.3)

O un,n dn yn

where

m. . are the elementary matrices called the multipliers, the ui’j(i:2,..nj :1,2,....n) are the upper triangular

LJ

elements of the decomposed matrix A.
In compact form the algorithmic structure of LU factorization is given by:
Fori=2,...n

i—1
Set z, = b, —Zml.jzj

j=1
End for loop
For i=n,n-1,...,1
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z; — Zuiidt
Set d(i) _ t=1+1
u

ii

End for loop
The error analysis in LU factorization can be seen as follows:

Assuming that d* is an approximate solution to the system of equations (1.1). We consider the problem of calculating
the bounds of HA_lb —d *H where ”d”w is the infinity norm in /R".

We suppose that there is an approximate inverse matrix B to the interval matrix A together with approximate solution
d* in system (1.1). Multiplying through equation 3.1 by the approximate inverse matrix B will give what is called

preconditioned interval LU decomposition. It is known (Ortega and Rheinboldt,2000) that ||BA—I||OO <1 implies that

p(BA—1T) <1 which proves the existence of A™'. Together with application of Perron-Ferobenius theorem, we
have that |I —BA|d <d

B
Setting A = (I -l - BA)’l)B, it can be shown (see e.g., Oishi and Rump,2002) that ||BA — I”OC < %
y |BCAd * b
and that HA b—d *H <M TN (34
©1-]Ba-1,

We will further assume that LU factorization is given as described above say, with a permutation matrix P in the form
LU = PA. We can then compute the approximate inverses A, and A, of L and U by replacing B by 4, 4, P .

where we set

Substituting this into equation (3.1), we have the error bound in the form HA’lb—d*Hél 7

6 =|4,4,PA-1|

_,B=|4,4,P(AD*-b)|_

Employing interval Gaussian elimination to system 1.1, we see that interval widths tend to grow. Let us note that the
interval Lu factorization described earlier is always obtained from interval Gaussian elimination. One can overcome
this defect of wider interval widths if we precondition the interval linear system whereby we multiply the linear interval
system Ad=b by an appropriate inverse of the centre of A. The wider the vector b the wider the solution set will be.
The closer the inverse midpoint matrix is to an identity matrix, the less the preconditioning step tends to enlarge the
solution step. As attempt in solving for the solution to system 1.1, let us note that concept of fixed point mapping

G:ID c IR" — IR" to be satisfied is essential. Thus for a non singular preconditioning matrix B it is that f(d)=0 if

and only if G(d)=d, where G(d)=d-Bf(d) in the sense of Brouwer’s Fixed point theorem. On the basis of this, the
equation G(d)=Ad=b will be rewritten in the form:

G(d)=d-B(Ad-b) (3.5)

This implies that Bb+(I-BA)d=G(d).The essence of equation 3.5 helps to prove the sufficient conditions for the
existence of a fixed point and error analysis in our solution to system 1.1. Let us note that every contraction in

ID c IR" is Lipschitz continuous.
As a remark we define the interval Gauss-Siedel iteration in the form

d’°=d,d"" =T(4,b,d") ,(1=0,1,2,..) (3.6)

Thus the preconditioned interval Gauss-Siedel iteration with an approximate real point inverse matrix B of interval
matrix A is the equation

d’ =d,d" =T'(BA,Bb,d"), (1=0,1,2,..) (3.7).

Let us note that for all / > 0 the components of the Gauss-Siedel iteration (3.6) satisfy
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d = F[Aﬁ,bi => A4,d}" —ZAikd;i,di],i =12,..,n (38)
k<i k>i

Where I" is a graph connecting i and k.

Numerical Experiment

As an illustration we will consider the following problem:

Ad=b
Where
A=
[20,20] [-.0610307587,-0.578140768] [0.189883127,0.201771786 ] [0,0]
[1.527685488,1.578081928] [20,20] [0,0] [~ 0.193054490, - 0.153964193]
[ 0.145876679, - 0.106198125] [-1.145876679,—1.106198125] [18.50590343,18.54168695] [0,0]
[0,0] [1.799117812,1.821412458]  [-1.884627872,1.848254165] [21,21]
]
dl
d=\d,
d3
K

[2.224514638,2.672484857]

[-2.200440106,—1.772842959]
| [1.7647269,2.173919257]

[-1.965396044,—1.471852763]

The following table1 gives the result from the application of Interval Gauss-Siedel method without preconditioning.

Table 1

ITERATION Results from Interval Gauss-Siedel Method (3.8)
1 -0.133624242,-0.111225731
0.097138044,0.1250565505
-0.112500982,-0.088533135
0.049534798,0.077476263
2. -0.129975713,-0.1064 11653
0.097248470, 0.1210254780
-0.112465689,-0.088477028
0.049498070, 0.077471740
3. -0.129973054,-0.106397973
0.097160902,0.121025225
-0.112470892,-0.088736456
0.049497625, 0.077455564
4, -0.129973122,-0.106397928
0.097150319,0.121025074
-0.112471524, -0.088476974
0.049497581, 0.077480154
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We halt iteration after four successive complete cycles. The result for LU factorization method is given in table 2.

Table 2: Interval Lu Factorization (3.1)

RESULTS

-0.129907622, - 0.106346463
0.097371623, 0.120952314
-0.117795459, -0.09499746
0.03963671, 0.077786746

—_

o8}

SRR RS Y

&

Table 3: (Results for Preconditioned Interval Lu Factorization (3.1))

d RESULTS
-0.129710833, - 0.106693078
0.098909935, 0.119201072
-0.112379935, -0.088409123
0.029609098, 0.059380416

—_

5%}

SV IRSTIRSUR ST
S

S

Table 4: (Preconditioned Interval Gauss-Siedel Method (3.7))

ITERATION RESULTS

1 -0.129581663, -0.106839440
0.098974170, 0.119136727
-0.112335277, -0.088531191
0.029655320,0.059745253

2. -0.129628995, - 0.106695347
0.098909425, 0.119205537
-0.112337144, -0.088527517
0.029390932, 0.059361003
3. -0.129626397, -0.106768289
0.098858662, 0.118743692
-0.112376431, - 0.088528117
0.029426214, 0.059245068

Table 5: (Applied Rump’s operation on Gauss-Siedel method (3.8))

ITERATION | RESULTS IN MID POINT-RADIUS
INTERVALS.

1 -0.122424987, -0.011199255
0.108837665, 0.011419351
-0.100530134, -0.011825395
0.063522181, 0.011677008

2 -0.112578053, - 0.010335898
0.108624192, 0.011391449
-0.100476112, - 0.010104468
0.063545384, 0.011976915

3 -0.118213827, -0.010825516
0.109061978, 0.0098645226
-0.100487846, -0.010189541
0.063506604, 0.012105594

4 -0.118200705, 0.000315788
0.10906062, 0.011042682
-0.100487839, -0.010028782
0.06350672, 0.011953699
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CONCLUSION

From results presented in Tables 1-4, it can be observed that those of preconditioned interval Gauss-Siedel
(3.7) and preconditioned LU factorization method (3.1) have substantial reduction in excess widths in the solution hull
to system 1.1 which are shown in Tables 3 and 4 wherein we implemented (Moore,1966) version of interval arithmetic
in Tables 1-4. Practically, is the simultaneous construction of two sided converging sequences to their respective limits
taking advantage of outward rounding wherein one is the sequence of lower bounds on the enclosures converging to
the range infimum, and the other is the sequence of upper bounds on the enclosures converging to the range
supremum. This is in sharp contrast to the midpoint-radius interval results presented in table 5 for Gauss-Siedel
method without preconditioning.
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