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ABSTRACT

Two deficiencies in  using moment-generating functions are = given and illustrated with
examples. Many distributions do not have moment generating functions, but every distribution
has a unique characteristic function. The use of characteristic functions is preferred to moment-
generating functions.
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INTRODUCTION

The moments of a density function play an important role in theoretical and applied
statistics. In fact, in some cases, if all the moments are known, the density can be determined
(Mood, Graybill and Boes, 1974, p.78). It has been pointed out in Hogg and Craig (1978) that
"not every distribution has a moment-generating function” (MGF). However, “it is difficult to
overemphasize the importance of a moment-generating function when it does exist. This
importance stems from the fact that the moment-generating function is unique and completely
determines the distribution of the random variable” (Hogg and Craig, 1878, p.50).

According to Hogg and Craig (1978), Niels and Buch (1987), and Knight (2000), so
many distributions do not have moment-generating functions, but every distribution has a
unique characteristic function (CF); and to each characteristic function there corresponds a
unique distribution of probability. Consequent upon this, in a more advanced statistics course,
the use of CF’s is preferable to MGF's.

The reason that the MGF is a deficient tool in comparison to the CF is that the domain of
a MGF depends on the distribution, while the domain of all CF's is the same - the real line. |f
the domain of the MGF is an open interval containing zero, then the cerresponding CF is
analytic in some strip containing the real line; in such a case the MGF can be used without
difficulty, with some additional restrictions in limit theorems (Kotz and Johnson, 1982, p.420).

in this paper, two deficiencies of the MGF are given and exemplified. They are as
follows:

Case 1. A random variable can have no moments at all, but it may have a MGF.
Case 2. Arandom variable can have some or all moments and a MGF, but the MGF does not
generate the moments.

ILLUSTRATIVE EXAMPLES
Example 1. Letx have valuesn=1,2, . with probabilities P(x = n) = 1/[n(n+1)]. The

expectation E(x) of this random variable does not exist because

oo ou

Lx)y= ZnPx=n= Yn. [ (i 1)

1= n=|
= N 1/ (n+ ),
n=|

is a series which is known (Dolciani et. al.. 1980) to be divergent, therefore, no moments exist.

But the MGF, M(t), does exist fort 0, where
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I, . t=0
(%) M) = 3 +(c"-l)l,0gc(l~e‘), t<0
docs not exist, t>0

This can be established as follows:

M@ =BE@E™ =2 "1/ nm+1)]
n=|

== ZEeH" U/ nn+ .
n=|
Substituting” =e . the probability generating function (PGF) of x is obtained:
M) = hWZ) = % Z". 1/Inh+)],
n=| 5

which is a power series with radius of convergence equal to one (Dolciani et. al., 1980). The
sum of this series is

WZ)y =2 Z".1 /Inn+ )] = X Z" {d/Mm)-[Hn+ N
n=| n=|\

DA ( DA A
n=| n Ln:] n+| ]

- A A + 1
n=| n n=0 ntl
X0 Wy 54t
n=| n n=0 n-+l

= |+ (2 - 1) Loge (1-%),0< 121 <1
which yields (%) for t < 0.
Example 2. Let x have values 2°, 27, ..., 2", ... with probabifities

Pix=2")y =¢ ' /nt.n=0,1.2... .
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All the moments of x exist because

Bx™y = 2 (20 P(x~=2") = 229" ¢t/n!
n=( n=)

=ooxp (2T r= 1,2,

The MGF also exists; this can be obtained as follows:
M@O=2 exp(t.2"). P (x=2" = X exp Q") . (¢ Tran.
n=Q n=()

Denoting = &', the probability generating function of x is obtained:

-

My = 2= 30 (C

I >”’4)
This series converges for. . 1 and divergé's‘for.f > 1 (Dolciani et. al., 1980, p.107). Thus
the series in
M@ = (') =X exp QMo /nl)
n=0

converges for t O and diverges for t:> 0, and M (t) is defined for t O only. This way M(t)
cannot be differentiated at t = 0 or expanded into the Maclaurin formula. Hence, all the
moments

exist here and the MGF exists as well, but it does not generate the moments.

Example 3. Let U and V be stochastically independent chi-square variables with n; and n,

Uln,

degrees of freedom, respectively. Then the continugus raidom variable x = v has an
,

F-distribution with degrees of freedom n, and n, (i ivgg and Craig, 1978, p.148)
The rth moment of x (for n, > 2r) will be:

frr s A "‘] r ) - ”

A [ U/n) H,y , , 1, (n, /2
Ex")= L|| | |=|—| LW )LV " )=— —————.
o) H V//'/z/‘ J [N,J ( ) ( ) [;7,} (11, /2= 1)

Kotz and Johnson (1983) have documented that, if n, < 2r, the rth moment is infinite, therefare
no moments exist. In fact, the F-distribution with 1, and n; degrees of freedom, forn, =1 or 2 is
one of the distributions described in case 1.

Example 4. Let x be a continuous random variable, and let a new random variable Y be defined
as Y = Loge x. It has been reported in Mood, Graybill and Boes (1974) that if Y has a normal
distribution with mean 11 and variance o ?, then x has a lognormal distribution with probability
density function

f(x)= I exp |- L (loge x - )| 1 (x).
xo ¥ 2n 20° (0, =)
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All the moments of x exist because

o0

However, Kotz and Johnson (1985) have reported that the MGF for the lognormal distribution
does not exist. Thus all the moments of the lognormal distribution exist, but these are not
generated by the MGF. Accordingly, the lognormal distribution is one of the distributions
described in case 2.

CONCLUSION

The deficiencies mentioned apply to both discrete and continuous random variables as
illustrated by the examples on this paper. .
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