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ABSTRACT

It is shown that the 13 one parameter generators of the Lic group SL(6,R) are the
maximal group of symmetrics for nonrelativistic quantum systems. ‘T'he group action
on the sct of states S==L1 (Hcomplex Hilbert space) preserves transition
probabilities as well as the dynamics of the system. By considering a prolongation of
the group action on [, we have a generalized rotation of state vectors in which
norms are preserved. Thus one obtains new symmetries as well as new
representations which aid in the simplification of the system. New solutions can thus
be obtained, which in most cases have realistic physical propertics.

KEYWORDS: Prolongations, Symmetry Groups, Scts ol States
1.0 INTRODUCTION

The application of continuous group of transformations otherwise known as Lie
groups to the study of systems ol partial diflerential equations has its origin in the
rescarches and work of Sophus Lic, over a century ago. Lie showed that one could
reduce the order of an ordinary dilferential equation if it is invariant under a
onc-parameter group of point transformation. The Lic group admitted by such a
differential cquation can be found by a straight forward computational algorithm and
involves the solution of a large number of partial differential equation of an
clementary type. Larly rescarchers Tound this method of limited application in the
construction ol the general solution to a large number of partial differential equation
cncountered then, Lie's method hoviever came into prominence in the late 19507
following the work of L. V. Ovsiannikov (1982), providing a theoretical foundation
for a comprehensive study of the symmetry groups of differential equations. An
improved modern version of Lie’s theory has been developed by Olver (1986) and
gives a rcady verifiable means of obtaining the maximal group ol symmetrics
admitted by any system of partial difTerential cquations, linear or nonlinear. In this
paper we consider some applications ol the general theory developed in Olver
(1980) in the construction of the symmetry group of the 3-dimensional time-
dependent Schrédinger equation which models a simiple nonrelativistic quantum
system consisting of a single particle in a conservative foree field. The Groups under
consideration would be local Lic groups of transformations. The advantage of
considering local groups is that Lie’s three fundamental theorems have shown that
such a group can be completely characterized in terms of the infinitesimal generators

of their Lic algebra which are relatively easy to find. Once the infinitesimal
generators of the Lic algebra are known, the corresponding Lie groups can be found
by exponentiation using Taylor’s theorem (Gilimore, 1974). Attempts have been
made to globalize Lic’s transformation theory sec for example (Palais, 1957) but the
applications make use of only the local theory since only those group clements in a
ncighbourhood of the identity can in general be guaranteed to transform functions.
Non-local symmetries of differential cquations have also been studied for some time
now (Muriel and Romero, 2001). Theoretical investigations of non-local symmetries
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arc based on the theory of coverings in which a system of differential cquations is
said to cover another system of equations (called the covering system) provided it’s
solutions give rise to solutions of the covered system. Symmetries of the covered
system arisc as a non-local symmetry of the covered system. This procedure
however works only for differential equations which admit non- abelian Lic
algebras.

The next few definitions are uselul.

Let S denote a set of possible states of a physical system, then

Definition 1.1 A group O is a symmetry group of S if for cach se S and g
e(, g.seS whenever g.s is defined.
In other words G transforms a given state ol the system to a new state,

Definition 1.2 [.et G be such that
& (8,8)=(8,8,)8 g.8,€0C
es=3

where e 1s the identity element in G, then G is called a group of symmetries for S.

In quantum mechanies the set ol states S = Iis the set of all rays (/5 = {/"Lf/),/l € (,'}
where ¢ is a nonzero vector in the complex Hilbert space 1.
Theorem 1. Given a ray (/ge [, i G is a Lic group of symmetries for I, then the
probability of going [rom the state g. ¢ 1o the state gy is the same as that of going
form ¢ to yforall ge Gand ¢, € H.
Proof. Consider a ray (/jelfl. [’s trajectory may be caleulated by computing
solutions to the cquation,

L ()=itt(s,) (1.0

ot

where /{ 1s a self adjoint operator called the Hamiltonian of the system.
Thus a ray (/ge 1 may be uniquely determined by a pair of poims(,\'.rﬁ)e R7 x H,
Here x e RPrepresents the real line probability measures ¢ assigns to the various
self adjoint operators in H as it evolves in time. 10 G acts regularly on R” x H, then
since G is a local transformation group. we have for cvery g eG, close to the
identity

elvg)=(A v A 4) = (F.d) =g

where (A A,) arc the (77 composition maps ol G.
Thus G can be viewed as acting to change our frame of reference since g.¢ is the old
state ¢ viewed form a new frame of reference. Since acting to change the frame of
reference does not change the state vector, we have a transformation in which norms
arc preserved. We can conclude therefore that if G is a local transformation group,
then the action of G on the set of stales H preserve transition probabilities in .
Next we find out which Lic group G leaves (1.1) invariant.
In the sequel, we shall assume that our system consists of a single spinless particle
moving in a conscrvative loree ficld potential v = v(x,y,z) so that the Hilbert space is
H=L>(R*,5):n Lesbesgue measure. A state vector ¢ would be represented by a
wavce function YW(x.y,z;t) satisfying

a\ll

T =iV
ot
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(1.2)

where V7 denotes the Laplacian, (1.2) is the time dependent Schrodinges equation.
The rest of this paper is organised as follows, in sec.2, the miinitesimal criteria for G

invariance of a system of partial differential equations is adapted in the derivation of

the one—parameter group of symmetrivs for the system (1.2). It has been shown
(TheoremT) that if G is a Lic group of symmetries for the set ol states 1 then G
preserves transition probabilities in FL. Furthermore, we show that (1.2) admits the
13 onc-parameter Lic group which are gencrators of the group SL(6,R)Y in the
representation  state as a symetric group. Thus we conclude that SL{6,R) iy the
maximal group of symmetrics for non-relativistic quantum systems which preserves
transition probabilities as well as the dynamics of the svstem. The fact that the
generators of this group are integrals of motion lead to a number of conservation
laws in quantum mechanics. The conscervation ol encrgy, linear and angular
momentum are well known conservation laws, which are consistent with our
Formulation, Other conservation Jaws are similarly derived.  Group invariant
solutions to the Schrodinger cquation which are uscful in scattering theory are
constructed for various values of the potential in see 3, The scale invariant solutions
give a state of the system for which exact values for all three components of the
angular momentum can be specified. In seed we give an overview of the advantages
ol considering Lic groups.

2.0 Derivation of the Infinitesimal Generators of the Group.

Given a local group of transformation G acting on NxM the space of the
independent and the dependent variable (x,u). there 1s induced an action of GG on the
space NxM® consisting of points (™) where u'™ represents the derivatives ol ihe
dependent variables ol order < K given by

O<[lfsk. LERIE SN

Sce (Nwachukwu and Hidon 1991).

This induced action of G. called the k-th prolongation of G, can casily be obtained
from the corresponding prolonged infinitesimal generators Py of the group which
are veetor fields on NxM™ and have a relatively simple expression. The
generators ot the aroup are vector ficlds on NxM piven by

~ 1l )

I b
N e o -y ) (%
0 STORTIANS S
e OX U

; ) T cu

where poand ¢ represents the numper of independent variable in the space NxM
respectively. The corresponding expression for the prolonged vector ficld is then

8] -
v T .

[),‘“7« oy >~’ ) (X, a'v ) -

i
[
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with
( 2
¢ =7 g ug+}u J
T 4
D, =DlDy..DY
where

Dy }}m_

t?\ ] 'ul
is the total derivative operator. The infinitesimal criteria for invariance of a system
. . . . K . ey Y
of partial differential equations A(x.u'™) = 0 under the action of G states that G is a
symmetry group of the system A(x.u™) = 0 if and only if for cvery infinitesimal
generators 7 ol G.
P A U ) =0 (2.1)

whenever

(vt =
for the case of the Schrodinger equation
RTLATRY] o2 :
Alx,u™ )= iV 4 )W (2.2)
A typical veetor field on NxM on the R'%<R7 with coordinates S RIVARY

MY ds given by

£o=C0 F N0, RO, 0 DO el (2.3)

y \ b

where the cocllicients 15 4.y, 4, D) are avbirary functions of x. v x, v and .

The corresponding second prolongation of v is
Py =y } 0+ % Alov, (2.4)
" .
1
where the J-sum is over all partitions

J’(] ,0.0,0)(0,1,0.0) (0,0.1.0) (0.0.0.1)(]. 1/0,0)(1,0,1,0)1
(1,001 (0. 1.1,0). (0, 1,0.1) (0,0.1.1) (2, 0,0,0)(0,2,0.0)
(0,0,2.05(0,0,0.2)

Substitution of (2.3) and (2.4) in (2.1) vields

io((),()‘(),h " 0(;’}),0,(;) + O(“‘J'“‘U) + 0((),(},_» i oy (1) ) = () (~ .

o]
s
\\/‘

subject to

AR za

i\"I}( + \1] X + ‘I’ “+ \}‘ V\Il (’2())



SL{6,R) AS THE GROUP OF SYMMETRIES FOR NON RELATIVISTIC QUANTUM SYSTEMS

39

where pos0n O -YE -~ - A+ (ry —7,)

=W - Yy Y YA, -y
ISR S CAAMESN0 B SRS SV WS X0
+W (D, ~28 )-2% n -2¥ A -2¥ v,
+ W (fyy —284,) =29 W My, +2v, D + 2P v (B, ~ &)
2V v (@ =&, )+2¥Y W, A, -2¥ Wy,
~2¥ W A, 2% Wy,
2v Y on,, —2¥, v A -2v Py, -3P YL,
S S JRTEL SN ‘I’“‘{’[y\,. ~2¥ v.E,
=20 W, 20 WAy =2V P, -2 Py,
BRI S8 SRR S G
I gy =20V, E Ly =2V, Wy
~W Wy Ay =20 W Wy, +vid,,
- vz,fw - vf‘P},nw ~viY, Vo TV, D,

_\ \Js \] _ |/
I v 5 v,\-,\' 1_‘;77\' - IJ:v.\‘\'ﬂ'\' v,\‘\' I’}/‘,

AN EY

(I)) \IJ é \l} (’)(D — n . ) — l{sz)/y . \[I [fY.\‘)‘

_ 2l{lx \Il yi\{‘y + \I} ; ((I) oy — 2]] y ) — 2\1/ . \IJ Z;\‘ vy

=2V W vy =2 B Y (O =20, ) -2 A

- 2‘["\,\(\, +2v O -2V v E 2‘1’),,vy(<bv\,, =M,)

__2\1 v '2\1}(Vy}’ -2V, \}1 v in\w
pe200 ) \I/;\IJZ)\”]“II _ \llt\[/i,},\]“i/ _ 2‘1/)'lllxy&7‘l‘ _3\}/y\11 WMo
=20 Ay =20y, =2 )vyé‘m, - 2\'},‘1’_3V<D\,,\
__2\11)/\1/,“/)’)\‘\’}’ __21{/ \y VoY~ \y yEJ \‘lel[ly_yé*v
VoW oy = v ~2\I’),yvyn\_ =2W voa =V WPy,
+ ,vi(l)w - \/i‘{"é\\, - vf,‘l’yu\‘\, - ‘I’va, -y N A AT
- l[le)yY\

D —WE W, V2D, ~A )~y
SO Wy A WEO, <2, 2~ 2 ‘I’, Vo

=2W S -2 L AL (DY 24 -2y

+2v. D -2r W&, -2v, Y, + 20 v (D, -2,)
SPAR SR S5 (R LPELPynw B VRS G S
OO0 = f 2W W Ey -2¥ W, -3 Y A -2 Y
SOV B~ 2V M -2V, -2,
SEATE SEAY (N IR S N TP SRV G
-2v,W, A, -2v, W v, + vi(Dyy VY E - vf‘{’_\,nw

S Y SR SRR O N SRR S

ZTTNY

v WY v W
Vi b '1.)‘\ Vy,l. ! Y
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from (2.5) and (2.6) the cocfficient functions {&,7.A.y.¢, @} satisly the symmetry

cquations
20, =& &, =&, Hivywvy(, —&,)—i& =0 (2.7a)
2y =11y N N, H VPV =Ty ) i =0 (2.7b)
Qb A =D D, H VIV, < 0,) i, =0 (2.7¢)
yom 28~y Yy ty,) VPV =0 (2.7d)
o2, iy Yy ) - iviEVE =0 (2.7¢)
yo=2h, =iy Ay by, ) vV =0 (2.70
N —€, =0 (2.72)
by =&, =0 (2.7h)
A, =, =0 (2.71)

R L T N e I PRV (2.7
I +iviliv =0 2.7%)

N U DN O =D P ¥y, ¥, ) 1D D - YOy =0

the most general solutions to the set ol equations (2.7) are given by

]
IR (C e N ¢z~ v b,

7

-~

I
= —§~(clt Y =L L O VA LG

. :
N U NS TR TEA SN S (2.8)

3

Fomme T ROy

1 ) 9
= {_fc,(x‘ +y 2T e X ey ezt |

of

o —

-~

= —(c,t+¢y v+ -i-icl

where ¢, 1=0,1...,12 are arbitrary real constants. Ilence the inlinitesimal

symmetry algebra (7 ol the Schrodinger cquation (1.2) is of dimensions 13, and is
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spanned by the basis vectors

/1/1 :6\
;{2 :a)
Z} :a/
Xi=0,

X5 =XO0, +y0, +20,+210, ~ 2va,
/4{(7 = —‘Zax + Xa/
7y =~y0, +X0,

Yy = —~zO), +vy0,

i
Ko =10, + 5 x\Wa,

Jio =0, +—yVa,

Ko | =

7 =10, *A%\va\,,

@

2 Lia, 2 o 3.
Jn =IO, +1y0 4120 +170, +Z(X +y 4z )‘l’aq, 4—[;&~2W

i
v e \JF
/{13“; [0‘1'

the generators (2.9) satisfy the Lic commutation relations
[L,0]=1 [Lvl=y  rov)=r  |Lr]=P
Lorl=r Lrl=r ianl=x. [PV]=2,
[P’ X1 ] =V
with other commutation relations vanishing. Here

L, = (rx v)j =&, X0,

Vo=tV e sxvo,

P/ :\71

=0,

Les v ]=v

[T:Zx:]:ls

9)

o
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Therefore the veetor ficld y, i=1..13 arc closed under commutation and form a

13 dimensional Lic algebra.

‘The regular representation R{y) on an arbitrary element y = Zu/ ¥, in the vector

i=]
space ol this algebra is

Xy X Xs Xa Xs Xo X1 Xs Xo Ko Xn X X2

o’ a0 0o o
ol 0 a? 0 W
A [0 0 _a? o
a’ oo 20t |
NI VLA I TR af o oW oo |20
a' 0 il 0 -« o a0 .o 0
o ol 0 o0 e - 0 0 2.10
|
0 o o o0 0 o 0
b o 0 ‘ -1 o a0
0 -t 0 ‘ o) -as o0
0 0 -o g [—oco o) o 0
| ’ Y O 0 0 0

TRy, )=0

O

(2.10) 1s the regular representation of the thirteen dimensional subalgebra of SI(6,R)

with  basis  matrices  obtained  from  (2.10) by sctting «' =1, i=12..12
o =0, j=i in . [t follows that S[L(6.R) is the maximal group of symmetries
corresponding to the quantum system (1.2) which preserve transition probabilities as
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well as the dsnamics of the system. Observe that the fact that the generators y, of
this group are integrals ol the motion lead to o number of conservation laws in
quantum mechanics, For instance to cach of the components of the generators, L. 1w
associated an observable called the angular momentum of the system. The fact thi
the angular momentum ina given direction is an integral ol the motion is the
quantum mechanical analog of the Taw of conservation of angular momentum T'he
laws of conservation of total energy and lincar momentum corresponds 1o the
generators 7oand £ and so on, Other conservation Taws can be similarly obtained.
From (2.8) 1t can be scen that the vector fields y are of the form

Ny C o (/)(.\‘.1{)'(~

Z [ - (\) N "
%-T‘ .\ il

which implies the symmetry group is projectable (Hammermesh, 1983). It can be

shown that [[/,)3]: 0 for all intinitesimal generators of the Lie group, where /1 is
the Hamiltonian ol the system. Thus the dyvnaies of the system is preserved.

3 Application to the solution of the Schrodinger Equation

Now supposc that G acts regularly on ZxM, so that the quotient space
Z/G can be regarded as a differentiable manitold [4]. then i A is asystem of partial
difterential equations defined on the spuce / which has (& as iUs symmetry group.
there is a system of partial differential cquations A/G </ (Z4/GLp = 1) where s

the dimensions of the orbits of G and J* (Z.p) is the extended 4-jet bundle of p-
sections of” 7 corresponding to the various partial derivatives of the dependent
variables of order € 4 since G leaves A invariant, the problem of finding the G
invariant solutions to A is equivalent to solving the reduced system A/Gin p-/
independent variables. The solutions of A/G when lifted buck to A gives all the G-
invariant solutions ol A.

As an illustration of this. we consider the scale invariant solutions, which
are more representative. Other solutions may be constructed in a similar fashion.

In this case the veetor field is  yy=x0 +28,+ 210 - 2v0 with
corresponding one parameter group Gy =uexp(Ay,) whose group action is

G :(,\‘.jf’,:,/,v,‘I’)—)(c":.\‘,L)/I‘,}'.c’::,ca“/,e”z"‘ \'.‘I’) (3.1)
in order that G acts regularly. we must consider only the submanifold 70 == R -
{0}, which 1s non Hausdorft so that ’/,,/(}5 can be realized us a 6 dimensional Torus
o0 . . . .
I with four exceptional points

(/h:‘{"::“\':/':l:o. \‘>O,\}’>O}'

q.,. :{x:)':x:t:(). v>(),‘1’<()}

g =x=y=z=1=0, \/<O,‘]’>O}

g mix=y=z=t=0. v<0. ¥ <0

corresponding to four vertical orbits. Therclore a Gy invariant solution of the
Schradinger equation corresponds to a curve in Z/G, which is a solution to A/G .
[n order that the Gy imvariant solution be a single valued Tunction of xuvzd we
concentrate on the Ilausdor(T submanitold 7' < Z/G. . In this case the curve does

not pass through ¢, ,¢, .¢_. .¢ . Choose local coordinates
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2 2 2
gzw v =t (3.2)

t T e

clearly & and v are invariant under the group action of G;. Treating £ as the new
independent variable and substituting (3.2) into (1.2) we see that

AJG =485 +(6-iE)¥, ~v, ¥ =0 (3.3)

G, -invariant solutions to (1.2) corresponding to various values of the potential v can
now be found. For instance for the potential

v=—,———62a——,— aeR Vc:_é_a (3.4)
X +y +z° &
(3.3) becomes
UxPY  +x(1+x)¥Y, +a¥ =0 (3.5)
where x = l—é Using the transformation
y=x"Ye (3.6)
(3.5) becomes
12
Pon +[~l+--3—+——-—(4 t Jo)=0 (3.7)
4  4x’ X'

where %"= -2 x and 1 -2 3
: 2 8

(3.7) 1s the differential equation satisfied by the Kummer Confluent Hypergeometric
fu‘nction (Abramowitz and Stegun, 1965) and has general soluticn

o= e_g.r'x:%wl F(u ,~%,l +24,%")

therefore

oS e

(3.8)

where 1’ =—282—3a

are the G5 invariant solutions of the Schrédinger equation (1.2) correspohding to the

potential
6

V(XaYaZ):—;Ty’—-;—z— aER
( T+ 2Z
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Other G -invariant solutions can be constructed f{or various values of v using
different coordinate patches on Z/G; . The ¢ -invariant solution (3.8), represents a
special state of the system in which an exact value for all t]‘y‘ge,;componciits of the
angular momentum L = (ZG,;(7 , ;(8) can be specilied, sincerpi is an‘eigen state of
cach component of L with eigen value zero (Schiff, 1968). Note that since the

components of L do not commute, the system cannot-in gencral be assigned definite
~values for:all angular momentum components simultaneously. Also, given an initial

state ¢, € L*(R”) the position probability measure over any measurable subset
- A RY(Borel subset) for the state ¢, cvolving in the presence of‘a conservative

1 A . \ or
5 Can be asymptotically obtained from (3.8) for
X*+y 4z

large positive or negative times. This is useful in scattering theory. Next we give a
gencral perspective on the usefulness of considering Lic group.

force field polential v =

4 Prolongations; Generalized Rotations in H.

Let H= {J.gb} be the set of all possible states of a quantum system, where
¢-is a non-zero vector in the complex [ilbert space and A are scalars. The
translormation from ¢ — g¢ where g is an operation fromi H to H is usually

referred to as a gencralized rotation of the state vectors in [ Usually the gencralized
rotations do not conserve norms in I, thus operations for which norms are
conserved are useful in quantum mechanics.

Now consider the set Z=R"xH where x=(x,,X,,.X,)eR" arc real line
projection valued measures, then a pair of points (x,(/))e Z determines uniquely a
particular pure state of the system. Let G be a Lie group of symmetrics for H and
consider the group action of G on Z. If G acts regularly on Z, we may view the
quoticnt space Z/G as a differentiable manifold. Let Z, be a g-section of Z, then

2, would be characterized by local coordinate systems, which arc regular on Z due
to the regularity of the action of G on Z. 1f 1 is the dimension of the orbits of G, then
duc to the regular coordinate structure of Z , we may construct a subbundie
@, 0.2

Thus there is a projection of Z intoZ _,. Now since from seetion 1, G preseives

. [,;,), where £, :(1’,,‘..,131“/) are (-1 independent composition maps of .

transition probabilitics in [, we have a generalized rotation of state vectors in H in
which norms are preserved (Mackey 1978, Kuku et al, 1983). These generalised
‘rotations, comprising symmetry transformations which involve stretching, scaling or
~contraction as well as a pure rotation, constitute a change of axes in H without a
change in the state vectors defining the system. However a change in the frame of
reference would involve a change in the choice for representation, since a particular
state vector has different components when referred to different axes and these
constitute the different representation of the state. Thus one expects a change in the
representation of the state vectors. Our theory ascertains that under the prolonged
action of G onc obtains in Z __,, new representations of the state vectors in ¢ -~/

fewer components, since Z , comprises of state vectors whose components are

defined on  R*”’. Therefore, for complex quantum systems, one obtains new
symmetries, which greatly reduce the complexity of the system.
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