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ERROR AND PROCESS ESTIMATION OF ARCH (1) MODEL
CORRUPTED BY AR(1) PROCESS
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ABSTRACT

We showed how autocovariance functions can be used to estimate the ARCH(1) process corrupted by AR(l)
er-ors. we performed simulation studies to demonstrate our findings. The studies showed that our model was able to
very closely estimate the required ARCH process in the presence of AR(1) errors.
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1.0 ARCH FRAME WORK.

Let {y,} denote a stochastic process with mean ;, then the error term is defined as (see Bollerslev, Engle and
Nelson (1994))

€= Y= Uy
Under the assumption of constant variance, and correct model specification,
£, will be distributed as Z, where Z, is any symmetric distribution. However, under a time- varying variance condition,
¢, will be expressed as a product, ie

£ =2 h,uz
where h, is the conditional variance at time t and Z; is any symmetric distribution. Bollerslev, Engle and Nelson
(1994) defines the g, process to follow an Autoregressive Conditional Heteroscedascity (ARCH) model ARCH process
if

Eei(e)=0  t=12,
In addition, the conditional variance is

h = var,w,l{s,}: E,,_I{E,Z}.
where E, (.) denotes the conditional expectation when the conditioning set is compose of information up to

i

time t-1
Engie's (1982) ARCH(q) model is presented as ARCH model as a linear function of the past squared
disturbances. That is

k)

A
g =z h,
and

o R
h, =, Za,g', ;
11

20 PROBLEM FORMULATION

Consider the ARCH (1.1) model equation
hoa,tae] . (1)
and
PR
with parameter constraints
o, >0,a20

These constraints are meant to ensure that the variance is positive.
Equation (1) admits transformation to AR (1) model through the substitution
a, = Sf -h,,
to get
g ~a,tagl, ta, . )

or
(- al)e! =a, +aq, (3
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We define
8,2 as an unobservable process of interest,

a, as a white noise process i.e 4, is distributed as (0, o‘j ),

L as a backward shift operatori.e La, =a, , and

o is a weight parameters.
Eni and Etuk (2006a,b) have used autocovariance functions to show that the transformation of equation (1) to

equation (3) through the substitutiona, = g,z — h, is justified.

Our interest is now in the case where although & is unobservable, we can estimate it through

e =g —b,, (4)
where

gz, is an observed process,

b, is an error component following AR(1) process.
Substituting equation (4) into (3), we have

(l-al)g, =a, +a, +(1 —al)b,. (5)
Since b,is modeled as AR (1)
(1-gl)b, =e¢,
or b = e, . (6)
(I-9L)

where

€, is white noise process independent of &

Substituting equation (6) into (5),we have
(I-al)l-¢l)g" = A4, + (1 - dlya, + (1 - al)e,,

where
Ay =a,(1-9),
ghi=A, +(pra)g’ i —pagiia +a, - da, | +te —ae, . (N

Our main objective is to estimate the process z;;' and error b, through g,z .

o
Moran (1971) has shown that if the ratio A = —<-is known, then the maximum likelihood estimates for the parameter
o

set can be found. The maximum likelihood estimates for the case where both o and o, are known (the so called
“over verification case”) are estimated by Barnett (1967) by directly solving the likelihood equation. Chan and Mak
(1979) obtained the maximum likelihood estimates for the case where both o and 0,,,3 are unknown and where the

observations are replicated.
Our interest is to use autocovariance function to estimate the parameter values of the real series even where
0_3
the ratio A = -—’2-» is unknown Eni, et al (2007a) have used the same method to 1solate errors of of AR(1) corrupted
o,
with MA(1) process. Also Eni, et al (2007b) have considered the case of IMA(1) with white noise. In a similar case, Eni
(2006) have considered the case of GARCH(1,1) model with white noise errors using the proposed method.

Taking expectation of g, in equation (7)., we have

E(g') =4, +(@+)E(g’ ) - paE(g’ ).
or

Eg’)= b (8)
(1-¢)(1-a)

where
E(g’-)=E(g}) i=12..,
E(a,)=E(a, )= E(e,) = E(e,_,) =0,
see Hamilton (1994).
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Multiplying (7) by g * and taking expectation, we have

A : : R
V, = —— —+(+ )W, ~pav, +0 -PpE(g"a, )+ 0] —ak(ge,,), ) (9)
[ (l—¢)(]~{,¥) ( ) 1 ¢ 2 c ¢ (fs () (@ ))
where, by definition
0 i i=#0
E(ee,,) or E(aa, )= (10)

ol or o] respectively if i=0
E(gzlgzl_, y=v,, see Box and Jenkins (1976). (1)
E(g’a,_) or E(g'i-e,)=0) or o], respectiely. (12)

Multtiplying equation (7) by a,_,, ¢, , and taking expectation using (10), (11) and (12) we have

E(gla, ) =ac], (13)
E(gle,.)=¢o,. (14)
Substituting equations (13), (14), and into (9)
we have
A 2 2
=0  +0°, (15)

(=aXi- i —ap) *" O

Al = (] - C()(] - ¢){ Vg = (¢ + a)"l + (b()’\‘: }J" Aﬁ A
Multiplying equation (7) by gz,q and taking expectations using equations (10), (11), (12) and (13). we have
A

where

~{l—:;—:-¢m:ac7j *¢O‘;, (16)
where
A, =(1-9)1-a)| v, —(p+a)v, —agv, }+ 42 (17)

Solving simultaneously equations (15) and (16) for 0'5 and 0',,2 , we have
o _Apli-a-g+ap)+ 4,(1-a)l - gl - ap)
C (l—afi-gXl-ag)l-a - ¢+ ap)p - o)
ol = Aoll-a—¢+ap)- Az(l_: afl - Xl - ag)
o l-a)fi-eNl-agll ~a — g+ apla-4)

3.0 PROCESS ESTIMATION

, (18)

(19)

The model (7) is theoretical since the traditional ARMA model does not make provision of two set of white
noise errors as we have in equation (7).In practice, we will observe {7) as the ARMA (2,1) model .

g =C+Q g’ - Qg% +U, - 0U, (20)
where

U, is a white noise process

C is a constant

Q,,Q, and 6, , are weight parameters.

We can obtain good estimates of the parameters (".Q),,Q, and @, found in equation (20) through the maximum
likelihood method. (See Box and Jenkins (1876) for example).
However, our interest is to estimate the parameters @ and @ in equation (7). To do this, we note that by comparing
equations (7) and (20)

C =4, (i)
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Q=a+¢ (i)
Q, =ap (7ir)
while the white noises are equated as
U, -0U,, =a, +e, - (¢ a  +ae,_ ) (iv)

also from (6b), we have

¢
A() :a()(] - @)= a, = 'A¢—

Substitution of o =2, — @ into (i) will result into the quadratic equation
PP -2 +Q, =0 v)

The results of (v) will be substituted into (ii) to obtain the values of « . This will give two parrs of ¢ . «x results.
However, we consider the fact that equations (18) and (19) must be positive and recommend the choice of the ¢ |«
pair that will make both equations positive.

We follow Box and Jenkins (1976) to compute the variance and autocovarnances. v, v iy, from the

observe data g,z using the formuta
I N-1

u:ﬁZ@fwﬁﬂfﬁy 2y

=]
where
- 0,1.2

l &« -
AN IS
N
N is the total number of data points
With the parameters, @ and ¢ as well as the autocovanances, v, v, and v known, we can use equations (18) and
(19) to estimate O’ and o Hence we can generate normal random processes with mean zero and variance &, and

with mean zero and variance (r to represent the white noise processes «, dnd ¢, respectively We can do this by

using the random number generator of any software package like MATLAB, for example
With our knowledge of «, (see i). ¢ and the white noise process «, , we can now estimate the process of interest

e’ using equation (2) which results into the recursion below.

I3

A A 2
£ o, va, vala, ta)

) N ~
el o, va v ala, vayva (el va)) 22,

[

““,) Z(I"((X‘ vl ’), ! 1.2,

u

In addition, we can also estimate the error process using equation (8) This will resilt {otbe 2

b, v,
h. ¢, i ge,
: (23)
h, ¢, e e, g e
/, i ! [ t ¢
SNooe ¢ L2
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-4.0 ILLUSTRATION

We use the NORMRND facility in MATLAB5(1899) to simulate 1400 data points each ofa,and ¢, «,is

generated with mean 0 and variance 3.30 while ¢, is generated with mean 0 and variance 1 156. To make ¢, and ¢,
white noise, the means rﬁ\ust be zeros while the variances can be any suitable positive values. From equations (2) and
(6), we ensure stationarity by choosing & =0.75, ¢ =.84and «, = 0.12 .(See Box and Jenkins (1976) for example).
We use this to sifmulate 1,400 data points each of the following.

N 5,3 (Assumed unobserved) =0.10 + 0'735!2-4 +a,, =1, 2. 1400. (see equations (2))

The values of the process 8; was obtained using recursion {22;

(2) The AR(1) errorsoh, = 0.83b, , +¢,. t=1,2,...1400. (see equations (6))

The values of the errof process b, was obtained using recursion (23)

(3) The observed value g,z is the sum of (1) and (2) P

We discarded the first 200 data points to avoid mitiaiization problems. This {eaves us with 1200 data points for our
analyses. However, due to space limitations, only ten data points from t=201 to t=210 are shown in Table1 for 8,2 and

&, as simulated processes.

Our objective'is to estimate the process 5,7 (Assumed unobserved or unknown) through the observed process

~ Loe £

£, Wealsouse g, to estimate the error process by.

We compute the first three autocovariances of the observe process g,z using formula (21). We obtain the result
below
VLo 20674,

v,o-0.9768 (24)

oo 20,4012

The Mcieod and Sales (1983) maximum likelihood estimates facilities in
STATISTICA (1995) was used to get the following parameter values(found in equation (20)).

Q =1.59
Q, ~0.63 (25)
0, 1.43
¢ - 03
From (1), (ii).(iii )and (iv) in section 3.0, we obtain the following estimates
w, = 0.12
a =075 (26)
¢ 84

We substitute @ =0.75 and ¢ = .84 obtained in (26) and v, v, und v, obtained in (24) into equations (18)

and (19) to estimate the variances (3[7 and 0 of the white noise processes e, and a, respectively. We obtained the
results as

(}f -1

o (27)

o, 333
Finally, we used the NORMRND facility in MATLABS(1999) to estimate the white noise process e, distributed with
mean=0 and & =111 as well as the process a, distributed with mean=0 and (?u =3.33. See Box and Jenkins (1976)

far example
We then modeled the estimated error process b, as

b —e, +0.84b, ,,t=1,2 1400
The values of the process b, is obtained using the recursion formula
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. (=
b= de . t=12.. asin(23)
1=0

Ten values from t=201 to 210 are recorded in table1 as l;, :
We also model the pracess of interesté,2 as
£7=012+0.75¢), +a,, t=1,2....1400
The values of the process é,z is obtained using the recursion formula

+d
e Daleyta,) (=12, asin(2)

10

Ten values from t=201 to 210 are recorded in table1 as £ .

Table 1: Simulated Processes 6‘,2 and g2 and Estimated Processes £ and b,

SIMULATED PROCESSES | ESTIMATED PROCESSES
3 N ~
/ g‘“ gzz glz T hl
2.237734 3.27867 2.4870 1 0.829662
3.011512 3.17412 2.9855 0.395716
0.993451 2.425333 1.1327 0.510802
2.732004 3.242643 2.7054 1.035373
2.799315 2.132874 2.7925 -0.34009
1.220803 1.05731 1.1563 -0.19107
4.928751 2.86533 5.8052 -2.3655
4.901011 2.43903 4772 -2.52942
2.703241 1.78231 2.4086 -1.61641
3.365471 ] 2.05712 3.1891 -1.71089

Examining Table1, we notice that the estimated process é,z {estimated through g,z) is very close to the true
(simulated) process g,”’ .Also, the sum of the estimated process é,l and the error process 1;, is close to the observe

process g,2 This shows that the process developed in this paper has performed well.

5.0 CONCLUSION

We developed a method which enables us to estimate both the ARCH (1) process and the AR(1)error process for
ARCH (1) process corrupted with AR (1) errors. Simulation studies showed that the method performed very well
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