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ABSTRACT 

' 7  this paper we establish a first order differential subordination result and prove a criterion for starlikeness for 
- - - - -  
: . =:= :' functions which are analytic in the unit disc. 

' 3 O R D S :  Subordination and starlikeness. 

INTRODUCTION AND STATEMENT OF THE RESULTS, 
Intuitively or roughly speaking a function f(z) is said to be univalent in a domain D, if it provides a one-to-one - --- . . 

= -  - ~g onto its imege, f(D). Geometrically, this means the representation of the image domain can be visualised as 
i -5: 2' points in !he complex plane. 

- - Formally, we define a univalent function as follows. 
- i- - ::3n 1.1 : A function f(z) defined in a domain D of the complex plane is said to be univalent in D if 

,f(z,) =.f(z2) , z,,z? E D 

implies that z,=z, 

I--rf terms for this concept are : simple, or schlicht (the German word for simple). Russians refer to such functions as 
r 1-z'lstni, which means single-sheeted (Goodman, 1983; p. 12) 
1 ~ 'n~ t l on  1.2: Let f(z) and g(z) be analytic functions in U = { z  : / z /< l } .  We say that f(z) is subordinate to g(z), writter 

- : g(z), if g(z) is univalent in U, f(O)=g(O) and f( t i )cg(U) (Goodman, 1983, p.85) 

: _' 7rt:on 1.3: Let :C?+C be analytic in a domain D c  c2, f(z) be analytic in u with 

' z ! .  zf '(z))~D, where ZGU, and let h(z) be analytic and univalent in U then f(z) is said to satisfy a first order 

Miller and f'ulocanu, 1985). 

Minition 1.4 : The univalent function g(z) is said to be a dominant of the differential subordination (1 .I) if-f(z) 4 g(z) 

'sr all f(z) satisfying'(1 .A). If g*'(z) is a dominant of (1 .l) and .gV(z) <g(z) for all dominants g(z) of (1 .I), then gyz) is 

said to be the best dominant of (l.l)(Miller and Mocanu;l981). 

' In the geometric theory W complex-valued functions the definitions of investigated classes of functions are 

,vritten, mostly, in the form of differential inequalities (~anas,l992). 

For instance, we say a function f(z) is starlike if . 

We say a function f(z) is convex if 

c.~-.-d-and~-,~UnkaJLy ~ P . O . e o a ( n ~ , ~ R Q Q N .  
K--al-wCQllOWlBI- ,wd l l e d m $ , P . O . ~ t n ~ , G A l r J I E R m .  

L R - , - d - a r r d ~ ~ . - a l  f8eEhang,B.Q.LaaatV~,C,BIMERQON.  
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(1.3) 

- 
(qoodrnan, 1983; p. 1 1 I ) .  

Many properties or conditions for these classes of~functions are established and written as differential inequalities. For 

example, Mocanu(2004) established the following sharp starlikeness condition for functions f(z), analytic in U, of the 

form ~(Z)=Z+~~+,~"+'+.... 

Izf "(z)-c(f '(2)-l)l<n-a (1.4j 

where Olaln . 
. . 

Miller and Mocanu [1978]with some conditions on :c3+c showed that 

and determined a class (Y) of functions for which 

All these inequalities one can write in a more general form as differential subordinations. The concept of 

differential subordinatior: was introduced by Miller and Mocanu [1981]: They showed that if A represents the unit disc 

in (1.6) and the right-half plane in (1.7), y/(r, s, t) is holomorphic and g(z) is a conformal mapping of U onto A such that 

V/(f(O),O,O)=g(O)=f(O),then (1.6) and (1.7) can-be jointly written as: 

vlfz,.zf '(z).z'f. (z)) z), . g(z) af(z) 4 g(z), 2 s u. (1.8) 

Differential subordinations and applications to starlikeness(univalence) and convexity (univalence) have been 

considered by several authors: Miller and Mocanu (1 985), Obradovic and Owa(1991), Kanas(1992), Bulboac8(2004). 

Owa and Obradovic(1990) considered the subordination 

and provided some conditions for starlikeness in the class A={f(z): f(z) is analytic in U, with f(0) = f'(0) - I =  0). 
Inspired, principally, by this work we study a similar subordination and prov~de a condition for 

starlikeness. We have the following resul$. 

Theorem 1: Let a be a fixed number in [0,1]. Let f(z) be regular in U with f(0) =I. l f  

then 
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r- ;,i, ,s me best dominant of this subordination. 

Theorem 2: (A condition for starlikeness) 
00 

Let f(z)=z+ , z d ,  be regular in U with - f(Z) * 0 v z  ELI . Let h(z) be a function regular in U such that 
n=2 zf '(2) 

h(O)=l and 

and either 

0" 

Re h(z)>O, ZEU 

h(z) is convex, 

zh'(z) is starlike. H(z) = - 
h(z) 

then f(z) is starlike in U. 

II PROOFS OF THE RESULTS 

Proof of Theorem 1 

To prove theorem 1 we need the following definitions due to ~ i i l e r  and Mocanu(l981) 

D~finition 2.1 : We say q(z) EQ if q(z) is regular U and lim q(z) = a 

Definition 2. 2: Let R be a domain in C and .let q(z) EQ . Define 'Y,(.Q, q) to be the class of functions V~:&-4 that 

satisfy the following conditions: 

(a) y(r, s, t) is continuous in a domain DCC~ 

where l<l=l, q(<) is finite and m a n .  

Denote Y,(R,q) by Y(Qq). 

Definition 2.3: Let h(z) be a conformal mapping of P n t o  Rand let q (z )~Q.  Denote by 
'Y,(h ,q) the class of functions y/cYn(.Qq) = Yn(h(U),q) which are holomorphic in their corresponding domains D and 
satisfy y( q(O),O,O)=h(O). Write Y,(h ,q) as Y(h ,q). 

Lemma I :  [Miller and Mocanu ,1981, Theorem 81: Let &+c be holomorphic in a domain D and let h(z) be univalent 

in U. Suppose f(z) = a +f,,z" + ... is regular in U. f(z)&; n21, 

' (f(z), zf '(z), 3 f  " ( z ) ) ~  D, ZEU and y/ (f(z), zf '(z), ?f "(2)) 4 h(z)..lf the differential equation 

y (q(z), - -. zqf(z), ~ ~ ~ " ( 2 ) )  =h(z) has a univalent solution q(z) EQ with 
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q(0) =a, and if,wr %(h ,q) then f(z) + q(z) and q(z) is the best dominant. 
- 

Now, let i,u be such that y & ,  s, t) = r l-*[r + ST. We can rewrite (1.11) as 

'I/ Cf(z), zS '(z), 29 "(z)) + h(z)). 

Applying lemma 1, we only need to show that: 

(a) q ( z ) = b  is the solution of the differential equation 
1-z 

'I/ (q (z), zq '(z), z2q ' '(z)) =h (z) 

(h) q(z) is univalent and q(0) =.f(O), and that 

(4 'I/€ %(h 99). 

For the proof of (a), we solve the differential equation (2.2) which we rewrite as: 

To solve(2.3), we use the transformation i - 
q/  (z) =q/""(z) ,' 

which enables us to rewrite (2.3) as 

q (z) + m q 1 '(z) = hl'"(z) 

-This is a first order linear differential equation in gl(z) with solution given by 

I L I 

Writing w = (%) '- ahd s=(&)"z;, we see that 
1-2 

I - 

~ r o m  which we have ql(z) =(&)' and easily obtain b. 
1-z 1 -z 

For the proof of (b), we use the definition of a univalent function to show that q(z) = is univalent. Now 
1-3 

suppose 9(z1)=9(z2), Z I ,Z~EU then it is not difficult to see that it would imply z,=z2 Also q(0) = 1 = f(0). 

To prove (c), we show that V/E LY,(h(rz),q(n)), re ]0,1[ rather than (ve Yn(h ,q) because we want to ensure that 
- - 

the conditions of the theorem are satisfied on f? = 'h(U). To do this, we note that y/(r, s, t) = r7-"(r + s]" is 

holomorphic in a domain DcC 3, 
: v 

(q(O),O,O)=(l,O,O) E C 3, and u/(1,0,0) ~ 1 2 =  5 and show that y/(q(r~,rnr<~'(r<),?~ "(rQ) e h,.(U), where h,=h(rz), r i  1Q.Y [ 

. I <I =I and m l l  Using [q(z)f -a [q(z )+~Y' (z )~= h(z) . we obtain 



This completes the proof. 

Proof of Theorem 2 

The proof requires the following lemmas and definition: 

Lemma 2: [Miller and Mocanu,l981, Lemmal]. Let q(z)~Q with q(O)=a, and let 

vz) = a + f$ + . .., be regular in U with f(z) # a and n 2 1. If there exists a point zoeU such that f(zo) E q(W) and 

f(/z/<hd)c q(U), then - 

z&(zol = m<i q '(4) and 

<, qff(<)  - I  
Reh+ '$zd} rnR{I+ ,(CJ , J : d l r e  g(z$ -5, = ,p and rn2.q. 

Lemma 3: [Pommerenke, 19751. The function L(z, t) = al(t)z + . . ., with al(t)# 0 Vt2 0 is a subordination chain if and 
only if 

Re1 % ]>OviiUandeO. 

Definition 2.4: The function L(z, t), ZEU, t 2 0, is a subordination chain if L(. ,t) is regular and univalent in U for all t 20, 

L(z, .) is continuously differentiable on [0, a, [ V z d ,  and 

L(z,s) + L(z, t), when Ols5t. 

Then P(z) is regular in  U and P(0)=1. 
-. 

(1.15) can be written as 

To prove that p(z) is starlike is equivalent to proving that P(z) + h(z) (since it would imply ReP(z) = 

Assume that the functions P(r) and h(z) satisfy the conditions of the theorem on c. Else replace P(z) by PAz) = 

P(n) and h(z) by'h,(z)=h(n), rdO,l[, so that P,and hrsatisfy the conditions of the theorem on c. We would then 

show that P,+ h, Vr~]O,l[and obtain P 4 h by letting r+ 1 - .  
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Suppose 

, Case 1: (1.12)and (1.13) are satisfied, but P(z) is not subordinate to h(z). By lemma 2 there exist points z o ~ U  and COc 

dJ and an m2 I such that P(zo) = h(6) and zo P'(zo) = m 6 h'(Co). So for this 20, 
.' . 

From (1.12), R~(K'(<~))>o and we obtain 

Aiso Co hJ(<a) is an outside normal to the boundary of the convex domain h(U). This together-with (2.10) implies that 

the expression in (2.8) represents a complex outside of h(U). This contradicts (2.8) and we conclude that P < h. 

Case 2: (1.12) and (1.14) are satisfied, then the function - 

is regular in U for tM. 

aw-0 t )  - = ht(O)[1 + t] # 0 for t20 
at 

L(z, t) is also continuously differentiable on [O,co[ t / z ~  U. 

. . 
( by (1.12) and (1.14) ). 

By lemma 3 L(z, t) is a subordination chain and wehave L(z, s) 4 L(z, t) for 0 I s t. 

From (2.1 1) we obtain , 

Assume P(z) is not subordinate to h(z). As in case 1 we have 

(2.16) combined with (2.14) contradicts (2.8) and we again conclude that P 4  h. This completes the proof 
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