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ABSTRACT 
 

 This paper introduces a class of nonlinear innovation process that has similar properties as the white noise 
process. Consequently the process can be a replacement of the white noise process in cases where the latter is 
inadequate as residual process. 
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1. INTRODUCTION 
 
 There has been growing interest in non-linear time series of recent mainly as a result of the observation that 
many practical time series possess nonlinear components [Hinich  & Patterson (1985), Granger & Andersen (1978),  
Baillie & Bollerslev (1989), Ding, Granger & Engle (1993), Tong (1990)]. Nonlinear AR models with conditionally 
heteroscedastic errors are common in financial and econometric time series. The conditional variance may be 
specified as nonlinear autoregressive conditional heteroscedasticity (ARCH) model [see e.g. Chen & Chen (2001)], or 
as linear generalized ARCH (GARCH) model of Bollerslev (1986), or even a GARCH model with complicated 
nonlinear structure. Models with threshold type nonlinearities characterized by discontinuous functions are also in use 
[see Tong (1990) Chen &Tsay (1993)  for models for conditional mean; Glosten, Jaganathan & Runkle (1993), 
Rabemananjara & Zakoïan (1993) for GARCH models]. The functional AR model of Chen & Tsay(1993) encompasses 
various well-known nonlinear autoregressive models such as the smooth transition AR models [see Teräsvirta (1994), 
van Dijk, Terasvirta & Fances (2002)]. For nonlinear model involving moving average see, for example, Brännes et al 
(1998). For tests for nonlinearity under various assumptions on the type of nonlinearity see, for example, Tsay(1986), 
Lee(1991), Pera & Rodriguez (2005), Hinich, Mendes & Stone (2005), Subba Rao & Gabr (1980), Aparicio (1998), 
Barnett & Wolf (2005). 
The current paper wishes to introduce a class of nonlinear processes that can be used to model certain nonlinearities 
in residual process. The nonlinear process will be introduced in the next section. Thereafter we will explore some 
properties of the process that are similar to those of the white noise process. The final section will give a 
generalization of the nonlinear process. 
 
2. THE PROCESS 

 

Let { }tε  be zero mean white noise (independent and identically distributed) process with finite fourth moment. In 

particular let
2 2( )tE ε σ= , 

3 3( )tE ε λσ=  and
4 4( )tE ε ησ= .  

 

Consider the process { }tW  where  
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and ( )( ) , ( ) 0k t t k t t kW Cov W W E WWγ + +≡ = =  for k ≠ 0. Thus { }tW  is uncorrelated ( )00, ( )Wγ  process just like 

the white noise (WN) process{ }tε . However, unlike the latter, { }tW  is not independent sequence. Nonetheless, it can 

serve as a non-linear innovation process in many modeling situations where the WN process is currently used, for 
example in a linear process, say ARMA process. To see this we first consider MA(q) process: 
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For this process ( ) 0, ( ) 0t kE X Xγ= =  for all |k| > q and 

2 2 2

2

for 0
( )

( )   for 1, 2,...,

i

k k

k i i k

k
X

k q

σ σ θ
γ γ

σ θ θ θ
−

+

 + =
= = 

+ =

∑
∑

 

See for example Fuller (1976) p. 20. Now consider the processes  
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and  
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It is easily seen (see e.g. Fuller(1976) p. 20) that ( ) 0, ( ) 0t kE Y Yγ= = for all |k| > q and 
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Also ( ) 0, ( ) 0t kE Z Zγ= =  for all |k| > q and 
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Consequently we can consider MA process in the non-linear process { }tW  as an alternative to the one in WN process 

and still preserve the autocorrelation function structure. The process (3) seems to be of more practical importance in 
view of Volterra expansion (see Volterra, 1959) for nonlinear stationary series. However, notice that 

process (4) is 1 1 1 1

1 1 1 1
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which is an extension of process (3) as MA(q) plus nonlinear terms. 
 

If the WN process in a stationary AR (p) process is replaced by { }tW  we have the process 
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t i t i t

i

Y Y Wϕ −
=

= +∑ . We easily see (e.g. Fuller (1976) §2.3) that 
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= +∑ . This is again similar to what 

is obtained when WN process is used instead of{ }tW . A similar result holds for ARMA process generally. Terms 

similar to the right hand side of (1) can be included in ARCH and GARCH models to take care of certain nonlinearities. 

Consequently the { }tW  process (1) can be used as innovation in situations where the WN process is inappropriately 

used to account for non-linear innovation. This leads to a new class of, for example, ARMA processes in non-linear 

innovation process{ }tW . The rest of the paper will be devoted to more properties of the process { }tW  that are similar 

to those of the WN process. 
 
3. SOME PROPERTIES OF WT PROCESS 
 

We have seen that { }tW  is uncorrelated ( )00, ( )Wγ  non-linear process. We will prove the following: 

Theorem 1:  ∞→→∑
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nasWNW
n

D
n

t

t ))(,0(
1

0

1

γ  

This theorem shows that, just like WN process, the sample mean W  process based on sample size n is 

asymptotically zero mean normal with variance ./)(0 nWγ  Let the population correlation coefficient at lag k, ρk(W), be 



estimated by 
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sample autocovariance function at lag k based on sample size n. We also have the following results. 

Theorem 2: 1)1,0()(, +>∞→→ skwhenevernasNWn D

nkγ  

Theorem 3: 11),0()(, +≤≤∞→→ skwhenevernasNWn
D

nk νγ  where ν > 1. 

Theorem 2 indicates that for all lags k greater than s+1, the usual ±2/√n bounds for the (approximate) 95% confidence 

interval of WN ( )kρ ε  (k ≠ 0) also holds for { }tW  process. Theorem 3 indicates that for positive lags not greater than s 

+ 1, the above ±2/√n bounds are too conservative to be bounds for )(Wkρ . These results incidentally also provide 

information on the parameter s of the process { }tW when it has to be estimated from data. It particular, if theorem 2 

holds for all k > 0 we would be sure that the WN process should be used instead of the process { }tW .  

4. Proofs  

The proofs will make use of central limit theorem for m-dependent random sequences given below in lemma 1. The 
result is due to Hoeffding and Robbins (1948) and is proved in Fuller (1976) p. 246. For the avoidance of doubt, a 

sequence of random variables { }..,2,1,0: ±±=tZ t  is said to be m-dependent (where m is a non-negative integer) 

if  
2 1 1{... , , , } and { , , ...}u u uZ Z Z Z Zυ υ− − +  are independent sets of random variables whenever .mu >−υ  

Lemma 1: Let { }tZ  be m-dependent sequence with E{ }tZ  = 0, var{ }tZ  = 
2

tσ ∞<  and 
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The next lemma is proved, for example, in Rao (1973) p. 388. 

Lemma 2: Let { }nV  be a sequence of p-dimensional random vectors such that 

( ) (0, ) .D

n p
n V N V as nµ− → →∞  If : P qg R R→   is a differentiable function in the neighbourhood of µ and 

J is q x p Jacobian matrix at µ, then n ( )( ) →→ D

n gVg µ)(  (0, ) .qN JVJ as n′ → ∞  

Proof of Theorem 1 

Wt is a function of εt-j for j = 0, 1, O, s+1. Consequently { }tW  is (s + 1) –dependent sequence. Since 
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Also 
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Here we have used the fact that Wt and 
1{ : 1, 2,..., }t k i i sε + − − =  are uncorrelated if k > s+1. 

Therefore, for k> s+1, 
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Next we compute the second term in (5). 
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The first term on the right vanishes since kt+ε  is uncorrelated with t t k u t uWW W+ − − . If k > 1 and u > 1, the second term 

also vanishes since then 1−+ktε  and 
1t t u t k u t k jWW W ε− + − + − −  are uncorrelated. For u = 1 the second term vanishes 

whenever k > s+1 since then 1−ttWW and 
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Thus ( ) 0 for 1t u t k u t t kE W W WW k s− + − + = > + .  

Consequently
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Since At is independent of t we see that the asymptotic variance A ≡ 0( )A c  is given by  
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Next we show that  
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To see this, noting that { }tW  is (s+1) – dependent, we have for all k > s + 1:  
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To round up the proof we use lemma 2 with the function g defined by ( , ) , 0,
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Proof of Theorem 3  
Using the same transformation g and same variable Vn,k as in the proof of theorem 2, we see that if 
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Consequently for ksk +≤≤1  the asymptotic variance, ( ),kA c  of )(, wckn nk−
 

is given by  
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For 1 < k ≤ s + 1 we have  
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These values are evidently greater than )(2

0 Wγ . The proof of theorem 3 is now complete.  

Discussion 
a) As a passing remark we notice that since 

    ( ) ( ) ( ) 2

1
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1
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0 11)( i
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i
sss WcA ββσηβσηγ

=− Σ−+−+= , 

( ) ( ) 262

01 1)( ss WcA βσηγ −+=+  and ( ) 261 sβση −  can be much smaller than  

( )2282642

0 2)( iiW βσβσσγ Σ+Σ+= . Consequently the asymptotic variance of 1,s nn r +  may be quite close 

to 1 especially if s is large.  

b) By allowing the parameters iβ  in (1) to be functions of t, heteroscedasticity in { }tW  can be introduced. In that 

case var (Yt) in the MA model given by equation (3) will be heteroscedastic but the autocovariances at non-zero lags 
will not be affected. In comparison, in the MA model given by (4) both var (Zt) and the autocovariances would be 
affected. 
c) The non-linear process (1) is a member of a class of uncorrelated non-linear processes that have properties 

similar to the WN process. indeed for any integer a ≥ 0, the process aiti

s

i
attatt UU −−=− Σ+=≡ εβεε

1
,  is 

uncorrelated ( ))(,0 0 Uγ  process where )(0 Uγ  is as given in (2). Moreover 
,{ }t aU is (s + a)-dependent sequence and 

theorems 1-3 given above (with s + 1 replaced by s + a) also hold for each member of this class of processes. This 
provides some flexibility in the choice of non-linear innovation process. The problem of identifying suitable values of 
the parameters a and s for a given problem will be taken up elsewhere. 
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