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ABSTRACT

This paper addresses the development of two linear multi-step methods for the solution of second order initial
value problems of ordinary differential equations. The approach requires the construction of a truncation error term
and expanding it i Tayior seiies, aind we refer to this method as TRUNCATION ERROR APPROACH The resulting
twiy methods are analyzed to show that they are consistent, zero-stable and hence convergent with good interval of
absolute stability. The technique of derivation employed here is easier and more adaptable than those of collocation.
The implementation, using the basic parameters of the derived methods, to test the practicat feasibilty and
effectiveness proved successful. ;
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1. INTRODUCTION

There are many processes in science, management and technology that involves the rate of change of
one variable in relation to another modeled as differential equations. “Most differential equations in science and
technology are solved by numerical methods” (Ross and Ross 1I; 1989,0layi 2000) because analytical solution are not
possible or useful (Lambert 1973)

There are several existing algorithms designed for the integration of

}// ;;:f(xyﬂ ), Ma)=n, V@=n ayeR L (1.1)
such as Runge-Kutta and Euler methods, Taylor series method as discussed in Lambert (1973), Hybrid methods by
Ademiluyi (1987), Collocation methods by Awoyemi (1996,1999 and 2003) and One step method of integration by- ..
Ademiluyi and Kayode (2001), Non symmetric collocation method by Awoyemi et al (2006) and a class of Linear Muiti-
step Method (LMM) for special ODE’s by Udo et al (2007) »

koo k
The general linear multi-step method is of the form Za,}’m =" Z/f,./,',,, m=12.... weeieees (1.2)

=0 10

where k is the step number and m represents the order of the differeniial system we are solving; & , and [, are

constants and we assume that &, = 0 and that both «x, and B, are not zero ( Lambert 1973).

DEFINITION 1
- According to (Fatunla 1988) a Linear muiti-step method is said to be of order p, if it satisfies the
conditionCy = ', =,....=C,=0;C =0 (1.3)
- DEFINITION 2
A linear multi-step method is said to be consistent if and only if
(i) it has order p > 1
@i A=) =0 J'(r) =2 80) forr=1 (1.4)

where o (r) and 3(r) are called first and second characteristic polynomials of the method (see Lambe!
1973, Awoyemi 1996 and Kayode 2004) ‘

DEFINITION 3 .
If the roots of the characteristic polynomial p all have modulus less than or equal to 1 and the roots of ..

modulus 1 are of multiplicity 1, we say that the root condition is satisfied. The method is convergent if and only if it is

consistent and the root condition is satisfied. Consequently, a consistent method is stable if and only if this condition is

satisfied, and thus the method is convergent if and only if it is stable.

(Retrieved from http.//en. wikipedia.org/wiki/Linear multistep method)
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DEFINITION 4
According to Lambert (1973).the linear multi-step method (1.2) iz said tc. be absolutely stable for a giveri h

(where h = h A) if. for that f, all the roots 7, of [7[(&h)=p(i’)—~h()’(!'\}‘: 0] satisfy Ir|<1 s=12. .k and to be
absolutely unstable for that h otherwise. An interval (a, /3) of the real line s said to be an interval of absolute stability
if the method is absolutely stable for all he (a.B).

DEFINITION §
“The boundary locus method discussed in Lambert (1973) is defined as

, ‘

L (1.5).
o(r)

which enables us determine the interval of absolute stability of the scheme without embarking on the rigorous

computation of the roots or solving simultaneous inequalities. Here we assume r = exponential (i@) where 8 is the

range of angles for which the stability 1s to be measured. Kayode (2004)

Some of these existing methods Awoyemi (1999), Udo at ei (2007) and Kayode (2004) like, the collocation
methods, are tedious to derive (Awoyemi 2003). Errors of different magnitudes are introduced during the process.
Consequently, in this paper we present an alternative easier method. TRUNCATION ERROR APPROACH, with
comparative or even better level of accuracy. ‘ w

2. . DERIVATION OF THE METHODS

We consider the development of two linear multi-step methods for step numbers k = 2, 3. The linear multi-step
method of consideration is of the form

k-1 k ‘ : : ‘
Yok = I @ P Phos w200s T (2.1)
J=0 )0 :

(See Lambert 1973) where « 's and B 's are real constants whose values are to be determined. Note a , = 1 and

m=2 in comparison with (1.2) v
The application of (2.1) to solve (1.1) will produce a truncation error of the form.

. k-t k )
T;uk =ymk _{Za/ ynu +h2 Zﬁ./nu} """ (22)
=0

! 1=0
If the terms on the RHS of (2.2) are expanded in Taylor series to order p we have

: 2 kh)p < . (Ih)’ i (jh)" Uh)'"'
T,.=y,+kh Vn'+’(‘k—’,7)'vlln+...+£—+“ Pao(h™ Y-S a | v, HURY, Y, et 7 +0 :
. k yn ( ). 2 . p! y ( ) FZO ] .)7 (I ).yn 2! y p! yt (p +|)!
: ih)’ G e o UD™ s )
-0 iyt 2 O o SR e U et 23
Z;ﬂ,(y,, R 22y R o @3
Combining terms of (2.3) in equal powers of h yields
k-1 k-1 / kP j)2 Ao \ , 1
T... =[l —Zav, ]y,, + k~Zjaljhy,, 5 —Z——;’—a, —ZB, )lh'yn
i=0 1=0 o= = J=
(£ 50", % 6 iy (k" ST L ] o
e N2 =Y B hy, At 2T L5 YDA OCATT) e (2.4)
|3 ;, 3 Z':‘) g P §p! ! Z;,(p—zj!

In the next section (2.2), (2.3) and (2.4) will be considered with k = 2 or 3.

2.1 TWO-STEP METHOD
For the derivation of a 2-step method, we set k = 2 in equation (2.4) and collect terms in equal powers of h

" into the form

Tak=Co + Cih+ Czhz”;"...* Cphp +0 (hp”)i : . (2.5)
4 1 ,
Tmz :’(l @y - Q, )yn + (2 - a')hy,', +('2'"'2‘al —ﬂu - .Bl T ﬁz)h_,‘/,ﬁl

(160 1A -
) N LR LR Ji 29
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——

o Imposing order'4 (2k) accuracy on the truncation error (T,.,) implies that C - 0. j = 0(1)4.The réstiting-system.of
equations involving the coefficients of the method using (2.5) and (2.6) are

o, + o i
a, = 2
!
5 a, + p,+ p+ '83 S 2.7
cavpoezp, b
] i ' 16
IR v
T;\us putting (2.7) in matrixﬁ form yields
0 0 0 e ] 1
0 1 0 0 0 a] |2
VA R Y R C
/ Ij‘ = o ] (28)
‘ | o % o 1 21llpl |u |
0 % 0 ¥ 2 |8 "% "

| Solving equation (2.8) by Gaussian elimination method, the value of the parameters are obtained as
a,=~ba =28 =124 =10/12 and 3, =1/12 ,

The value of these parameters are substituted into the expansion of (2.1) above with k = 2, to obtain a two-step
‘ discrete scheme : ‘

‘ . ,\ymlf = 2.‘Vn¢l Ty, I_,VZ”‘(‘/,HA‘ + IO'S’NH + ./n) e (2.9)

which is similar to the classical Numerov's method poputarly called Numerov's method. (Lambert 1973 Awoyemi .
1996, Olayi 1998,1999 and Kayode 2004) Both the classical Numerov's formuia and (2.9) apply to 2" order ODE ™"
‘ initial value problems but f in (2.9) contains the first derivative of y while that in Numerov method ddes not contain

¥ (Olayi,1998). The truncation error of the Numerov formula is O(h“) while that of (2.9) is O (h*)
‘ 22 THREE-STEP METHOD '
As in section 2.1, we substitute k = 3 in (2.4) to obtain

‘ ‘ 9 4 1,
T,.:= [I -, -, ~azlvn + [3~a, - 2a3]hy’ + g ~——I~wa, T -0, -0 -5 B, ]h’y,','

‘ 2!
2;7 b 3 SBL2B, -3 bl";’”ﬂ‘ {3( L 2’ ! 2 .2} 2 3J }:;“ o
+ TR 3!11,'3!(23 20830, [y, 4{6’ r»ma, A o, - 4![, 4!/, 1.4!/_; v,
‘ ‘+-(Olf') ................................................................. (2.10a) ’
and similarly as in (2.7) and (2 .8) obtain the matrix representing the system of equation as
!
| N ! 0 0 0 0 la, | |1
o | 2 0 0 0 0 «, 3
0 12 4/2 | ] 1 1 a, 9/2
0 16 8/6 0 | 2 3 D1 127/6 ... (2.10b)
0 1/24 16/24 0 172 4/2 9/2 B, 81/24
0 1/12032/120 0 176 8/6 27/6 Jil 243/120
»0 1/72064/720 0 1/24 16/24 81/ 24 'By 1 729/720

Using Gaussian elimination to solve (2.10b) we obtain the following coetficients

-~
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: . 9 9 I
a‘:bl’ [0:4 ::---3q a,) ::3‘ iy O f,, e y o L memees 211
o=l o =h BmemBim s B B @11)
Substitution of (2.11) into the expansion of (2.1) yields the implicit scheme
W S L «
yn*.‘ = 3yn*‘ m'}yn" + y" +E(""+3 +9-tn~2 ——9./'nl —A/n) (212)

with truncation error O(h 7 ). : -,

Equations (2.9) and (2.12) are our two step and three step methods respectively .Both methods agrees
exactly with those derived through Collocation and interpolation by Kayode (2004).{Our method (2.12 ) produces, a
Numerov formula .In Olayi (1998) a 5-point formula was developed. it will certainly require more time to solve a 5-point
formula. This is so as both (2.12) and Olayi's 5-point formuiar apply to 2" order ODE initiat value problems).

23 DEVELOPMENT OF PREDICTORS

it is noticeable of iinear multi--step methods that they require two or more starting values before they can
function. Hence in the methods, we need the value of y,.; j = 0. 1 2... k-1,where K is the step number [see (2.1)] before
the value of yn., and their derivatives can be found. : '

2.3.4 PREDICTORS FOR THE 2-STEP METHOD
To be able to implement our 2-step method for the solution of second order initial value problems we need to develop
the predictor that would be used for the evaluation
/ A _ / .
BTS¢ n42s Yyups Y nels n ‘/;1¢j - f(xn«&j’ypw[’yny/ )’.} - 1'2
Taylor series expansion of Y.z is used up to the order four (4) of the two step method to have
2h)’ 2n)' . Qh) ; : i
Vs =y, + 20+ Ly SO OB o ary o e (213)
o 2 3 4!
Differentiating (2.13) once yields
(2h)2 "t (2h)3 “4) 5 o .
5 v, + 3 v+ 0 e (2.14)

Equations (2.13) and (2.14) are used for the evaluation of the yn., and y,‘;,,_ respectively in the function f,., = f (Xa.2.

T i
Yoo T Xy + 2hyn +

Yizs y'mz), as predictors. Using Tayior series expansior, we obwain predictors for yn.s and _v,’“,' in the
function .., = f(X, .1 Vyers Vaer ) by following the procedures in (2.13) and (2.14) above respectively. The values of y,

and y,', are as given by the initial conditions of the problem (1.1)

2.3.2 PREDICTORS FOR 3-STEP METHOD _

The following values Ya.z, V., Yoo, y! ., ¥n @nd y! are needed to start the evaluation of the 3-step method. They
are obtained in the same way as in (2.13) and (2.14) up to the order 6 of accuracy.

3. ANALYSIS OF BASIC PROPERTIES OF THE METHODS

According to Lambert (1973), the necessary and sufficient conditions for a linear multi-step method to be
convergent are that it be consistent and zero stable. Thus we now seek to establish these properties.

31 PROPERTIES OF THE TWO STEP METHOD
The result obtained from (2.8) is substituted back into (2.6) to have

(Vw(|:l+2"“:o

C,=2-2=0 _ | |
(7,=|+—l—+19+~[-u2:0 :

: 12 12 12 , -
o | | 3.1
o2 1. o | |
ST120 60 72 T2

Y [ YA A Y Ve, _/
Co = Yono ' Prg8* ' $28s Y090 = Vaao=Crn 20
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Hence by (3 1) we can deduce that our two step method is of order p 5, wnh error constant(
see Udo et al (2007).

For our two step method (2.9)
p(r) =ri=2r +1,

5(r) = 2(r +107+1)
-Hence applying the conditions of definition 2 we get
i
PN =1-241=0, p'()=2-2=0. p"(1)=2 =2 &(1) = — (|2) x 2= 2
Thus from definition 2, condmon (i) holds and with p = 5, (i) also holds implying that the two step method is consistent
according to Lambert (1973) ,
Applying definition 3 o the two step method we see that p(r L

which implies that r = 1, 1 when p (r) = 0. Hence. the two stap method satisfies the root condition, hence it is zero

stable and by extension it is convergent
Using the values of p(r) and §(r) as contained in (3.2). equation (1.5) becomes o 7
2007 -2, +1 B "
h( ) = ——( e ~———2 ..... (3:3)
(r* +10r+1)

Using 7= ¢" = cos@ +isin@ in (3.3) yields

o) = 12{(Cos26 - 2’5 056 + |)+‘;($ng - 25,',79)5 | L 3.4)
{(Cos28 +10Cos 8 + 1) + i(Sin20 +10SinB)! ; ;

Rationalizing and simplifying (3.4) yields

h(8) = x(6) + iv(0). ... (38)

where )
x(0) = I?.‘{C 0s20 + 8( os6 7—7-915 .
{Cos26 + 20Cos6 + 51}
We only considered the real part of /(¢), hence y(6) is ignored.
‘Evaluating x(#) in (3.6) for) < & < 180, we see that our two step method has an interval of absolute stability x (8) =
[-6. 0], x (8) meaning we considered only the real part of (3.5).

3.2 ANALYSIS OF BASIC PROPERTIES OF THE THREE STEP METHOD
For us to examine the basic properties of the three step method, we are to adopt a similar approach as we

have in section (3.1) above.
On substituting the resuit of values of our parameters obtained in (2.10) into (2.6) we have as usual that Co =Cy=C,

3‘:3-C4°C5-Cs~0 C,+0
l
Thus the three step method is of order p=6 and the error constant ¢ por ;4 0
A linear multi-step methcd ié consistent if it satisfies the conditions of consistency statec in section (3.1)
above. And for the three step method we have :

(r)=r3—3r2+3r—l.
é‘(r)~ (r +9r° —9r—l)

it can be establtshed that our three step method satisfies definition 2, hence it is consistent. By definition 3 the first
characteristic polxnomial ,
pr) =0 =3 +3r-1 .
This gives the possible values of r for which p(r) will be zero to be (r-1)" = 0;
which implies that r = 1,1,1. Hence by definition 3, the three step method satisfies the root condition. hence it is Zero

stable.

We aiso apply as in (1.5), (3.2), (3.4) and (3.6) above the boundary locus method of Lambert (1973) to get the
following result




£
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12{Cos360 - 3C0s20 + 3Cas0 4 1)+ i(Sin30 - 3820 1 38in0)}

o) = —- s o e S L (3.8)
{((.. 05360 + 9C0826 - 9YCosO - 1) + {(Sin30 + 98in20 - 98intl);
Rationalizing and simplifying (3.8) yields :
h(0)=x(8)+iy() ...(3.9)
where
12{Cos36 + 6C 0526 - 33CosO + 26!
x(0) = - : .. (3.10)

{Cos30 +18C0x20 - 63Cos 82} "

Hence it can be verified that the three step rmethod (2.12) has an interval of absolute stability x () = [-6, =], x(®) as
defined before. This interval is contained in the entire positive half part of the complex plane. Hence the three step
method is P - stable, see Awoyemi (2003).

4. NUMERICA! EYPERIMENMT
“

A numerical example on second order initial value problems is considered to test the accuracy of the derived
two and three step methods using the parameters of the developed methods

4.1 _TEST PROBLEM

y =x(y), o (4 1a)
: i : .
y(=1y (0)=(-é-) ..... (4.1b)
Exact Solution: y(x) = 1 + l 1n (Zf“l o (4.2}
2 2«

4.2 RESULTS

The results of the above problem solved using a computer program can be found in Kayode (2004). Here we
present a framework for solving manually; the above second order differential equation using (2.9) and (2.12) ;
respectively. As a case study we will discuss that of the two step method (2.9) only. We see that the following starting

values V,p ¥, Vs Vimels V05 Vie2 “are needed for the evaluation of (2.9).The first two are our given initial conditions

in (4.1).The third and fourth are gotten by taking a Taylor series expansion of v, undy! | respectively, thus we
have,

M 3

h
— s s o " o s
3 nel 7T .‘ " + h."n + 23 )}n + 3’ Y. tt (()h ) (43)
w no,
/ ! " 1 /v §
S ey T I e , . (44).
.‘ n+i .‘ ” t (,i).‘ " + 2! .‘n + 3! ) " t (Oh ) ( )

Our final set of starting values is as given in (2.13) and (2. 14) respeclively. We will need y,',d as /,., depends on

it. Thus taking derivatives of (4.1a) up to the fourth derivative. values of {2.13);(2.14).(4 3)and(4.4) can be determined.
Thus (2.9) at n=0 is. ' ‘

' W ‘

V=20 h A 10 1) . 48
Hence for n =1 and 2 similar schemes as (4.5) will be generated For the sclution of (4.1) we have the following;

O =Ly (0 =Ly, =11y = Sr=by, =120, - f, - L2, - 1.33;

vi=fo s L3y, = 1460y - f, = Ldandy! = 1.5

Consequently, forn=0, 1, 2,... we set up an iterative process with h=0.1 using (2.9). and the results are as
presented in the tabie below. , :
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TABLE 1 SUMARY OF PROBLEM (4.1); h=0.1 for the two stép method T
i T Y EXACT T YCOMPUTED | TERROR T
X | o R N e
+ 10500417 1 11000000 | 200499583, 1
U T e i ]
; 11003353 ! 12100000 ! 01096647
0.2 v S . 4 I A k \
1.1511404 1.3300000 | -0.1788596
0.3 1 )
12027326 1.4600000 I 02572674
04 | ] B ‘ e ]
T 12554128 ; 15900600 | -0 3345872
05 e B R

Table 2: Result of problem (4.1) using a computer programme; for two step method, h = '

| VALUE OF X Y EXACT Y COMPUTED ] ERROR I
0.100000001 1.050041676 1.050002575 10000039101 ‘
"0.200000018 1.100335360 1100005150 0.000330210 . .

0300000042 1151140451 11150007725 ~  10.001132727 e
0400000066 1.202732563 1200010300 0002722263 |
0500000060 | 1.255412817 11250012875 0005399942 |

DISCUSION AND CONCLUSION

We have developed two linear multi-step methods of step two and three which agrees with those of Awoyemi

+ (1999) and Kayode (2004) obtained through collocation method. Hence we have established that by a truncation error
approach the same results gotten through collocation are possible. A study of the collocation approaches (see
Awoyemi 1996, 1999 and 2003 Kayode 2004; Awoyemi et al 2006 and Udo et al 2007). for solving second order
" ordinary differential equations will clearly justify the advantage of the Truncation error approach over the collocation
approach. For instance our two step method (2.9) was obtained by taking a Taylor series of terms in RHS of (2.2) and
coliecting terms in equal powers of h. Kayode (2004) in getting the same result as (2.9) sort for the solution of the

& A
constants in y(x) = Za,x’ after which the x,, :j = 0(l)k terms are simplified to enable y(x) = Za,x’ dapend

1=0 1=0

onlyonx,,, and notonx, . ;34 = 0(Dk . Thereafter, when the a,'s. f3,'s values have been determined, they are then

substituted into (2.1).before the two step method evolves.

We are sure that with this approach (TEA), time which is a very essential tool in any research will be
minimized. Table 1 shows the accuracy of the two step method and by implication we know the three step method will
have a better accuracy level. Researchers are encouraged to investigate the effect as the step number is increased.
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