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ABSTRACT 
 
As the global population continues to rise, the search for crucial metals has become a primary concern for mineral 
explorers due to their non-renewable nature. To keep pace with increasing need for solid mineral exploration and 
exploitation, it is then important to find new deposits and engage in sustainable extraction practices. The aim of 
the study is to analyze the geochemical composition of Awi sandstone, focusing on metal enrichment, origin, and 
the tectonic setting of the protolith. For this purpose, fifteen (15) fresh samples from the Awi sandstones were 
collected for geochemical analysis using inductively coupled plasma mass spectrometry (ICP-MS). Results 
indicate that Ba, Rb, Sr, Cr, Zn, Ni, Y, and Cu are present in higher concentrations while As, Be, Bi, Cd, Hf, Hg, 
Mo, Sc, U, and Pb are depleted. The findings also suggest an increase in abundance of LREE and a decrease in 
availability of HREE. The TiO2 versus Zr discrimination diagram with the primary element suggests that the parent 
rock of Awi sandstone was mainly of intermediate-felsic igneous origin. The classification plot of Na2O+K2O to 
SiO2, and the R1-R2 plot, indicate that the majority of Awi sandstones originated from granodiorite protolith. The 
plots comparing Th/Yb to Ta/Yb, Th/Ta to Yb, and (K2O/Na2O) to SiO2 suggest that these Awi sandstones were 
formed in a passive to active continental margin environment. So which of the elements listed may probably 
denote crucial ore deposit. 
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INTRODUCTION 
 
Geochemical analysis is an advanced analytical 
technique used to decipher origin of the sediments, 
the tectonic conditions during deposition, and assess 
potential metal concentration in rocks. Thus, it is 
essential to conduct a geochemical analysis of the Awi 
Sandstone in the Calabar Flank. The Calabar Flank, 
located in southeastern Nigeria, is a prominent 
sedimentary basin (Ekpo et al., 2012; Boboye and 
Okon, 2014); surrounded by the Oban Massif to the 
north, the Niger Delta to the south, the Cameroon 
volcanic ridge to the east, and the Ikpe platform to the 
west.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The oldest geological unit in this basin is the Awi 
Formation, which consists of mudstones, 
conglomerates, and sandstones (Ekwok et al., 2020). 
The Awi Sandstone consists mainly of sand-sized 
(0.0625 to 2 mm) silicate grains, with quartz being the 
predominant mineral due to its high resistance to 
weathering (Goswami and Deopa, 2018; Garzanti, 
2019). The mineral composition of sandstones plays 
a significant role in determining the types and 
quantities of minerals that can be deposited. For 
instance, sandstones rich in feldspar are more 
susceptible to alteration by hydrothermal fluids, which 
can introduce valuable minerals such as gold, silver, 
and copper (Bogossian et al., 2020).  
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Sandstones exhibit notable porosity and permeability, 
facilitating the deposition of minerals within the rock's 
pores (Shu et al., 2021; Wang et al., 2022). The 
deposition of minerals is also impacted by the mineral 
composition of the surrounding rocks and fluids, with 
elements like sulfur promoting the formation of sulfide 
minerals such as pyrite and chalcopyrite (Huston et 
al.,1995; Tornos, 2006; Misra, 2012; Revan et al., 
2014). 
Extensive research and documentation have been 
conducted on base metal deposits in sandstone found 
in sediments of various geological ages (Samama 
1976; Fleischer 1984; Hayes and Einaudi 1986; 
Bjørlykke et al., 2019). In the sandstones of the 
Newland Formation, there is a distinct series of 
minerals produced through diagenetic processes, 
including pyrite, sphalerite, galena, chalcopyrite, 
silica, dolomite, and calcite (Fleischer, 1984). The 
pore spaces between detrital grains in these 
sandstones are predominantly occupied by sphalerite 
and galena (Schieber, 1991; White et al., 2014). 
Sphalerite forms on the surfaces of quartz grains early 
in the diagenetic process, while galena develops at a 
later stage, filling remaining pore spaces and often 
growing over existing sphalerite cement (Oyebamiji et 
al., 2023; Rickard et al., 1979). 
Pb-Zn mineralization in the Newland Formation 
resembles the dispersed sulfide deposits in 
sandstone-hosted lead deposits and the Revett 
Quartzite of the Coeur d'Alene district (Samama, 
1976; Bjørlykke et al., 2019). This mineralization style 
is prevalent in the Belt Series Formation. 
Disseminated base metal deposits in the Belt Series 
are commonly situated beneath a sediment layer of at 
least 9 km. In Australia, sediment accumulations 
underlying stratiform Pb-Zn deposits extend for over 3 
km and serve as the primary source of ore metals. The 
presence of thicker sediment piles can impact the 
availability of metal content for the formation of 
deposits. Thicker basin fills are associated with higher 
temperatures that influence the release of metals 
during the transformation of smectite to illite, 
increased solubility of base metals in basin fluids, and 
the potential for intermittent fluid removal. 
In a study conducted by Spears (1987) on Triassic 
sandstones in the West Midlands of England, it was 
found that elements such as Zn, Pb, Cu, Cr, Ni, and 
Sr were enriched at shallow depths (less than 1 m). 
Another investigation by Zaid (2015) on the 
geochemistry of Pliocene Gabir Formation 
sandstones in North Marsa Alam, Red Sea, Egypt, 
revealed an enrichment of trace elements such as 
Barium (Ba), Strontium (Sr), Nickel (Ni), Chromium 
(Cr), and Zircon (Zr), as well as a decrease in Uranium 
(U) and Thorium (Th). The geochemical analysis 
indicates that the deposition occurred in a basin along 
an active continental margin, mainly sourced from 
granitic and low-grade metamorphic materials. The 
protoliths, which include Proterozoic granites, meta- 
 

 
 
 
gabbros, and metavolcanics, were exposed by 
Oligocene rifting and continued post-Miocene. 
The Ajali Sandstone, located in the Anambra Basin in 
southeastern Nigeria, is a prominent geological 
formation characterized by coarse-grained, well-
sorted sandstone with cross-bedding features. This 
sandstone is known for its significant concentration of 
heavy minerals, including zircon, rutile, ilmenite, and 
tourmaline, which are often concentrated in specific 
horizons and can be economically viable for 
extraction. Additionally, the Ajali Sandstone contains 
high-purity silica sand, making it suitable for the glass-
making industry due to its high quartz content and 
well-rounded grains (Ogbahon and Opeloye, 2016). In 
the Upper Benue Trough, the Bima Sandstone is a 
significant Cretaceous formation consisting of thick 
sequences of arkosic sandstones and conglomerates. 
It primarily represents a fluvial deposit with some 
sections indicating shallow marine influence. The 
Bima Sandstone is notable for its potential uranium 
mineralization, particularly in its basal sections, where 
deposits are associated with reduction zones rich in 
organic matter. There are also occurrences of barite 
mineralization, especially in areas where the 
formation has undergone structural deformation, such 
as faulting and fracturing. Barite is an important 
industrial mineral used in the oil and gas industry as a 
weighting agent in drilling muds (Olade, 2020). The 
Gongila Sandstone, part of the Gongola Basin in 
northeastern Nigeria, comprises mainly sandstone 
with interbedded siltstone and shale, deposited in a 
transitional marine environment. It has been reported 
to contain phosphatic nodules, indicating potential for 
phosphate mining, which is critical for producing 
fertilizers and various industrial chemicals. The 
Gongila Sandstone also serves as a reservoir rock in 
the Gongola Basin, with its porosity and permeability 
making it a suitable target for hydrocarbon exploration. 
The sandstone is known to contain oil and gas, 
particularly where it is capped by impermeable shale 
formations (Adekoya et al., 2014). 
Despite extensive research efforts, it is crucial to 
conduct a geochemical assessment of the Awi 
Sandstone in the Calabar Flank to better understand 
sediment provenance, tectonic setting, and the 
potential for metal enrichment. Geochemical studies 
in the Calabar Flank, Nigeria, have focused on 
assessing hydrocarbon potential, characterizing 
sediments, evaluating environmental impacts, and 
understanding the petrogenesis of sandstones. The 
objective of this study is to analyze the geochemistry 
of the Awi Sandstones in the Calabar Flank, utilizing 
variation plots, bivariate plots, and spider diagrams, in 
order to determine sediment provenance, tectonic 
context, and metal enrichment potential. 
Location of the Study Area 
The focus of the research is the Calabar Flank in 
southeastern Nigeria, situated between latitude 
5°0'0''N and 5°15'0''N, and longitude 8°15'0''E to 
8°30'0''E (Figure 1). A region of great geological  
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significance, the Calabar Flank in southeastern 
Nigeria covers a vast area of land.  
Geology and Tectonic Setting 
The Awi Sandstone, of the Calabar Flank of 
southeastern Nigeria, is a member of the Awi 
Formation and represents the earliest sedimentary 
deposit in the region (Figure 2). It comprises mainly of  
 
 
immature arkosic sandstones and conglomerates, 
with some mudstone, shales, and carbonaceous 
elements, as well as exhibits cyclical fining-upward 
patterns (Nton, 1999). With a thickness of 
approximately 50 m, the Awi Formation overlays 
Basement Complex which is primarily made up of 
banded amphibolites (Macaulay et al., 2016). 
The Calabar Flank s a coastal sedimentary basin that 
formed during the Early Cretaceous rifting period. 
During the early Cretaceous period, the stretching of 
the Earth's crust caused sinking along significant fault 
lines, especially the inland extensions of the Chain 
and Charcot fault systems. This resulted in the 
formation of the Benue Trough, which is an 
unsuccessful extension of the RRR triple junction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 1: Location of the Study Area 
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FIG. 2. Stratigraphic chart of the Calabar Flank (Modified after Boboye and Okon, 2014) 
 
The Charcot fault system acts as a boundary between 
the Niger Delta Basin and the Calabar Flank 
(Eldosouky et al., 2022; Ekpo et al., 2013; Opara et 
al., 2014) (Figure 3). 
The rock layers of the Calabar Flank mainly date back 
to the Cretaceous period (Figure 2). In certain areas 
close to Calabar, Cretaceous sediments lie beneath 
layers from the Cenozoic Benin Formation (from the 
Paleogene to Neogene periods) and more recent 
formations from the Niger Delta (Boboye and Okon, 
2014). The structural orientations in the region follow 
a northwest-southeast direction and have been 
influenced by uplifted blocks and depressed areas 
formed through faulting in the Earth's crust. The 
deposition of sediment in the basin commenced with 
the Awi Formation's Neocomian-Aptian fluvial 
sandstones, which formed during the initial phase of 
the rift (Boboye and Okon, 2014). Subsequently, post-
rift marine deposits of the Albian and Late Cretaceous 
Odukpani Group, including the Mfamosing Limestone 
of the mid-Albian age, the Ekenkpon Formation of the 
Late Albian-Turonian age, and the New Netim Marl of 
the Coniacian age, were established. These marine 
sediments developed directly above the Awi 
Formation during a period of rising relative sea levels. 
The Nkporo Shale, dating back to the Late 
Campanian-Maastrichtian period, is irregularly 
positioned on top of the Odukpani Group. The Benin 
Formation, comprising Palaeogene and more recent 
regressive sands and gravel beds, overlays these 
Cretaceous strata (Edet and Nyong, 1994). 
 

MATERIALS AND METHODS 
Materials 
The study utilized the following field materials: Global 
Positioning System (GPS), compass, hand auger, 
sample bags, masking tape, and a marker pen. The 
laboratory was equipped with mortar and pestle, 
sieve, weighing balance, and pharmaceutical bag
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FIG. 3. Structural Framework of the Calabar Flank and adjacent areas (Odumodu et al., 2012) 
 
Methods 
Extensive fieldwork was conducted to gather fresh 
sand samples from various outcrops within the Awi 
Formation, totaling fifteen samples weighing between 
30 and 50 kg. The sandstones' variable exposure 
necessitated collecting the samples at random from a 
depth of around 1 m. After air-drying for two weeks, 
the samples were crushed and sieved through a 10-
mesh screen with a particle size less than 2 mm at the 
Department of Geology laboratory, University of 
Calabar, Calabar. The powdered samples, each 
weighing 30 g, were sealed in pharmaceutical 
containers before being sent to the Activation 
Laboratories (Act Lab) in Canada for geochemical 
analysis. The concentrations of major, minor, and 
trace elements were determined using Inductively 
Coupled Plasma-Mass Spectrometry (ICP-MS).  
 
 
 
 

Data interpretation 
Statistical analysis of the data was conducted using 
Microsoft Excel 2016, and GCDkit software was 
utilized to create discrimination plots. Excel software 
was used to generate scattered plots illustrating the 
metal enrichment and depletion. To gain insights into 
the nature of the source rocks (protolith) of the Awi 
sandstones, various discrimination plots, such as TiO2 
versus Zr (Hayashi et al., 1997) and Discriminant 
Function 1 versus Discriminant Function 2 diagram for 
provenance (Murali et al., 1983), Th/Yb versus Zr/Y 
(Ross and Bedard, 2009), FeOt/MgO versus SiO2 
(Miyashiro 1974), AFM ternary plot (Irvine and 
Baragar, 1971), SiO2 versus K2O discrimination plot 
(Peccerillo and Taylor 1976), Co versus Th plot 
(Hastie et al.,  2007), plot of 
(Al2O3+CaO)/(FeOt+Na2O+K2O) versus 
100(MgO+FeOt+TiO2)/SiO2 (Sylvester, 1989), Molar 
Na2O-Al2O3-K2O plot (Salisu et al., 2022),  
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B(Fe+Mg+Ti) versus A(K+Na+2Ca), discrimination 
plot (modified by Villaseca et al., 1998), A/CNK versus 
A/NK diagram (After Shand 1943), QAPF diagram – 
Si oversaturated for intrusive igneous rocks, 
Na2O+K2O vs SiO2 classification plot of plutonic 
igneous rocks (Cox, 2013), Na2O+K2O vs SiO2 plot 
(Middlemost, 1985), Na2O+K2O vs SiO2 plot 
(Middlemost, 1994), and R1-R2 classification plot for  
 

 
 
plutonic igneous rocks (De la Roche et al., 1980) were 
used. To understand the tectonic setting of the study 
area, varied discrimination plots were employed. 
These plots include; The Y+Nb versus Rb tectonic 
discrimination plot (Pearce et al., 1984), Y versus Nb 
tectonic discrimination diagram (Pearce et al., 1984), 
Zr versus Nb/Zr, Nb/Yb versus Th/Yb (Pearce 2008), 
and tectonic discrimination diagram of K2O/Na2O 
versus TiO2.by Roser and Korsch (1988).

RESULTS AND DISCUSSION 
The results of geochemical analysis of the sandstones 
analyzed are presented in Tables 1 - 2.  
Major Oxide Geochemistry  
The data in Table 1 indicates that the Awi sandstone 
samples exhibit high levels of silicon dioxide (SiO2) 
and aluminum oxide (Al2O3). The SiO2 content 
typically falls within the range of 60% to 80%, while 
Al2O3 levels range from 13% to 17%, indicating a 
significant presence of quartz and feldspar, which are 
abundant minerals in sandstone. Additionally, the 
analysis revealed lower quantities of iron oxide 
(Fe2O3), magnesium oxide (MgO), calcium oxide 
(CaO), and sodium oxide (Na2O) in comparison to 
certain reference materials. Normally, Fe2O3 content 
is below 10%, while the levels of MgO, CaO, and Na2O 
range between 0.5% to 1.5%, 1% to 2%, and around 
1%, respectively. The presence of iron oxides, 
pyroxenes, calcite, or Na-feldspar in Awi sandstone is 
quite minimal compared to other rock types like basalt, 
gabbro, granite, and diorite. The potassium oxide 
(K2O) content ranges from 1% to 5%, indicating the 
possible existence of potassium-rich minerals like K-
feldspar or micas (Manning, 2010).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Trace amounts of titanium dioxide (TiO2) and 
phosphorus pentoxide (P2O5) are also present, often 
less than 1%, and may be associated with accessory 
minerals such as rutile or apatite (Le Deit et al., 2022). 
Loss on Ignition (LOI) measures the weight loss from 
heating, which can be caused by burning organic 
matter or clays (Hoogsteen et al., 2015; Frangipane et 
al., 2009; Plater et al., 2015; Heiri et al., 2001). The 
LOI values in Table 1 are typically low (less than 4%), 
indicating little organic content or clays in these 
sandstones. This suggests minimal organic content or 
clays in these sandstones. Figure 4 illustrates the 
relative enrichment and depletion of these oxides. 
Figure 5 compares the chemical composition of Awi 
sandstones with two reference materials: PAAS (Post 
Archean Australian Shale) and UCC (Upper 
Continental Crust). The mineral compositions of Awi 
sandstones are distinct from those of PAAS and UCC, 
with notably higher SiO2 levels. Awi sandstone have 
lower Al2O3  
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 As  Ba  Be  Bi  Cd Co Cr  Cu  Hf  Hg

AWI A 2 809 2 2 0.5 28 46 35 6.6 1

AWI B 2 165 3 2 0.5 1 1 6 0.5 1

AWI C 2 542 2 2 0.5 1 4 12 3.1 1

AWI D 5 231 24 2 0.5 16 227 27 6.2 1

AWI E 5 150 2 2 0.5 10 90 15 5 1

AWI F 4 145 2 2 0.5 9 80 12 4 1

AWI G 3 240 2 2 0.5 8 70 10 3 1

AWI H 2 135 1 2 0.5 7 60 8 2 1

AWI I 1 330 1 2 0.5 6 50 6 1 1

AWI J 6 155 2 2 0.5 11 100 17 6 1

AWI K 5 150 2 2 0.5 10 90 15 5 1

AWI L 4 245 2 2 0.5 9 80 12 4 1

AWI M 3 140 2 2 0.5 8 70 10 3 1

AWI N 2 135 1 2 0.5 7 60 8 2 1

AWI O 1 430 1 2 0.1 6 50 6 1 1

Mean 3.13 266.80 3.27 2.00 0.47 9.13 71.87 13.27 3.49 1.00

Table 1: Major oxides (Wt.%) for sandstones of Awi Formation 

Sample 
ID SiO2 Al2O3 Fe2O3T MnO 

 
MgO 

 
CaO 

 
Na2O K2O 

 
TiO2 

  
P2O5  LOI TOTAL 

AWI A 53.24 16.07 10.13 0.15 4.49 6.95 3.13 2.04 1.54 0.41 0.79 98.94 

AWI B 80.26 12.03 1.33 0.01 0.27 1.21 4.46 0.63 0.05 0.01 0.63 100.89 

AWI C  74.86 13.70 1.19 0.03 0.14 0.87 3.13 5.69 0.09 0.01 0.51 100.22 

AWI D 62.86 15.51 9.41 0.12 0.70 0.15 0.05 1.97 0.87 0.17 8.37 100.18 

AWI E 55.25 17.56 2.95 0.10 1.22 1.55 1.18 4.50 0.82 0.17 3.70 89.00 

AWI F 60.78 16.46 3.25 0.09 1.09 1.35 1.08 4.14 0.79 0.15 3.08 92.26 

AWI G 66.21 15.37 2.88 0.08 0.96 1.19 0.98 3.85 0.76 0.13 2.64 95.05 

AWI H 71.63 14.28 2.56 0.07 0.83 1.04 0.89 3.58 0.73 0.11 2.21 97.93 

AWI I 77.07 13.19 2.25 0.06 0.79 0.95 0.82 3.34 0.70 0.10 1.79 101.06 

AWI J 62.89 16.85 3.49 0.11 1.11 1.42 1.13 4.28 0.85 0.16 3.71 96.00 

AWI K 68.32 15.71 3.12 0.09 0.98 1.29 1.03 4.05 0.78 0.14 3.17 98.68 

AWI L 73.74 14.62 2.76 0.08 0.85 1.15 0.96 3.78 0.75 0.13 2.68 101.50 

AWI M 79.16 13.53 2.45 0.07 0.81 1.06 0.89 3.54 0.72 0.11 2.23 104.57 

AWI N 64.65 16.35 3.39 0.10 1.08 1.39 1.10 4.18 0.82 0.16 3.68 96.90 

AWI O 70.17 15.21 3.02 0.09 0.95 1.22 1.00 3.95 0.77 0.14 3.14 99.66 

PAAS 62.4 18.78 7.18 - - 1.29 1.19 3.68 0.99 0.16 - 95.67 

UCC 66 15.2 4.5 - - 4.2 3.9 3.4 0.5 0.16 - 97.87 

 
Table 2: Trace element (ppm) of Awi Sandstones, Calabar Flank 
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 Mo Ni Pb  Rb  Sc   Sr  Ta Th Nb  U  Y  Zn   Zr

AWI A 2 28 7 40 25.1 404 1 2.9 11.2 0.5 43 116 272

AWI B 2 5 16 20 1.1 290 1 0.5 6.8 0.5 4 18 18

AWI C 2 3 39 150 2.4 148 1 13.4 9.02 6.8 17 15 78

AWI D 3 29 23 180 14.3 89 6 13.9 6.4 5.2 20 59 245

AWI E 1 50 30 150 2.3 100 1 10 10.73 3 15 60 100

AWI F 2 45 25 140 12.1 90 1 8 12.26 2 13 55 90

AWI G 2 40 20 130 3.1 80 1 6 27.4 1.5 11 50 80

AWI H 2 35 15 120 11.1 70 1 4 17.9 1 9 45 70

AWI I 3 30 10 110 2.2 60 0.5 2 10.2 0.5 7 40 60

AWI J 1.2 55 35 160 4.2 110 1.5 12 9.73 4 16 65 110

AWI K 1 50 30 150 3.6 100 1 10 10.6 3 15 60 100

AWI L 2 45 25 140 7.5 90 1 8 7.8 2 13 55 90

AWI M 3 40 20 130 8.2 80 1 6 8.4 1.5 11 50 80

AWI N 1 35 15 120 6.1 70 1 4 12.6 1 9 45 70

AWI O 2 30 10 110 2.6 60 0.5 2 15.8 0.5 7 40 60

Mean 1.95 34.67 21.33 123.33 7.06 122.73 1.30 6.85 11.79 2.20 14.00 51.53 101.53

 
 
 

Table 2: Trace element (ppm) of Awi Sandstones, Calabar Flank (Contd.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4A - 2D Spatial Distribution Patterns of Major Oxides (wt. %) of Awi Formation, 
B - 3D Spatial Distribution Patterns of Major Oxides (wt. %) of Awi Formation 
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FIG.5. Spatial distribution patterns of Major Oxides (wt. %) from Awi Sandstones to PAAS and UCC 
(Taylor and McLennan, 1983) 

 
levels compared to PAAS but similar to UCC, 
indicating the presence of aluminum-bearing minerals 
such as feldspar, albeit in smaller quantities than 
PAAS. Furthermore, the Fe2O3 levels in Awi 
sandstones are lower than both PAAS and UCC. The 
CaO content in Awi sandstones is marginally higher 
than in PAAS but lower than in  
UCC. Awi sandstones also contain slightly higher 
Na2O levels than PAAS, but lower than in UCC. 
Additionally, the K2O levels in Awi sandstones are 
slightly lower than in PAAS but higher than in UCC. 
Awi sandstones exhibit lower levels of TiO2 compared 
to PAAS but slightly higher levels compared to UCC. 
In general, the geochemistry of Awi sandstone bears 
a closer resemblance to UCC than to PAAS. 
The Pearson correlation matrix for the major oxides, 
as displayed in Table 3, is statistically significant at the 
0.05 level (two-tailed). This matrix aids in 
understanding the evolutionary path of the melt. Table 
3 reveals a robust negative correlation between SiO2 
and Al2O3, Fe2O3, MnO, TiO2, P2O5, and MgO, and a 
weaker negative correlation between SiO2 and K2O. 

The correlation between SiO2 and Al2O3 suggests 
feldspar crystallization. In order to pinpoint the specific 
feldspar end-member undergoing crystallization, the 
correlations between SiO2 and K2O, and SiO2 and 
Na2O are compared. The negative correlation 
between SiO2 and K2O indicates the crystallization of 
K-feldspar, such as orthoclase. The presence of a 
negative correlation between SiO2 and Fe2O3 points to 
the formation of olivine (fayalite-Fe2SiO4) or pyroxene 
(ferrosilite-Fe2Si2O6) through crystallization. The 
relationship between SiO2 and MgO indicates the 
potential crystallization of pyroxene (enstatite-
Mg2Si2O6) or olivine (forsterite-Mg2SiO4). An inverse 
correlation between SiO2 and TiO2 suggests the 
potential formation of titanium-bearing minerals such 
as ilmenite (FeTiO3) or rutile (TiO2). The negative 
correlation between SiO2 and P2O5 indicates the 
potential formation of phosphate minerals like apatite. 
Figures 6 and 7 present Harker’s plot and the density 
ellipse plot, respectively, which offer a visual 
representation of Pearson's correlation matrix.
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Table 3. Pearson’s correlation matrix for the major oxides (wt.%) of Awi sandstone 
 

  SiO2 Al2O3 Fe2O3T MnO  MgO  CaO  Na2O K2O  TiO2   P2O5 

SiO2 1          

Al2O3 -0.9006 1         

Fe2O3T -0.6422 0.39123 1        

MnO -0.8346 0.79478 0.79311 1       

 MgO -0.6549 0.40608 0.71013 0.71904 1      

 CaO -0.5282 0.24982 0.58238 0.5282 0.96443 1     

 Na2O 0.16845 -0.4173 -0.1029 -0.4384 0.18248 0.42319 1    

K2O -0.0929 0.37724 -0.4364 3.3E-17 -0.2484 -0.2699 -0.3523 1   

 TiO2 -0.7222 0.63471 0.7397 0.93748 0.83132 0.65957 -0.3851 -0.0887 1  

  P2O5 -0.7794 0.60167 0.81373 0.90314 0.94413 0.82864 -0.1058 -0.1896 0.95125 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 6. Harker's variation diagram of silica (SiO2) versus major oxides 
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FIG.7 Scatter Plot of Correlation Matrix with Density ellipse and Histogram of Major Oxides (wt. %) of Awi 
Sandstone 
 
Metal Enrichment 
Trace element geochemistry 
In Table 4, you can find the data regarding trace metal 
enrichment and depletion. According to Adamu et al. 
(2020), the classification of metal enrichment and 
depletion is based on average concentrations and 
consists of three groups: highly enriched (> 50 ppm), 
moderately enriched (1-50 ppm), and deficient (< 1 
ppm). The metals classified as highly enriched are 
barium (Ba) at 266.80 ppm, chromium (Cr) at 71.87 
ppm, rubidium (Rb) at 123.33 ppm, strontium (Sr) at 
122.73 ppm, zinc (Zn) at 51.53 ppm, and zircon (Zr) at 
101.53 ppm. Other metals such as arsenic (As) are at 
3.13 ppm, beryllium (Be) at 3.27 ppm, bismuth (Bi) at 
2 ppm, cobalt (Co) at 9.13 ppm, copper (Cu) at 13.27 
ppm, hafnium (Hf) at 3.49 ppm, mercury (Hg) at 1 
ppm, molybdenum (Mo) at 1.95 ppm, and nickel (Ni) 
at 34.67 ppm, lead (Pb) at 21.33 ppm, and scandium 
(Sc) at 7.06 ppm. The samples show significant 
depletion of only one element, cadmium (Cd), with a 
concentration of 0.47 ppm. The enrichment and 
depletion of various trace elements are visually 
represented in Figure 8. Figures 9a-9f illustrate the 
spatial distribution map of highly enriched metals 
within the research area. The maps were generated 
using Arcmap 10.8. The spatial plots indicate a 
concentration of barium in the NE-SW trend, while 
zircon and rubidium are more prevalent in the western 
region. Higher quantities of zinc, strontium, and 

chromium are found in the Northwest region. The 
enrichment of elements like Ba, Rb, Sr, Cr, Zn, Ni, Y, 
and Cu can possibly reflect the presence of felsic or 
intermediate igneous rocks. These elements are often 
associated with hydrothermal mineralization 
processes. The presence of elevated levels of 
transition metals (like Cr, Ni, and Cu) could indicate 
contributions from mafic or ultramafic rocks, 
potentially linked to mantle-derived materials or deep 
crustal sources. A comparison of metal enrichment in 
Awi sandstones with that of Nkporo and Ekenkpon 
shales, as described in Adamu et al. (2020) and 
presented in Table 4, indicates strong enrichment of 
Ba, Rb, Zn, Zr, Sr, and Cr in both formations. The 
concentration of Ba in Nkporo shale (342 ppm) and 
Ekenkpon shale (281.87 ppm) is higher on average 
than that of Awi sandstones (266.80 ppm), and the 
concentration of shale (281.87 ppm) surpasses that of 
Awi sandstones (266.80 ppm). Awi sandstones have 
a higher average Cr concentration (71.87 ppm) than 
Nkporo shale (64 ppm) but slightly lower than 
Ekenkpon shale (74.27 ppm). The mean Rb 
concentration (123.33 ppm) observed in Awi 
sandstones exceeds that in Nkporo shale (90.9 ppm) 
and Ekenkpon shale (93.33 ppm). The average 
concentrations of Sr in Nkporo shale (417 ppm) and 
Ekenkpon shale.
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Trace Element(ppm) Awi Sandstones Nkporo shale Ekenkpon shale

 As 3.13 4.38 3.42

 Ba 266.80 342 281.17

 Be 3.27 1.93 1.48

 Bi 2.00 0.18 0.18

 Cd 0.47 0.16 0.06

Co 9.13 20.42 18.58

Cr 71.87 64 74.27

 Cu 13.27 22.62 25.97

 Hf 3.49 2.48 2.58

 Hg 1.00 0.01 0.01

 Mo 1.95 35.76 31.87

Ni 34.67 55.68 59.97

Pb 21.33 25.94 21.85

 Rb 123.33 90.9 93.33

 Sc 7.06 10.81 12.21

  Sr 122.73 417 250.87

 Ta 1.30 0.77 1.33

Th 6.85 15.86 17.2

Nb 11.79 13 12.58

 U 2.20 5.8 5.5

 Y 14.00 45.22 29.67

 Zn 51.53 115.7 67.5

  Zr 101.53 86.28 96.93

2 1 

  
 

Table 4: Comparison of average concentrations of trace elements of Awi sandstones to average 
concentrations of Nkporo and Ekenkpon shale. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 – This study 
2 – Adamu et al., 2020 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

FIG.8: 2D and 3D Spatial Distribution Patterns of Trace Elements (ppm) of Awi Formation 
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FIG. 9a. Geochemical map of Ba concentration (ppm)  
in the study area 

FIG. 9b. Geochemical map of Zr concentration (ppm)  
in the study area 

FIG. 9c. Geochemical map of Zn concentration 

(ppm) in the study area 

FIG.9d Geochemical map of Sr concentration 

(ppm) in the study area 
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FIG. 9f. Geochemical map of Cr concentration 
(ppm) in the study area  

 

 

 

 

 

 

FIG. 9e. Geochemical map of Rb concentration (ppm) 

in the study area 
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shale (250.87 ppm) are both higher than that in Awi sandstones (122.73 ppm). The Zn concentrations in Nkporo 
shale (115.7 ppm) and Ekenkpon shale (67.5 ppm) were higher compared to the Awi Formation (51.53 ppm). Awi 
sandstones had a higher average Zr concentration (101.53 ppm) than Nkporo shale (86.28 k ppm) and Ekenkpon 
shale (96.93 ppm). The presence of highly enriched metals in Awi sandstones, in association with Nkporo and 
Ekenkpon shales, indicates the significant role played by these shales in the mineralization process. 
3.2.2 Rare Earth Element (REE) geochemistry 
The concentrations of light rare earth elements (LREE), middle rare earth elements (MREE), and heavy rare earth 
elements (HREE) in the Awi sandstones are presented in Table 5 (Weng et al., 2015). LREEs, such as lanthanum 
(La), cerium (Ce), and neodymium (Nd), are included. MREEs consist of samarium (Sm) and europium (Eu), 
while the HREEs are terbium (Tb), lutetium (Lu), and yttrium (Y). An analysis of the data reveals that LREEs, with 
an average concentration of 95.16 ppm, are more enriched compared to the average concentrations of 5.77 ppm 
for MREEs and 24.03 ppm for HREEs. The samples analyzed had concentrations normalized to five reference 
standards: Chondrite (McLennan, 2003), Post Archean Australian Shales (PAAS) (McLennan, 1981), Upper 
Continental Crust (UCC) (Taylor and McLennan, 1983), North America Shale Composite (NASC) (Gromet et al., 
1984), and European Shale (ES) (Prego et al., 2009). Normalized concentrations can be found in Table 6. After 
normalization, concentrations were presented to illustrate enrichment and depletion (Figure 10). Concentrations 
lower than one ppm are considered depleted, while those above one ppm are considered enriched. When 
compared to chondrite, the normalized amounts of REEs in Awi sandstones show that LREEs are more abundant 
than MREEs and HREEs. In contrast, some other reference standards indicate a reduction in these components. 
The average rare earth element (REE) levels in Awi sandstone were contrasted with those of Nkporo and 
Ekenkpon shales (see Table 7). The increase in LREE relative to HREE observed could indicate a preferential 
removal or retention of HREE in heavy minerals like zircon, monazite, or xenotime during sedimentary or 
metamorphic processes 
 
Table 5: The elemental concentrations (ppm) of LREE, MREE, and HREE in the Awi sandstones 
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Table 6. Awi Sandstones, reference values (Chondrite, PAAS, NASC, U`CC, and ES) of REEs and 
normalization ratios of Awi Sandstones to reference values of REEs 

 

REEs     La  Ce  Nd  Sm Eu Tb Yb Lu  Y 

Awi Sandstones 22.357 47.461 25.346 4.757 1.016 0.665 1.683 0.283 21.401 

PAAS 38.2 79.6 33.9 5.55 1.08 0.774 2.82 0.433 27 

UCC 30 64 26 4.5 0.88 0.64 2.2 0.3 22 

NASC 32 70 31 5.55 1.24 0.85 3.1 0.48 27 

ES 41.1 81.3 40.1 7.3 1.52 1.05 3.29 0.58 31.8 

Chondrite 0.367 0.957 0.711 0.231 0.087 0.058 0.248 0.0381 2.1 

Awi Sandstones/PAAS 0.585 0.596 0.748 0.857 0.941 0.860 0.597 0.654 0.793 

Awi Sandstones/UCC 0.745 0.742 0.975 1.057 1.155 1.040 0.765 0.944 0.973 

Awi Sandstones/NASC 0.699 0.678 0.818 0.857 0.819 0.783 0.543 0.590 0.793 

Awi Sandstones/ES 0.544 0.584 0.632 0.652 0.668 0.634 0.512 0.489 0.673 
Awi 
Sandstones/Chondrite 60.919 49.594 35.648 20.595 11.678 11.471 6.788 7.437 10.191 

 
Table 7. Comparison of average concentrations of REEs of Awi sandstones to average  

concentrations of Nkporo and Ekenkpon Shale   
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FIG. 10. Normalized patterns of REEs of Awi Sandstones to reference values 
(chondrite, PAAS, UCC, NASC, ES) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG. 11. Spatial distribution patterns of REEs (ppm) from Awi Sandstones compared to  

Nkporo and Ekenkpon Shale (Adamu et al., 2020) 
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Figure 11 illustrates that Nkporo shale contains a 
higher amount of light rare earth elements (LREEs) 
compared to Ekenkpon shale and Awi sandstone. 
 
Provenance 
Analysis of the TiO2 vs Zr plot (Hayashi et al., 1997) 
reveals that the majority of sample points fall within the 
intermediate to felsic range (Figure 12), suggesting 
that the Awi sandstones originate from rocks within 
this compositional range. This observation is further 
supported by the Discriminant Function diagram for 
provenance (Figure 13), which indicates contributions 
from the region's mafic rocks (amphibolite) in certain 
points. Intermediate and felsic rocks are commonly 
associated with continental crust environments such 
as volcanic arcs, continental margins, and orogenic 
belts (Sun et al., 2013), while mafic rocks are typically 
found along divergent plate boundaries, such as mid-
ocean ridges. The plot of Th/Yb against Zr/Y, which  
 

 
 
separates tholeiitic, transitional, and calc-alkaline 
fields, indicates that the protolith of Awi sandstone is 
calc-alkaline (refer to Figure 14). According to 
Miyashiro's (1974) FeOt/MgO against SiO2 
discrimination plots (see Figure 15) and the AFM plot 
distinguishing between the calc-alkaline and tholeiite 
series (based on Irvine and Baragar, 1971) (check 
Figure 16), it also confirms this calc-alkaline nature. 
The alkaline series can be classified as either high-K 
calc-alkaline or just calc-alkaline. As shown in Figure 
17, Awi sandstones are primarily high-K calc-alkaline, 
which is supported by the Co-Th discrimination plot by 
Hastie et al. (2007) (see Figure 18). The discrimination 
plot in Figure 19, based on the 
(Al2O3+CaO)/(FeOt+Na2O+K2O) vs 
100(MgO+FeOt+TiO2)/SiO2 ratio as per Sylvester 
(1989), indicates that Awi sandstones' protolith is 
notably peraluminous. Per Okunola et al. (2013), 
peraluminous rocks are characterized by an 
Aluminum Saturation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 12. Discrimination plot of TiO2–Zr showing mafic, intermediate and felsic igneous rocks 
(fields after Hayashi et al., 1997) 
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FIG. 13. Major element Discriminant Function diagram for provenance (fields after Murali et al. 1983) 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 14. Discrimination plots of Th/Yb versus Zr/Y (fields after Ross and Bedard 2009) 

GEOCHEMISTRY OF AWI SANDSTONE, CALABAR FLANK, SOUTHEASTERN (SE) NIGERIA                                      97 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 15. Discrimination plots of FeOt/MgO versus SiO2 (After Miyashiro 1974) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG.16. AFM plot discriminating between calc-alkaline series and tholeiite series 
(After Irvine and Baragar, 1971) 
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Fig.17. SiO2-K2O discrimination plot (after Peccerillo and Taylor 1976) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 18. Co - Th discrimination plot (After Hastie et al., 2007) 
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FIG.19. Discrimination plot of (Al2O3+CaO)/(FeOt+Na2O+K2O) versus 100(MgO+FeOt+TiO2)/SiO2 
(fields after Sylvester, 1989) 

 
Index (ASI) exceeding 1 and Al2O3 surpassing 
CaO+Na2O+K2O. Awi sandstones' major oxide 
geochemistry reveals that Al2O3 exceeds 
CaO+Na2O+K2O, and the ASI is greater than one, 
confirming the peraluminous nature as depicted in 
Figures 20, 21, and 22. The Quartz, Alkali feldspar, 
and Plagioclase feldspar (QAP) diagram for intrusive 
rocks (Figure 23) shows that Awi sandstones' protolith 
comprises quartz-rich granitoids. The classification 
plot of plutonic igneous rocks (Cox, 2013) in Figure 24 
indicates that the original rock is granodiorite based 
on the Na2O+K2O vs SiO2 data. Subsequent plots in 
Figures 25 and 26, provide additional classification 
based on Na2O+K2O versus SiO2 (as per Middlemost, 
1985, and 1994). Additionally, Figure 27 displays the 
R1-R2 classification plot for plutonic igneous rocks 
(according to De la Roche et al., 1980), confirming that 
the protolith of Awi sandstone is granodiorite. 
Tectonic Setting 
Sandstones can be formed in various tectonic 
environments, each with distinct geological processes 
and environmental conditions. Understanding these 
environments helps us gain insights into Earth's 
history and the conditions under which these rocks 
were deposited. Intermediate and felsic rocks are 
commonly associated with continental volcanic arcs, 
continental margins, orogenic belts, and other tectonic 
settings where magmatic activity contributes to the 
formation of these rock compositions. Mafic rocks are 

typically located at divergent plate boundaries, such 
as mid-ocean ridges. Pearce et al. (1984) utilized 
Y+Nb versus Rb and Y versus Nb diagrams to 
construct discrimination plots, which indicated that the 
Awi sandstones were formed in Volcanic Arc Granite 
(VAG) and Syn-Collisional Granite (Syn-COLG) 
settings, suggesting their formation in volcanic arcs or 
collisional orogeny settings (Figure 28). The 
discrimination plot created by Pearce and Norry 
(1979) comparing Zr versus Nb/Zr, utilized in this 
study, indicates a transformation from subduction to 
collisional tectonic processes (see Figure 29). 
Furthermore, Pearce (2008) devised a Nb/Yb - Th/Yb 
discriminating plot, suggesting a volcanic arc origin for 
these sandstones (see Figure 30). Moreover, Schandl 
and Gorton (2002) developed plots comparing Th/Yb 
versus Ta/Yb and Th versus Ta to
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FIG.20. Molar Na2O-Al2O3-K2O plot (after Salisu et al. 2022). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG.21. B-A discrimination plot (modified by Villaseca et al. 1998). f-P stands for felsic-peraluminous (>1.1), h-P 
stands for high-peraluminous (1.05-1.1), m-P stands for medium-peraluminous (1.0-1.05), and l-P stands for 

low-peraluminous (<1.0) 
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FIG. 22. A/CNK versus A/NK diagram (after Shand 1927) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG.23. QAP diagram – Si oversaturated for intrusive igneous rocks 
(After Verma and Rivera-Gómez, 2013) 
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FIG.24. Na2O+K2O vs SiO2 classification plot of plutonic igneous rocks (after Cox, 2013) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

FIG.25. Classification plots of Na2O+K2O vs SiO2 (after Middlemost, 1985) 
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FIG.26. Na2O+K2O vs SiO2 classification plot of plutonic igneous rocks (after Middlemost, 1994) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG.27. R1-R2 classification plot for plutonic igneous rocks (after De la Roche et al., 1980) 
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FIG. 28 A. Y+Nb vs Rb and B. Y vs Nb tectonic plot (After Pearce et al., 1984) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 29. Discrimination plots of Zr versus Nb/Zr showing subduction and collision regions  
(Pearce, and Norry, 1979) 
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FIG.30. Discrimination plot of Nb/Yb – Th/Yb (fields after Pearce 2008) 

 
classify the tectonic environment of geological 
materials, indicating that the Awi sandstones were 
formed in an active continental margin (see Figure 
31). Roser and Korsch (1988) also introduced a 
discrimination diagram based on the log ratio of 

(K2O/Na2O) against SiO2 (see Figure 32). This 
evaluation reveals that the Awi sandstones were 
mainly derived from a passive margin to an active 
continental margin setting. 
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FIG.31A.  Th/Yb versus Ta/Yb geotectonic classification of Awi sandstones (After Schandl and Gorton, 2002). B. 
Th versus Ta geotectonic classification of Awi sandstones (After Schandl and Gorton, 2002)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 32. Discrimination plot of log ratio of (K2O/Na2O) against SiO2 (Roser and Korsch, 1988) 
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SUMMARY 
The analysis showed an increase in the presence of 
Ba, Rb, Sr, Cr, Zn, Ni, Y, and Cu, with the highest 
enrichment observed in Ba, followed by Rb, Sr, Cr, Zn, 
Ni, Y, and Cu. Conversely, a decrease was observed 
in the levels of As, Be, Bi, Cd, Hf, Hg, Mo, Sc, U, and 
Pb. Additionally, the findings indicated an increase in 
LREE and a decrease in HREE. According to Hayashi 
et al. (1997), the TiO2-Zr discrimination plot and Murali 
et al.'s (1983) major element Discriminant Function 
diagram suggest that the source rock of Awi 
sandstones mainly originated from intermediate-felsic 
igneous provenance. Based on the research 
conducted by Ross and Bedard  (2009), the 
comparison of Th/Yb versus Zr/Y, as well as the 
analysis of FeOt/MgO versus SiO2 by Miyashiro 
(1974), the AFM plot by Irvine and Baragar (1971), the 
SiO2-K2O plot by Peccerillo and Taylor (1976), the Co 
- Th discrimination plot by Hastie et al. (2007), and the 
(Al2O3+CaO)/(FeOt+Na2O+K2O) versus 
100(MgO+FeOt+TiO2)/SiO2 plot by Sylvester (1989) 
all point towards the calc-alkaline nature of the Awi 
sandstone protolith. Additionally, the discrimination 
plot of (Al2O3+CaO)/(FeOt+Na2O+K2O) versus 
100(MgO+FeOt+TiO2)/SiO2 by Sylvester (1989), the 
Molar Na2O-Al2O3-K2O plot by Salisu et al. (2022), the 
A/CNK versus A/NK diagram by Shand (1927), and 
the B-A discrimination plot (modified by Villaseca et al. 
in 1998) all indicate that the protolith of Awi 
sandstones is highly peraluminous. The classification 
plots provided by Cox (1979), Middlemost (1985), and 
Middlemost (1994), as well as the R1-R2 classification 
plot by De la Roche et al. (1980), indicate that the 
predominant protolith for Awi sandstones is 
granodiorite. According to the tectonic discrimination 
plots by Pearce et al. (1984), the depositional 
environment for most of the Awi sandstones is 
identified as volcanic arc granite (VAG) and syn-
collisional granite (syn-COLG). Additionally, the Nb/Zr 
vs Zr plot suggests that the formation of Awi 
sandstones took place in a subduction environment. 
The geotectonic classification plots developed by 
Schandl and Gorton, (2002), including Th/Yb versus 
Ta/Yb, Th versus Ta, Th/Hf versus Ta/Hf, and Th/Ta 
versus Yb, along with the discrimination plot of log 
ratio of (K2O/Na2O) against SiO2 by Roser and Korsch, 
1988, indicate that the Awi sandstones' protolith was 
created in a passive to active continental margin and 
within plate volcanic environment, suggesting a 
complex tectonic history involving periods of both 
extensional and compressional tectonics, as well as 
significant magmatic and volcanic processes. 
 
CONCLUSION   
The Awi sandstone contains elevated levels of metals 
such as barium, rubidium, strontium, chromium, zinc, 
nickel, and yttrium. In terms of potential rare earth 
elements, it has higher concentrations of light rare 
earth elements compared to heavy rare earth 
elements. The Awi sandstone can be linked to two 
parent rocks: the mafic (amphibolite) and the felsic  

 
 
(granodiorites). The primary parent rock of this 
sandstone is granodiorite. The tectonic environment in 
which this sandstone is formed ranges from passive 
to active continental margins. 
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