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ABSTRACT

An estimation procedure based on the Buys — Ballot (1847) table for time series decomposition is given in
this paper. We give two aiternative methods called the Chain Base Estimation and Fixed Base Estimation -
methods. Simulated examples are used to illustrate the methods, while comparing them with the least
squares approach. U.S. quarterly beer production is re-analysed and the descriptive model obtained is -
shown to outperform the ARIMA model of Wei (1989) in terms of forecasts.
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1. INTRODUCTION

One of the aims of time series analysis is description of a series. Description includes the examination of
trend, seasonality, cycles, tuming points, changes in level, trend and scale and so on that may influence the
series. This is also an important preliminary to modelling, when it has to be decided whether and how to
seasonally adjust, to transform, to deal with outliers, and whether to fit a model to the entire history or only
part of it.

in the examination of-trend, seasonality and cycles, a time series is often described as having trends,
seasonal effects, cyclic pattems and the irregular or random component. Since emphasis in time series
analysis is on model building, the following additive and multiplicative models are always considered:

Additive: Xe=Ti+ S+ Ce+ I, t=12,...n, (1.1)
Multiplicative: Xi=Tix S xCixl, t=12,..n (1.2)

where, for the time t, X; denotes the observed value of the series, T is the trend, S; the seasonal term, C,
the cyclic term, and | is the irregular component of the series.

Other analysts (Chatfield (1980), Kendal (1973)) may go further to consider ‘mixed’ models.

Cyclical variation refers to the long term oscillations or swings about the trend and only long period sets of
data will show cyclical fluctuation of any appreciable magnitude. If shoit period of time are involved (which
is true of all examples of this paper), the cyclical component is superimposed into the trend (Chatfield
(1980), p. 13) and we obtain a '

trend--cycle component denoted by M. In this case, equations (1.1) and (1.2) may be written respectively,
as »

Xi= M+ S+ 1, t=12,., n, (13)

and .
x:=MgXSth, t= 1,2,.., n (1-4)

Using (1.3) or (1.4) we can estimate the three components of our model and hence ‘decompose the

serie_s intp its component parts. A summary of the traditional methods of decomposition of time series will
be given in Section 2. -
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1f a time series contains seasonal effects with period s (length of the periodic interval), we expect
- observations separated by multiples of s to be similar: X; should be similar to X; ;s
i =1,23,.. To analyse the data, it is helpful to arrange the series in a two-dimensional table (Table 1),
according to the period and season, including the totals and / or averages. Such two-way tables that display
within-period pattern, that are similar from period to period are known as Buys- Ballot tables. Wold (1938)
credits these arrangements of the table to Buys-Ballot (1847)

Buys ~ Ballot table helps in the assessment of the trend — cycle (simply referred to as trend) and seasonal
effect of time series data. The row averages ( X.) estimate trend, and the differences ( X; - X..) or the
ratio ( X; / X..) between the column averages ( X ) and the overall average ( X..) estimate the seasonal
effects. Outside this crude procedure of assessing trend and seasonal effects, can these row, column and
the overall averages be used for the efficient estimation of the trend and seasonal effects? We give in
Section 3, a new estimation procedure called Buys — Ballot estimates, that is based on these averages.

Section 4 will be devoted to the application of the two different model building orocedures to a number of
simulated and real time series data

Table 1: Buys — Ballot table for a seasonal time series

PERIOD 1 2 J s TOTAL | AVERAGE
1 X4 Xz e xj Xc T, .._...‘

2 Xgﬂ X«z .o xs+j XZs TZ. SZ 2

l Xty a+1 Xiyssz | o Xesy | [ Xs [T ”)Z’

M Xmnsrt | Xmnsesz | .o Xmtyst) | - | Xms | Tm. fm.
TOTAL | T, T3 T T T

AVERAGE [ % X, |- 1% |- |X, %

where, m = number of periods
= length of the periodic interval/length of periodicity
n =ms

2. TRADITIONAL METHOD OF DECOMPOSITION

The task of the analyst dealing with a time series for descriptive purposes is to segregate each factor or
component in so far as this is possible. By isolating or removing individual components the impact of each
may be assessed (Chatfield (1980)). Either of the models (1.3) or (1.4) may be used to effect the
decomposition.

The first step will usually be to estimate M, and then to eliminate M, for each time period from the actual
data either by subtraction (for equation (1.3)) or division (for equation (1.4)), giving a detrended series
which expresses the effect of the seasons and the irregular component. Of all the methods of trend
analysis, the fitting of a mathematical trend curve to time series data are now more usually adopted, and we
concentrate on these here. The mathematical trend curve is more often taken to be a polynomial of order
p =1 or 2. The parameters of the trend curve are obtained by least squares estimation procedure (hereafter
LSE) which has been implemented in the main statistical computer packages, especially MINITAB.

To make things a little more precise, we shall define a constarrt Ie;vel to be a ‘zero_’ trend,.and we shall
assume that the seasonal effect when it exists has period s, that is, it repeats after s time periods.

Sws = Sy, for all t | @.1)
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For equation (1.3) it is convenient to make the further assumptlon that the sum of the seasonal components
over a complete period is zero.

S
2 S =0 22)

Similarly, for equation (1.4) the convenient variant assumption is that the sum of the seasonal components
over a complete period is s.

S

2 S = s 2.3)

j=1

For series showing little trend, it is usually adequate to simply calculate the average at each season and
compare it with the overall average figure, either as a difference for equation (1.3) or as a ratio for equation
(1.4). For a series which do contain a substantial trend, a more sophisticated approach may be required.
After the calculation of the trend, the seasonal effect can be estimated by averaging X;— M or X/M; at each
season, depending on whether the seasonal effect is thought to be additive or multiplicative.

We can obtain the detrended, deseasonalized series by eliminating the trend - cycle M; and seascnal
component S; for each time period from the actual data by subtraction (for equation (1.3)) or division
(for equation (1.4)). This gives the residual or irregular component.

Having fitted a model to a time series, one often wants to see if the residuals are purely random. Testing
residuals for randomness is a somewhat different problem. Our own preference in testing residuals for
randomness is just to look at the first few values of the autocorreiation function (ACF), particularly at lag
one and the first seasonal lag (ff any) and see if any are significantiy different from.zero. For detailed
discussion of residual analysis see Box and Jenkins (1976), Ljung and Box (1978).

3. BUYS - BALLOT ESTIMATES

The work described in Section 2 is based on (i) fitting a trend curve by some method and detrending the
series (ii)-using the detrended series to estimate the seasonal indices. There are many cases where there
is ‘zero’ trend and the average at each season is ‘compared’ with the overall average to obtain the seasonal
indices. We now look at a new proposal that (i) computes the trend easily and (ii) gets over this problem of
detrending a series before the seasonal effects are computed. We will restrict our discussion to the case
where the trend is a straight line. That is,

Mi=a+ bt, forali t (3.1)
3.1. Additive "odel
For the additive model, we consider 2 linear trend-cycle component (3.1) and seasonal component of

period s. Ignoring the irregular cormpounent we obtain the following row, column and overall totals and
means.

S
T.= Z i-1)s +j ,i=1.2,..m
: j=1
[@+b ((i-1)s +Sq+[a+b((i-1)s+2) + S| + ..+ [a+ b ((i-1)s + s) + Ss]

]

S
as +b(i-1)s>+b(1 +2+ ... +8)+ ) S

=1
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1

as + b(i-1)s? +%§ (s+1)

as +—g—s (@i-1)s+1] (3.2)
since the seasonal components over a complete period is zero.
X = LI -‘23[(2i ~Ds+1] 3.3)
S

m

1= Z K1) 84, J=12,...8

I=1

[a+bi+S]+[a+b G+ )+ Sa] +[a+ b +26) + Syl
+...+[atb(+(M-1)8)+S+muys]

ma +mbj+bs (1+2+3+. .. +(m-1))+mS,

T;= mau4~mbj+!?-$2m (m=-1) + mS;
mb .
= ma+~5 [2j+n-s]+mS (3.4)
- T :
X.j=—-—’4=a+~13(2j+n—-s)+sj (3.5)
m 2

T= zm: T, =iT.j

i=| j=1

‘= na +%D-(n+1) (3.6)
X‘..=3=a+-'?-(n+1) (3.7)
n 2

3.2. Multiplicative Model

For the multiplicative model, we again consider a linear trend-cycle componsnt (3.1) and a seasonal

component of period s such that St = s. Again, we ignore the irregular compor= s to obtain the following
results

Ti. =[a+((i-1)s+1)b]Sy+[a+((i-1)s+2)b]Sz+... [a*+ ((F1)s+. |8
=g (S1+Sy+..+Sy) +bs(i~1) (Sy+ Sz +..4S)+h (81 + 28, + & - + ...+ 85)
=as+bs?(-1)+bC (3.8)
where, |
C=851+25;+ ... +8§; (3.9)
Now from (1.4), we obtain

St = Xg/M: h (310)
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if there were no seasonal components and no residual variation, the original data would be the same as th;
trend. That is, we expect '

=10 (3.11)
Thus,

C=8;+28,+38:+...+sS,

=S1+32+83+...+Ss.1+5; = g
+8;+S3+...+ 8. +S; = g~-1
+83+...+8:4+ S =g§-2
+ Ss.1 + S5 =5~-(s—2)
+Ss___ =S"'(S~'1)

=82 (1+2+3+ .. +(s-1)) =82- 5 (s-1)
=§(§-§3 (3.12a)
Thus,

T, =as+bsz(i-l)+—b2£(s+l)
bs _ .
= as+"2— f(2i-1)s+ 1] (3.12b)

X =a+ -g-[(Zi ~1)s+1] (3.13)
results, totally in agreement with the additive case.

T; = [a8+]b]S; + [a + (s+j)b] §; + [a + (2s+)b] §j+ .. + [a+{(m-1) s+)) b ]S,

[ma+mbj+bs(1+2+3...+(m-1))§

]

fra + mbj + T (1,

[ma + 52 2+ n-9] § 3.14)

-

X, =[a+—;-(2j+n—s)ls, | (3.15)
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Finally,

T= }"iT. :iT.j
P

=1

~na+—-(n+ D (3.16)

b
X..=a+5(11%-1) (3.17)

Again, we obtain results in agreement with the additive case.

3.3 Esiimates.

t

(1). Estimation ofaand b

The row averages are the same for both the additive and muitiplic
. rages ative models
for fixed periodic interval s. Using (3.3) or (3.13), we obtain ? and are functions of @ and b

VX, =X, “;X(H).’ 1=23,..m

= bs (3.18)
and
X, - X, =(i-1bs, i=2,3,..,m (3.19)
From (3.18), we obtain an estimate of b as

1

b“’ ~VX --[X X(,#,)] ’ (3.20)
and from (3.19), we obtain
A 1
b(Z) ;
B 1):,( X,) (3.21)

The computation of ‘b’ is done by expressing the changes in the periodic averages as differences with
reference to the average value at some earlier period. Two alternatives are possible.

(i Equation (3.20) computes ‘b’ from the relative periodic average changes (Chain Base Estimation
method (CBE))

(i) Equation (3.21) computes ‘b’ using the first period as the earlier period (Fixed Base Estimation
Method (FBE)).

The two possibilities will each give rise to (m ~ 1) different estimates of ‘b’. The average of these (m - 1)

different estimates will be taken as the Buys —~ Ballot estimate of ‘b'.

Having estimated 'b’, we use (3.3) or (3.13) to find m different estimates of ‘a’. Again the average of these
m different values of ‘a’ will be taken as the Buys-Ballot estimate of ‘a’.
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That is,

o5
=% -2 |
20+ (3.22)

(2.) Estimate of$;,j=1,2,..8

The seasonal indices are thereafter obtained from (3.5) for the additive model and from (3.15) for th
multiplicative model. For the additive model

~

A
Sjrr)sj—a~—2-|21+n—-s|

=3, - X~ g(z_i ~s-1) (3.23)

and for the multiplicative model

< /|, b
S, = ‘(,/ a+~2~(2j+n~—s):l

=';zj/ ')Z..+g—(2j—s—l)] (3:24)

L

When there is no trend (b = 0), it is clear from (3.23) and (3.24) that

Sy EATA 3.25)
for the additive model, and
§=X,/X. (3.26)

for the multiplicative; results already indicated in Section 2.

4. EMPIRICAL EXAMPLES
4.1 Simulation of Additive Model

This example shows a simulation of 100 values from an additive model

Xi=a+ht+S+e 4.1)
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25

20

10 |
X, ‘

0 20 40 60 80 100
TIME

Fig.1: A simulated additive series; X = L0+ 0.20+ 5+ ¢
with$, = -1.5, 8, =25, 83 = 3.5, 8 = 4.5, ¢ ~ N, 1)

25
20
—eo— AVERAGE
— STD
15
110
5 W‘/’\w\/\-
0 : ! o [ " :
5 20 25
0 5 10 PERIOD 1

Fig.2: Mcan and Standard deviation of X; = 1.0+ 0.2t + 5, + ¢
with 8§y = -1.5, 83 = 2.8, 83 = 3.5, S¢ = 45, ¢, ~ N, 1)

witha=1.0,b=0.2, 8,=-15, 8,= 2.5, S3= 3.5, 84 = 4.5 and e, being Gaussian N(0 , 1) white noise. The
series is listed in Table 2 with its row and column averages and standard deviation. As shown in Figures 1
and 2, it is clearly seasonal with an upward trend and stable variance. There is an upsurge of the series in
the second and third quarters and a sharp drop in the first and fourth quarters. There is a reasonably stable
seasonal pattern over the periods suggesting the additive model.
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in order to assess the forecasting perforrmance of our modeils in examples 4.1 ?nd 4.2, we use only the _first
96 observations of the series for model construction. When an additive model is adequqte, we can use it to
forecast future values. For a forecast origin, say t = n,, forecasts can be calculated directly from (1.3) to

give the ¢ - step ahead forecast as

Table 2: Simulated data from X; = a + bt + S;+tewiths=4,2a=10,b=0.2, 8, =-1.5,8,=2.5,

33 = 3.5, 84 = - 4-5v e~ N(011)'
- SEASON
PERIOD I " n v TOTAL AVERAGE STD
i 02819 3.9074 42887 -35180 4.9600 1.240000 | 3.649937
2 00577 37369 7.3987 25590 8.5189 2129725 | 4.363250
3 0.3625 47249 5.7068 -1.1943 9.5600 2.399975 | 3.337189
4 1.8663 59175 78937 | 0.3982 16.1757 4.043025 | 35187290
5 2.3951 6.6492 9.4659 0.9470 19.4772 4869300 | 3.915233
6 40932 7.7541 8.5962 1.2083 21.6518 5412050 | 3.417362
7 59100 8.2203 10.3576 3.3829 27.8717 6.967925 | 3.001558
8 5.1878 8.3220 10.8463 3.9272 28.2833 7.070825 | 3.122382
9 6.5015 9.0910 12.1945 3.0848 31.7718 7.042950 | 3.518448
10 57133 8:6010 11,7572 5.5106 31.5821 7.805525 | 2035006
11 7.4686 11.8769 14,2801 4.2953 37.9229 9480725 | 4.461783
12 9.5368 13.2334 14,5086 6.7287 44.0075_ | 11.001875 | 3.544164
13 10.5704 10.2714 13.4543 6.9778 412739 | 10318475 | 2649477
14 95822 135691 15,8684 7.8203 46.8400 | 11.710000 | 3.669961
15 10.9075 15.0572 16,7887 7.2621 50.0155 | 12.503875 | 4.277998
16 11,2968 17.0678 17.0045 10.2369 556080 | 13.902000 | 3644969
17 131137 18.2031 19.3734 9.1720 50,8622 | 14.965650 | 4.722480
18 13.9217 17.1874 19.0695 10.1657 60.3443 | 15.086075 | 3.000352
19 13.0021 18.6454 19,9549 12.5806 64.2730 | 16.068250 | 3.775753
20 13.9338 205122 21.7753 12.0039 68.3152 | 17.078800 | 4.781409
21 18.5196 221662 211888 | 139998 75.8744 | 18.068600 | 3.653515
» 15.9577 20,4450 22.6041 13,304 72.3272_ | 18.081800 | 4211834
23 18.4417 21.0441 22.3748 14,5645 76.4251 19.106275_ | 3.440339
24 18.5176 22.6546 23,5647 12.8141 77.5510 | 19.387750 | 4902015
25 19.3495 22.6847 23.2500 144771 79.4712__| 10.867800 | 4.167092
TOTAL 2364665 | 3315448 | 373.6056 | 168.2069 | 1110.0038
AVERAGE | 9458660 | 13.261792 | 14.947624 | 6.731876 11.100038
STD 6.156215 | 6411410 | 5936666 | 5.541034
LTD = Standard Deviation
Xno (‘e) = Mno +£ + SnV ‘ (4'2)
M, =a+b@, +0) (4.3)
Let the ¢-step ahea:
el gyt ‘o, \’;'j 2 ,g')
The comparison is usually based on the following summary statistics
1. Mean percentage error, which is also referred to as bias since it measures forecast Dias
MPE = | 1 37_ % |i500,
o (4.5)

m o X

n, ¢ f
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2. Mean square error o
i W, e (4,6)
MSE = —— 2. ¢ .
m, ¢i
3. Mean absolute error
I R
MAE = ) ¢ (4.7
m, %‘ fl
4, Mean absolute percentage eror
. il e, | ,
MAPE = | e 9 [t |HO0% (4.8)
(rnu;{ Xn,,il )
LSE Estimates

Trend analysis by LSE procedures (all trend analysis in this paper are performed using MINITAB) gave the
following estimates

M, = 0.8971 +  0.2028t 4.9)
(+0.7053) (+0.0126)

where values in parentheses below the parameter estimates are the associated standard errors. The
associated seasonal analysis procedure estimates the seasonal indices as

§, =-13822, §, =22377, §, =3.7672, §, = ~4.6154

" which, as can be noticed, sum to 0.0073. Since we require the seasonals to sum to zero we add a
correction factor of

0907 - 00018

to the values above to give N

S =~1.3840, 8, = 22359, §, =3.7654, 8, =~4.6173

We can th;en examine the irregular/residual component of our series which we estimate by subtracting both
the trend line and seasonal effects. The residual ACF indicate no model inadequacy with residual mean =
0.0002 and residual variance = 0.9107 ‘

Buys-Ballot Estimates

The computational procedure for the Buys-Ballot estimates for the trend line is laid out in Table 3. The
seasonal indices are estimated using Equation (3.23). The two separate Buys-Baliot estimates can each be
used to obtain component analysis tables. The irregular components obtained can then be cheched for
randomness. For both methods, the residual ACF's indicate no model inadequacy.
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Table 3: Buys-Ballot estimates for the trend line of the additive modei
. » CBE FBE
SiNo X, VX, H® 40 Xi. -X, 152 a®
1 1.240000 - - 0.746855 - - 0.722263
2 2.129725 0.889725 0.222431 0.847548 0.889725 0.222431 0.783808
3 2.390975 0.270250 0.087563 0.328766 1.150975 0.144897 0.225478
4 4.043025 1.643950 0.410888 1.183684 2.803925 0.233660 . 1.041048
5 4.869300 0.825375 0.206344 1,220027 3.629300 0.226831 1.038043
6 5.412050 0.543650 0.135913 0.974645 4.172950 0.206648 0.753313
7 6.867925 1.554975 0.388744 1.740588 5727925 0.238664 1.479908
[} 7.070825 0.102800 0.025725 1.054456 5830825 0.208244 0.754428
9 7.842950 0.872125 0.218031 1.137549 6.702050 0.209467 0.798173
10 7.805525 -0.047425 -0.011856 0.301092 6.655525 0.184876 -0.077633
11 9.480725 1.585200 0.386300 1.007260 8.240725 0.206018 0.679188
12 11.001875 1521150 0.380288 1.820378 9.761875 0.221861 1,371958
13 10.318475 -0.683400 -0.170850 0.356946 9.078475 0.188135 -0.139823
14 11.710000 1.391525 0.347881 (.959439 10.470000 0.201346 0.423323
15 12.503875 0.793875 0.198469 0.964282 11.263875 0.201141 0.388818
16 13.902000 1.398125 0.348531 1.573375 12.662000 0.211033 0.958563
17 14.96550 1.063550 0.265888 1.847893 13.725550 0.274462 1.193733
18 15.088075 0.120525 0.030131 1.179386 13.846075 0.203619 0.485878
19 16.068250 0.982175 0.245544 1.372529 14.828250 0.205948 0.639673
20 17.078800 1.010550 0.252638 1.594047 15,838800 0.208405 0.821843
21 18.968600 1.889800 0.472450 2.694815 17.728600 0.221608 1.883263
22 18.081800 -0.886800 -0.221700 1.018983 16.841800 0.200498 0.168083
23 19.106275 1.024475 0.256119 1.254426 | .. 17.866275 0.203026 0.364178
24 19.387750 0.281475 0.070369 0.746869 {: 18.147750 0.197258 -0.182728
TOTAL ‘ 4536841 28.024838 .1 4763176 16.674579 |
AVERAGE 0.1972568 1.167702 0.207005 0.690607
8TD. 0.183475 0.539379 0.018768 0.500483

The estimates and the corresponding error means and variances are shown in Table 4. The results indicate
that CBE method better estimates the error variance. Finally, we calculate the ¢ - step — ahead forecasts

5(96(2), for £ = 1, 2, 3, 4 from the forecast origin 96 for the three competing methods. The forecast errors
and the corresponding summary statistics are shown irt Table 5. The results indicate that CBE outperforms

LSE and FBE in terms of forecasts.

Table 4: Summary of estimates (Additive Model)

‘ ESTIMATION METHOD
[ PARAMETER "ACTUAL LSE CBE FBE
b 0.2000 0.2028 0.1973 0.2071
(£ 0.0126) | (£0.1835) | (+0.0188)
a 1.0000 0.8971 11677 0.6506
(+0.7053) | (£0.5394) | (+ 0.5094)
S, 1.5000 -1,3840 13923 13776
S, 2.5000 2.2359 7.2331 2.2380
B 3.5000 3.7654 3.7682 3.7633
4 45000 46173 -4,6089 46236
["Error Mean 0.0000 0.0002 ~0.0021 -0.0002
Ervor Variance: 1.0000 0.9107 0.0497 0.9197

Table 5: Comparison of forecasts betwesn estimation methods {Additive Model)

LSE CBE FBE
Lead Actual | Forecast Error Forecast Error Forecast Error
Time Value Value Value Value
1 19,3405 | 19.1847 | 0.1648 18.9135 | 0.4360 19,4018 -0.0523
2 22.6847 | 23.0074 [ -0.3227 22.7362 | -0.0515 23,2244 -0.5397
3 23,2690 | 24.7387 | -1.4798 24.46885 | -1.2086 24.9567 -1.8068
4 14.1771 | 16.5598 | -2.3827 16.0688 | -2.1117 18,7769 -2.6998
WPE 5.03% 4.52% 707%
MSE 200 1.563 248
MAE 1.09 0.95 1.22
MAPE 8.36% 5.64% 7.07%




94 , ~ ' : I. S. IWUEZE and E. C. NWOGU
4.2. Simulation of Multiplicative Model

\The second example shows a simulation of 100 values from a multiplicative model

X, = (a+bt)Sie (4.10)

witha = 1.0,b = 02,5, = 06,5, = 1.1,S; = 09 S, = 1.4 and e, being Gaussian

N (1.0, 0.10) white noise. The Buys-Ballot table of the series is listed in Table 6. As shown in Figures 3 and
4, it is clearly seasonal with an upward trend and the variance appears to increase with the mean;
suggesting the multiplicative model. The standard deviation is directly proportionai to the mean showing
that a logarithmic transformation is necessary to stabilize the variance. ,
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Fig.3: A simulated multiplicative series; Xy = (1.0 +0.2t) §; ¢
“’i'h S‘ = 0-6, Sz = ]‘1 y SJ = 0:9’84 = 104, Ct ~ N(lao,()ool)
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' Fig.«l: Mcan and standard deviation of X; = 10+020S, ¢
withS, =06, S; = 1.1, 8 =09, 8, = 1.4. e ~ N(1.0, 0.01)
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For each of the estimation methods under consideration, estimation of the trend line is th

35 e is the same for both
the additive and multiplicative models. Computational procedures described in Section 4.1 are used to
obtain the trend estimates listed in Table 7. However, the seasonal analysis methods are different. For the

LSE method, we average the ratios X/M, at each @f@as,an while for the CBE and FBE
& methods w
equation (3.24). Results obtained are also listed in Table 7 ° e

Table 6. Simulated data from X; = (a+ bt) Sreewith s = 4, a = 4.0, b = 0.2, 8 = 06,82 = 1.1 83 = 0.9,8, = 14,6,

~ N (1.0, 0.10)
SEASON
’ PERIOD ] ) ] Y TOTAL AVERAGE S$TD

1 07619 1.5411 13232 23139 58401 1.485025 |~ 0642722
2 1.1331 2.1869 2.4837 3.4001 92038 | 2360950 | 0.934239
3 15225 3.0442 25940 4.7151 11.8758 2.968050 1.327503

4 2.1095 4.0201 3.9777 16.1974 4.042450 1.718567

5 2 65067 4.8319 41323 19,4874 4.870950 1.962636
5] 3.2427 5.8533 4.78681 21,9270 5.481900 2017270

7 41079 6.4928 6.0236 | 27.0497 B8.762425 2.650840

8 4.0342 6.7929 6.5748 /n 7 le 28,6261 7.206525 3.078018

9 4.7431 7.5427 7.7000 11.8070 4. 7998 7.848200 2.909126
10 44419 7.0859 7.4801 K ”i 873 Jm 32,8013 .225325 4,001300
1 5.3923 10.3182 0.6598 K 77117 9.427925 2.922444
12 6.6221 11.8185 9.0286 44,1432 11.035800 3.819167
13 7.3032 8.1934 8.8243 - 16,0042 40.4051 10.101275 4.037131
14 6.5996 20313 11.1979 4 f 2855 47,1143 11.778575 4.379842
16 7.4456 13.8007 12.0830 ) 49,2763 12.319075 3.613103
16 7.6022 16,4813 121931 57,2167 14.320175 5.790028
17 8.9155 17.9678 14.8505 1 j 15.074000 4411287
18 9.4321 15.9842 14,1855 14.804650 4.372555
19 84166 17.0803 18,0551 : 16.532300 6.744944
20 8.8883 20.8387 1736807 % 17.478050 8.157858
21 13.2298 234775 15,9807 19.837975 6.281877
22 10.2143 19,5095 17.7260 71.4507 17.864925 5.745047
23 12.6678 10.9472 16,7181 18.870475 5.772216
24 12.2511 22.5523 81165 18.250650 4.397199
25 12.7902 21.7189 16,7729 18463175 4.564763

TOTAL 166.2752 302.0016 2501780
AVERAGE | 6651008 | 12.080084 10.327120 11.102669
STD 3803820 | 7.079807 §.403085

With the estimates of Table 7, compenent analysis tables are obtained for each estimation method and the
irreguiar components obtamed are checkad for ray s68. The residual ACF's of the LSE and FBE
methods indicate no model inadequacies, while the rasidual ACF of the CBE has significant spikes at Lags
1~ 5, and hence ths method lead to #n inadeguate model.

Finally, the ¢ - step- ahead forecasts for the: fyo &dcwaaﬁ@ mf" sihods:z are computed and lisic 4 in Table 8. The

PARAN! TER | ACTUAL T "t&F |
b 0.2000 0.1873
(+ 0.2420)
a___ 1.0000 19528
- (:LO""E?J) )
S, 0.6000
5 ' 1.1000
S 0.9000
(8 1.4000
or Mean 1.0000
_Error Variance | 0.1000
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Table 8: Comparison of forecasts boetween estimation methods (Multiplicative Model)

. LSE FBE
Lead Time | Actual Value | Forecast Error Forecast Error
Value Value
1 12.7902 12.6550 0.1352 | 12.5723 0.2179
2 21.7189 | 22.5125 -0.7936 | 22.7463 -1.0274
3 16.7729 ' 19.5857 -2.8128 | 19.4131 -2.6402
4 22.5707 28.6002 ~7.0295 | 28.7951 -6.2244
MPE -12.63% -11.59%
MSE 14.49 11.70
MAE 2.69 2.53
MAPE , 13.16% 12.44%

4.3 U.S. Beer Production

Table 9 shows the Buys-Ballot table of 32 consecutive quarters of U.S. beer production, in millions of
barrels, from the first quarter of 1975 to the fourth quarter of 1982. As shown in Table 9 and figure 5, it is
clearly seasonal with a slight upward trend. There is an upsurge of the series almost of equal magnitude in
the second and third quarters and a sharp drop (again of aimost equal magnitude) in the first and fourth
quarters. The yearly standard deviations are stable while the seasonal standard deviations differ, indicating
that the series needs some transformation to make the seasonal effect additive.

Wei (1 989), ignoring the stochastic trend in the series, used 30 observations of the series for ARIMA model
construction. Based on the forecasting performance of his models, he settled on the model.

(1-BY X =149 + (1-0.87B%e (4.11)
(+0.09) (+0.16)

with 67 =2.39.
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Fig.5: U.S. quarterly beer production, in milliens of barrels, between 1975 and 1982
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Iig.6: Yearly means and standard deviations of U.S. beer production

Table 9; U.S. Quarterly beer production in millions of barrels, between 1975 and 1982.

QUARTER
YEAR | i Hi v TOTAL | AVERAGE | STD.

1975 36.14 44.60 44.15 | 35.72 160.61 40.1625 4.8822
1976 36.19 44.63 46.95 36.90 164.67 41.1675 5.4287
1977 39.68 49.72 44.49 36.54 170.41 42.6025 6.7629
1978 41.44 49.07 48.98 39.59 179.08 44,7700 4.9711
1979 44.29 50.09 48.42 41.39 184.19 46.0475 3.9476
1980 46.11 53.44 53.00 42.52 195.07 48.7675 5.3491
1981 44.61 55.18 52.24 41.66 193.69 48.4225 6.3378
1982 47.84 54.27 52.31 41.83 196.25 49.0825 5.5217
TOTAL 336.28 401.00 | 390.54 | 316.15 | 1443.97
AVERAGE | 42.0350 | 50.1250 | 48.8175 | 39.5188 | 45.1241
STD. 4.4228 4.06569 | 3.4967 | 2.7413

The purpose of the present analysis is to demonstrate, using the Buys — Ballot modeling procedures, that
descriptive models may sometimes outperform the complicated ARIMA modeis. Table 10 shows a
summary of adequate (in terms of adequacy of residual ACF's) estimates of the additive and multiplicative

models using the LSE, CBE and FBE methods. The one step ahead and two step ahead forecasts iw(l)

for ¢ = 1 and 2 from the forecast origin 30 are calculated for each method. The forecast errors and the
corresponding summary statistics are shown in Table 11.

Table 10: Summary of estimates for U.S. beer production.

T ESTIMATION METROD
ADDITIVE MODEL MULTIPLICATIVE MODEL
PARAMETER LSE CBE FBE LSE CBE FBE

B 0.3804 0.3894 0.3540 0.3804 0.3894 0.3540

(£ 0.1008) | (+0.2678) | (+0.0588) | (+0.1008) | (+0.2678) | (+0.0588)
A 30.0986 38.9484 39,5323 39.0986 38.9484 39,5323

(£1.7900) | (£0.5690) | (+0.6892) | (£1.7900) | (+0.5680) | (+0.6892)
Sy -2.6916 .2.2977 -2.3508 0.9385 0.9478 0.9467
S; 5.0180 54029 5.3852 1.1116 1.1204 1.1200
Sa 3.5919 3.2071 3.2248 1.0809 1.0708 1.0712
Ss -5.9184 -8.3123 -6.2582 0.8691 0.8610 0.8620
Error mean -0.0780 -0.0930 -0.1260 0.9983 0.9983 0.9971
Error Variance 1.5475 1.7082 1.7345 0.0008 0.0009 0.0008
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The results of Table 11 indicate that in terms of forecasts
(i)  The multiplicative mode! outperforms the additive model for all estimation methods.
(i) The FBE method outperforms the LSE and CBE methods

(iii) wQ ZE;% gn)wethod of the muitiplicative modei outperforms the ARIMA model as listed in Taple 8.13 of
ei .

5. CONCLUSION

We h_aye hgre outl@ned a new technique for the estimation of trend-cycle and seasonal components in
descriptive t_ime series analygls. _No attempt has been made to discuss this technigue when the trend-cycle
component is not linear. Application when trend-cycle component is quadratic is already in preparation.

This technique is_ compgtation_ally simple when compared with other descriptive methods. The estimation of
the slope of the line (b) is easily computed from periodic averages while the computation reduces to

A..__‘_l__m'\gl):___m»l_wwm rw’——__‘.
- m ulg;b‘ s(m —1) =3 (XL X('"‘l)')
1 S
) ) A
(m~-1)s (Xm- Xl.) G.1)

for the CBE method, and

1 & 1 &X -X)
b= b§2)= i 1.
m-lé ! (m-—1)s§2 (i-1)

Tmos\E G- e

: <Z . —”‘Xlil/(i-1>> 52)

for the FBE method.

Equations (5.1) and (5.2) show clearly that the CBE method takes into consideration only the first and the
last periodic averages, while the FBE method takes into consideration all the periodic averages. We,
therefore, recommend the FBE method when it leads to adequate fit in terms of the randomness of the

residuals.
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