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ABSTRACT

Shared Gamma and Inverse-Gaussian Frailty models are used to analyze the survival times of patients who
are clustered according to cancer/tumor types under Parametric Proportional Hazard framework The result of the
analysis shows that patients within the same cluster share some common unobserved heterogeneity which proves the
analysis of such data under the assumption of independence inappropriate. This is an indication that conclusion based
only on the observed covariates, ignoring the characteristic unobservable covariates in the data can be misleading.
However, no evidence is strong enough for preference of either Gamma or Inverse Gaussian Frailty.
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INTRODUCTION

Clustered also known as Multivariate or Correlated failure times are frequently encountered when there is
grouping of individuals into clusters. The Cox (1972) Proportional hazards model which is a popular modei in
assessing covariate effects on failure time, based on the assumption of independence i1s inappropriate under this
setting due to the complication caused by the dependence of related failure times within the clusters. For example, in
animal experiments, due to common genetic and environmental factors, the failure times of animals within the same
litter may be correlated. Aiso in multicentre clinical trials, outcomes for participants within the same centre, sharing the
same environment are likely to be correlated. In the presence of such correlation, standard analytical approaches
such as the Cox proportional model can lead to confidence intervals with incorrect coverage probabilities (Huster,
Brookmayer and Self, 1989). Thus there is the need to account for such intracluster dependence. Two classes of
model approaches that are often used in analyzing clustered failure lime data are the frailty model and the marginal
model. In frailty model association of failure times of subjects within a group (cluster) is usually focused. Marginal
model considers the population —average covariate effects and leaves the association among subjects within clusters
as a nuisance parameter This paper focuses on the frailty model. Fraity simply means "Proneness” or “Propensity” to
fail or die. By definition, frailty is an unobserved heterogeneity that modifies the hazard rate of an individual. Frailty
could be univariate, which 1s often incorporated into a model on the basis of idea that individuals under study possess
some heterogeneous unobserved characteristics (frailties) and that those patients who are frailer will die earlier than
the others. This form of frailty was considered by Vaupel et al (1979) in analyzing survival time data. The other form of
frailty, the one considered in this study is the “Shared fraiity”. This form of frailty model was introduced by Clayton
(1978). The shared frailty model is relevant to event times of related individuals, similar organs and repeated
measurements. Individuals in the same group or cluster are assumed to share some common unobserved
heterogeneity (frailty), hence the name shared frailty model (Wienke, 2003). In statistical term, frailties are random
effects that act multiplicatively on the baseline hazard, thereby modifying the hazard rate of all individuals in the study
population or members of each cluster.

Cancer has been variously defined in the literature as uncontrolled growth of abnormal cell on or within the body.

Research on cancer has become a global interest. WHO (2003) reports that cancer accounts for 7 1million deaths
annually, which is about 12% of global total. Report also shows that the number of new cancer cases annually is
estimated to rise to 15 million by 2020, with more than half of all cancer cases occurring in developing countries. The
challenges of cancer however, lie in their complexities. The many different tumor types each with distinct sites,
present different clinical behaviours (Eschenbach and Collins, 2005). The crude percentage of death due to cancer
within each cluster can only serve as a rough index if effects of covariates are not taken into account. Even then,
analysis done based on observed covariates alone may not be adequate. For example, some types of tumor may
have higher mortality rate just because the patients are older, whereas there could be more to that due to some
unobservable heterogeneity. This heterogeneity may arise in part from the fact that tumors are complex organ
systems that are shaped by cellular biological context. It is therefore imperative in carncer research to note the
characteristic heterogeneity due to various types of cancers and tumors as the case may be. This study. therefore
aims at analyzing data collected on cancer patients when they are clustered according to cancer or tumor types The
data were collected on 215 cancer patients from University of llorin Teaching Hospital between year 1999 and 2002.
The failure time is the time between patient's admission and the time when he/she died or censored Censored patient
here refers to patient who dropped out alive between the entry date and time of data collection and patient who is still
alive as at the time of data collection. Two covariates, sex and age at the time of admission were also collected on
each patient. In section 2, we introduce some basic notations and then specify the models We also give the
parametric specification of the baseline hazards and analyze a dataset on cancer patients. In section 3, we present
and discuss the results of the analysis. Some concluding remarks are given in section 4.
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2. MODELING AND ESTIMATION ,

2.1 Notations and Model Specification
Suppose that we observe censored ime-to-event data from a study with J clusters and » subjects from the jth cluster

J
(j=1.....J). such that the total sample size is .V = Zn,. Let X, and C, denote the latent "ailure time and censoring
7=
time for subject i in cluster j respectively
=1 . Ji=1 . n)
Then the observed failure time is given by

T =min(\,,C). @21
VT, =X
et = 7 =

If we also let Z, denote the covariate vector for subject i in cluster j. then the observed data structure is ( ij ,,aZ )
The propomonal hazard (PH) model, extending from Cox (1972) is given by

At )Z,)=A(Dexp(BZ,), 22)
where A, (1)is the baseline hazard function (for which a functional form may be assumed or may be left unspecified

as for Cox PH model) and /J is a vector of regression coefficients. The model given in (22) is based on the
assumption of independent failure times of subjects regardiess of the cluster he/she belongs to However, if the
independence of failure times within the clusters is of interest, then 4, (/) in (2.2) has to be modified by incorporating

a frailty term w. Thus for the ith subject in the jth cluster with shared frailty w), the Proportional hazard model
is given as

A(ty //’m):"?}ﬂ()(t)expﬁz[j)‘ 2.3)

where w is a frailty term shared among all members of cluster j. Ciearly, (w,.w,,---.w,) are independently and

identically distributed samples from some distributions with positive supports Common distributions for frailty include
the one parameter gamma distribution (Clayton, 1978), the Inverse Gaussian distribution (Hougaard, 1986b), the
positive stable distribution (Hougaard, 1986a) and the Lognormal distribution (McGilchrist and Aisbett, 1991)
However, for tractability reason, the choice of distribution is !imited to those that provide a close form expression for
the frailty survivor function. For continuous failure time moda!, the Gamma and the Inverse-Gaussian distributions
have been the two most commonly used. [n fact, it is believed by some (Hougaard, 1995) that all models should
contain frailties. Hendersen and Oman(1999) showed that when frailty 1s present but ignored in a Cox model, the
regression coefficients are biased towards zero. However, when censoring is present, the bias is reduced Literatures
have shown that the presence of frailty attenuates the proporticnate response of the hazard to variation in each
regressor and that the estimate of a positive (negative) effect derived from the wrong, no-frailty model. will
underestimate (overestimate) the true estimate.

Suppose we consider the modified baseline hazard in (2.3) as

'l;(‘,')“’ = l(llwl)
= w,/io(/) . 4)

which is essentially a proportional hazard model interpreted as the conditional hazard function given frailty w ;

shared by all members of cluster j. The corresponding conditional survivai function is
Sy 0=Sw )

:—.exp(—I A(,(s;w/ )ds)

"
=S, (2 5)
which represents the probability of being alive at time t given the shared frailty w,
However, estimation requires expression for survival function and hazard function that are not conditional on the frailty

term and this is obtained by integrating out the frailty term
The unconditional survival function is thus given (suppressing the subscript) as the integrated survival with respect to

the frailty
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S(r))= J. S " gy, : (26)
where g(w) is the density function of the fraiity vanable w
The unconditional hazard function can then be obtained as follows
ifwelet A(1) - - log S(r)

= - log f’ S(I'H'i; ey

= —log J‘,S“(l)" LOn (2.7)
from (2.5) and (2 .6) respectively, then the uncoaditional hazard function is given as
s d . \ ,
[ s gondw {1wa a8 0" gonid
A(t) = - ’(’ = M (2 8)
j S A0" g(wdw rSn(l)" g(w)dw

For purposes of identifiability,. we assume that the random variable W has the mean and variance given respectively.
as
FW)=1 and Var(W) =6 (2.9)

Thus if we specify Gamma distribution for Wwith Gamma(1/6.6) as

-

" eNp( - w )

glw)= - = @10
()"
from (2.8) and (2.10) the modified basel'ne hazard function with Gamma frailty becomes
A
Ay = o 1)
14+ 6A,(1)
And if we specify Inverse- Gaussian distribution for w, with Inverse-Gaussian (l.1/6) as
2 ] |
g(w) = (272*) " 2 expd - M[W*2+ --—) : (212)
20 w
then the modified baseline hazard function with inverse- Gaussian frailty is given by
A,
A= - (213

(1+ 20\, (1)
where
A= -logS, ().

2.2. Parametric specification of baseline hazard ( 4,(/})

The parametric Proportional hazard model requires that functional form of the baseline hazard A (/) be specified.

Weibull and Gompertz distributions have been two popular parametric distributions for increasing baseline hazards.
which is characteristic of cancer data. Increasing hazard occurs in cases when patients have low positive response to
treatment, (Lee, 1980).

The baseline density function for Weibuli with parameter ¥ and p is given by

. -1 -1
J,0)=yp(m)7 exp()") (2 14)
with the baseline hazard
A1y = ypyn”! 2 15)

where y and p are the scale and shape parameters respectively.
The baseline density function for Gompertz distribution with parameter y and p Is given by

[
4]

a0y exp (p o+ yo) '—(e”” ey (2 16)
Y

with the corresponding baseline hazard function §nven by
A1) - exp(p ¢ v1) (217)
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2.3. Data Analysis

We analyze the cancer data described 'n section 1 using the methods described above Two covanates are
used in the analysis These are age on admission and sex which is coded 1 for male and 0 for female patients
Patients are grouped into nine clusters according to cancer/tumor types/sites. which include. carcinoma, leukemia,
lymphoma, melanoma, sarcoma, rectum, lung, liver and stomach Prostate and breast cancers are not included
because they are gender related and may possibly intraduce gender bias into the analysis.

The major interest of the study is to examine how frai'ty modéls compare with the model without frailty (reference
model), and also investigate whether there are differences between Gamma and Inverse Gaussian frailty models. We
thus carry out our parameter estimation under five models stated below
Model I: The reference model of no frailty and Weibull baseline hazard.

Model li: The reference model of no frailty and Gompertz baseline hazard

Model lll: The mode! with Gamma frailty and Weibull baseline hazard

Model IV: The modei with Gamma fraitty and Gompertz basehne hazard

Model V: The model with Inverse-Gaussian frailty and Weibull baseline hazard
Model VI: The model with Inverse-Gaussian frailty and Gompertz baseline hazard
All aralyses have been done with STATA, Version 8.0.

3. RESULTS

Table 1 shows the effect of each covariate upon the hazard and their associated standard errors under
Weibull and Gompertz baseline specifications for the reference mode! (no frailty) and with shared Gamma and
Inverse-Gaussian frailties. Both the reference model and those with frailties adequately fit the data as seen from the
likelihood ratio tests.

The frailty is seen to have an increasing effect on the parameter values, in accordance with.the submission of
Hendersen and Oman (1999). There is no significant difference in the hazard rates between male and female patients
(though slightly higher for mate) in all the models Effect of age is found to be moderately significant.in all the models.

The © value is the estimate of frailty distribution variance which is a measure of degree of heterogeneity
among the clusters and of course the degree of association within the cluster Clearly, there is evidence of
heterogeneity among the clusters indicated by the significant difference of 8 from zero under the two frailty
specifications. This means that the cancer patients within the same cluster are correlated.

Table 1: Proportional Hazards Models under Weibull and Goinpertz baselines with No Frailty and with Shared
Gamma and Inverse-Gaussian Frailties

WEIBULL BASELINE

No Fraifty Gamma Frailty Inverse Gaussian Fraiity

Covariates Coef Std Err. P-Value Coef  Std. Err  P-Value Coef Std Err  P-Value
Sex 0.0656 0.131 0.160 00667 0.134 0180 00668 0.134 0181
Age 0.0343 0.003 0.039 0.0554 0004 0.026 00540 0.005 0.033

LR Test 14.64 (0.0019) 18 07(0.0012) 17 54(0 0015)

Test for 8 = 0: 3.75(0.0001) 20 69(0.0001)

GOMPERTZ BASELINE
No Frailty Gamma Frailty Inverse-Gaussian Frailty

Covariates Coef. Std. Err. P-Value Coef Std Err. P-Value Coef Std Err P-Value
Sex 0.0654 0.121 0.183 00657 0134 0225 00658 0134 0.224
Age 00341 0003 0048 00536 0.004 0037 0.0533 0004 0 041

LR Test 14 58 (0.0025) 17.82(0.0019) 16 20(0 0021)
Test for 6=0: 22 08(0.0001) 18 95(0.0001)

Note: Values in the parentheses are the P-values of the tests

For model with Gompertz baseline, the results are similar to those of Weibull baseline The reference model,
the Gamma and Inverse-Gaussian frailty models all fit the data adequately well The frailties are also statistically
significant and the parameters of the models change in the expected direction As for the choice between Gamma and
Inverse-Gaussian frailty specifications, literatures haveé shown that the choice 1s complicated by the fact that the two
models are non-nested. &

Simulation studies
To compare Gamma and Inverse Gaussian frailties under Weibull and Gompertz models, simulation studies are
conducted. Data generations are done as follows In each sample there are J= 10 clusters with equal cluster size

n, =10 so that n=100 observations are generated in each sample The survival timeﬂ%, =1 .n, g l...J are
generated from model A(/, |z, .w ) = w A (f)exp(/f'z ) where w  Gamma(l/3.3) The baseline distribution 1s
taken to be Weibull with scale and shape parameters 1 and 2 respectively, = |§_Q5ern0ull| with success probability 0 6

and:(#= 05 N=100 samples are generated and analyzed using models { toVi| The results are given in table 2 It can
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be seen that parameter estimates are far from the true values when analyses are done using Wetbull or Gompentz
baselines without frailty When frailty is incorporated. no remarkable differences are seen between gamma frailty and
inverse Gaussian models when analyses are done with either Weibull and Gompertz baselines.

Table 2. Resuits of simulations to compare Gamma an Inverse Gaussian Fraiity. Models under Weibull and
Gompertz baselines

- e w w o €5 = o s T S o T S S e e e M TR M- S MR R A T S NN NEmEEEmEmEEEN T T T o — I ZEEESZ ST o
333 1 322ttt 3 3 4+ 24 22 1t 2 2 b At 1 1 2 2 R s

Weibull Baseline Gqmpertz Baseline
Model Coeff(std error) Coeff(std efror)
No Frailty 0 449(0 434) 0 424(0 433) 2
Gamma Frailty 0 501( 0.458) 0 499(0 455)
Inverse Gaussian Frailty 0 503(0 459) 0497(0 455)

it is seen that parameter estimates for Gamma and Inverse Gaussian frailty models are 0 501(0458) and
0.503(0.459) respediiveiy under Weibull baseline, while for Gompertz baseline, they are 0 499(0 455) and
0.497(0.454) respectively.

4. DISCUSSION AND CONCLUSION

We have demonstrated how frailty mode! can be used under Parametric proportional hazard framework.
Whereas the mode! that ignores the unobserved heterogeneity in the cancer data appears to fit the data well.
simulation results clearly reveal a clear difference between the situation when frailty 1s incorporated and when it 1s not
This shows that conclusion based only on the observed covarates. ignoring the characteristic unobservable
gcovariates in the data can be misleading. A possible extension of this paper is to examine how these models behave
under correlated time- varying covariates
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