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ORIGINAL RESEARCH 

 
Abstract----- Fabric defect classification system lowers the expenses related to low-quality products by improving productivity and product 
quality. There is quite a number of existing fabric defects classification techniques but most of them are not suitable for real-time classification 
in complex environment due to insufficient deep feature extraction. Hence, this research developed an enhanced deep learning technique 
using Osprey Optimization Algorithm (OOA) for fabric defect classification because of the strong eye sight of the osprey bird the algorithm is 
model to simulate. Fabric defects datasets were obtained from kaggle.com. Three thousand, seven hundred and ninety three (3793) datasets 
were obtained: two thousand six hundred and fifty five (70%) and one thousand one hundred and thirty eight (30%) were used for training 
and testing, respectively. The acquired datasets were pre-processed in MATLAB using k-means clustering for segmentation of region of 
interest, Gaussians filter for noise removal and Contrast Limited Adaptive Histogram Equalization (CLAHE) for image contrast enhancement. 
Densenet Cross Stage Partial Network Darknet53 (DCSPDarkNet53) was Optimized with Osprey Optimization Algorithm. The resulting 
OspreyDCSPDarkNet53 was used to extract features from the pre-processed datasets. The developed OspreyDCSPDarknet53 was 
implemented with MATLAB (R2022) and its performance was evaluated using False Positive Rate (FPR), Specificity, Sensitivity, and 
Accuracy. The developed method was compared with DCSPDarknet53 and YOLOv4 methods. The FPR, Specificity, Sensitivity, and Accuracy 
for OspreyDCSPDarknet53 were 3.30%, 96.70%, 96.09%, and 96.40%, respectively while the FPR, Specificity, Sensitivity, and Accuracy for 
DCSPDarknet53 were 4.86%, 95.14% 94.48%, and 94.82%, respectively and the FPR, Specificity, Sensitivity, and Accuracy for YOLOv4 
were 7.47%, 92.53%, 91.81%, and 92.18%, respectively. The developed OspreyDCSPDarknet53 performed better than other techniques in 
terms of all the evaluated metrics. Hence, it can find its application in real time classification of fabric defects. 
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——————————      —————————— 

1  INTRODUCTION 

abric defect classification being a quality control 
process in the fabric industry is a highly challenging 
task because of the complex shape and a wide variety 

of fabric defects (Liu et al., 2022). The quality and price of 
any fabric is also dependent on the efficacy of defect 
detection system. Human inspection with eyes for fabric 
defects is the traditional method used in the fabric 
industry (Wu et al., 2021), and visual inspections can 
identify and locate the defects. Unfortunately, the human 
detection rate is limited to just 12 meters per minute. 
Moreover, it is an extremely repetitive task that wastes 
human resources and drives up prices, making it 
unsuitable for scale manufacturing. While human 
detection is straightforward, workers face challenges in 
accurately recognizing the location of faults due to the 
increasing complexity of fabric production lines and cloth 
outputs. Additionally, cloth defects lead to a reduction in 
cloth prices, resulting in losses of 45%-65% (Srinivasan et 
al., 1992) for the cloth manufacturer. Therefore, a new 
detection method, which has high detection accuracy and  
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detection speed, is needed to replace the manual method 
currently used (Liu et al., 2022). An automated defect 
detection and identification system enhances the product 
quality and results in improved productivity to meet both 
customer needs and to reduce the costs associated with 
off-quality (Mahajan et al., 2009). Automatic defect 
detection has four main approaches: Model based 
approach, spectral approach, Statistical approach and 
learning based approach. Statistical approach is the 
foundation of deep learning, including the methods and 
instruments for data analysis and interpretation. 
Essentially, deep learning algorithms are constructed 
using the theoretical foundation provided by statistics. In 
learning-based approaches, classifiers that can 
discriminate between defective and non-defective 
samples are trained using labelled samples. There are 
fabric defect detection studies made using classifiers such 
as the Support Vector Machines (SVM), (Basu et al., 2012)  
feedback Artificial Neural Network (ANN), (Kumar et al., 
2003)  and the Bayes classifier (BC) to learn signatures of 
defected and non-defected classes. However, the majority 
of those pattern categorization techniques require a wide 
range of data. Moreover, once the algorithm is trained for 
one particular data set, the network structure cannot be 
modified, which is inconvenient for practical applications 
as it is therefore a binary linear classifier that is non-
probabilistic (Adio et al., 2024).  
Deep Learning (DL) has become increasingly popular in 
the field of defect detection due to its rapid development 
(Saberrionaghi et al., 2023) and effective processing of 
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visual media. They can extract and learn complex features 
compared to shallow methods (Guo et al., 2016). DL 
methods do not require the extraction and representation 
of handcrafted features (Moustafa, 2015). This makes it 
possible to gain from growing data and processing 
capacity without the need for subject experts' assistance. 
During the training in DL, the extraction and 
classification of features are combined in an end-to-end 
process (Xing et al., 2017). In the field of deep learning, the 
Convolutional Neural Network (CNN) is the most 
famous and commonly employed algorithm (Li et al., 
2021). The main benefit of CNN compared to its 
predecessors is that it automatically identifies the relevant 
features without any human supervision (Gu et al., 2018).   
As a classic deep learning method and end-to-end target 
detection algorithm, You Only Look Once (YOLO) has 
evolved rapidly with many versions and has been applied 
in many industries, showing good Performance (Liu et al., 
2022). YOLOv4 is the fourth version in the You Only Look 
Once family of models. YOLOv4 makes real-time 
detection a priority and conducts training on a single 
Graphics Processing Unit (GPU). For real-time multi-scale 
illness identification, an enhanced version of the YOLOv4 
algorithm has been created to increase detection accuracy 
and speed. However, an optimal accuracy can be 
achieved if this model is enhanced by an optimization 
algorithm such as Osprey. 
Osprey Optimisation Algorithm (OOA) is primarily 
inspired by the tactics used by ospreys to hunt fish in the 
ocean. The osprey finds its prey, hunts it, and then carries 
it to a suitable feeding spot using its hunting strategy. A 
mathematical model for the two stages of the suggested 
OOA technique—exploration and exploitation—is 
developed by simulating osprey behaviour during 
hunting. The performance of OOA has been evaluated in 
the optimization of twenty-nine standard benchmark 
functions from the Congress on Evolutionary 
Computation (CEC) 2017 test suite (Delghani and 
Trojosvky, 2023). Additionally, the performance of OOA 
is compared to twelve well-known metaheuristic 
algorithms. The simulation results show that OOA has 
provided superior performance compared to competitor 
algorithms by maintaining the balance between 
exploration and exploitation (Dehghani and Trojosvky, 
2023). In this research, a denseNet YOLOv4 will be 
enhanced with Osprey Optimization Algorithm to 
develop the method of classifying fabric defect with low 
processing time and high accuracy. 
 

2. REVIEW OF RELATED WORKS 
 This section discusses about a few of the related works 
that were reviewed: A number of optimisation strategies 
have been put forth to improve defect classification in 
pattern recognition.  
Bo et al. (2009) proposed the machine vision technique in 
which defects are detected by the Gabor filter, which is 
based on image processing, however, it has poor 
detection results for some types of defects (Bo  et al., 2009). 
Wiener filter is used to classify defective images by 
converting RGB images into binary images to improve the 
detection effect (Yildiz et al., 2017). In addition, there are 
other methods to detect fabric defects.  

Kazim et al., (2016) adopts a thermal-based defect 
classification method with K-nearest neighbor algorithm 
and dimensionality reduction to classify textile defects 
respectively (Yildiz, 2017). Image processing (Yildiz and 
Buldu, 2016) and thermal images (Buldu et al., 2015) are 
also used in defect detection. Nevertheless, image 
processing and thermal imaging are limited to resolving 
the categorisation issue. The photos have visible flaws 
that can only be identified; they cannot be accurately 
located when using these approaches. Due to the 
limitations of most classic image processing algorithms, 
only photos with simple backgrounds and large objects 
may be handled efficiently. Therefore, several researchers 
are looking at neural network-based techniques.  
Lin et al., (2017b) proposed the focal loss method, which 
can reduce the weight of large sample losses and increases 
the weight of small samples in total loss. However, focal 
loss is not effective in practical applications, and evenly 
reduces mAP (mean average precision) (Redmon and 
Farhadi, 2018). As a result, compared to a one-stage 
network, a two-stage network typically has greater 
precision. Faster R-CNN represents a two-stage network, 
which is typically lower than the others. YOLO, a 
common first-order algorithm, has been refined over 
numerous generations. Algorithms for YOLO have 
advanced quickly. YOLOv4 has better performance and 
uses tricks (Bochkosvskiy, 2020) to improve the accuracy.  
Liu et al., (2022) proposed an improved YOLOV4 
algorithm with higher accuracy for fabric defect 
detection, in which a new SPP structure that uses SoftPool 
instead of MaxPool is adopted. The enhanced YOLO v4 
feature map may be processed efficiently by three 
SoftPools, which has a major benefit in lowering the 
unfavourable impacts of the SPP structure and raising 
detection accuracy. Liu et al. enhanced the image quality 
by using contrast-limited adaptive histogram 
equalisation beforehand, which leads to strong anti-
interference capabilities and an elevated mAP of 86.5%.  
Wang and Jing (2020) suggested a detection technique 
that made use of the benefits of multiscale target 
identification, increased detection accuracy while 
lowering the network model parameters and the capacity 
to identify small targets based on the DeeplabV3+ model. 
The defect dataset yields positive findings. 
Roy et al., (2022) suggested a You Only Look Once 
(YOLOv4) algorithm improvement. By combining the 
DenseNet in the backbone to maximise feature transfer 
and reuse, two additional residual blocks in the neck and 
backbone to enhance feature extraction and lower 
computing costs, the Spatial Pyramid Pooling (SPP) to 
enhance receptive field, and a modified Path Aggregation 
Network (PANET) to preserve fine-grain localised 
information and enhance feature fusion, the modified 
network architecture maximises both detection accuracy 
and speed. Furthermore, by using the Hard-Swish 
function as the principal activation, Roy et al. were able to 
extract better nonlinear features, which increased the 
accuracy of the model. The accuracy and speed of the 
suggested model's identification of four distinct illnesses 
in tomato plants grown in a variety of difficult conditions 
were shown to have improved. There is a 70.19% 
detection rate. But most of these reviewed related works 

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.C
http://engineering.fuoye.edu.ng/journal
https://blog.roboflow.com/deploy-yolov5-to-jetson-nx/
https://blog.roboflow.com/deploy-yolov5-to-jetson-nx/


FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024                      ISSN: 2579-0617 (Paper), 2579-0625 (Online) 

              

                                               © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti.                    645 
This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)  

http://dx.doi.org/10.46792/fuoyejet.v9i4.12                   engineering.fuoye.edu.ng/journal 

are not suitable for real-time classification in complex 
environment due to insufficient deep feature extraction. 
 

 

3.  DESIGN APPROACH 
  The developed system consists of five major stages; 
the first stage is data acquisition which involves obtaining 
dataset or images of fabric defects. Pre-processing which 
is the second stage involves image segmentation of region 
of interest from the defected image. Image enhancement 
was done to improve the contrast of the image. The third 
stage is Feature Extraction by Osprey-denseNetYOLOv4 
(OspreyDCSPDarknet53) which is finding a smaller set of 
new variables each being a combination of the input 
variables. Classification which is the fourth stage was 
done by the Osprey-denseNet YOLOv4 algorithm. The 
fifth stage is the evaluation of the developed system in 
order to check the performance of the system; this was 
done using these performance indices: False Positive Rate 
(FPR), Specificity, Sensitivity and accuracy. The general 
block diagram of the developed Osprey-denseNet 
YOLOv4 algorithm is shown in Fig. 2; the steps involved 
are data acquisition, preprocessing, feature extraction, 
image classification and performance evaluation. 
  

3.1 Data Acquisition 

  The datasets used in this research was obtained from 
www.Kaggle.com. Three thousand, seven hundred and 
ninety three (3793) datasets were obtained out of which 
two thousand, six hundred and sixty five (2655) were 
used for training and one thousand, one hundred and 
thirty eight (1138) were used for testing and the fig. 1 
shows the samples of fabric defect datasets used. 

 

                   
A. Original    B. Contrast     C. Segmentation 
        Enhancement 

Fig 1. The samples of fabric defects 
 
3.2 Pre-processing   

 Guassian filter was used for noise removal and 
Contrast-Limited Adaptive Histogram Equalisation 
(CLAHE) was used. CLAHE is an improved form of 
Histogram Equalisation (HE), a straightforward and 
efficient technique for improving photographs. By 
altering the grey distribution of the image, CLAHE can 
boost contrast and improve classification accuracy.  

 

 
Fig 2. Block diagram of the developed system 

 
3.3 Design of Osprey-denseNet YOLOv4 for Feature  
  Extraction and Classification 
  This research is to develop an enhanced version of 
the YOLOV4 algorithm to classify fabric defects. YOLOv4 

is a highly accurate single-stage model for object 
classification, which converts the fabric object 
classification task into a regression problem by generating 
bounding box coordinates and assigning probabilities to 
each class. It represents advancement over the original 
YOLOv4 algorithm and its variants in terms of both speed 
and accuracy in classification. The network structure 
comprises three main components: a backbone for feature 
extraction, a neck for semantic representation of these 
features, and a head for classification. Within the existing 
network architecture, the residual module is incorporated 
into the ResNet network structure to form Darknet53. 
To further enhance the network's performance, Osprey 
optimization, cross-stage partial network, and DenseNet 
(DCSPDarkNet53) were merged due to their exceptional 
learning capabilities, resulting in the creation of 
OspreyDCSPDarkNet53. This integration involves 
feeding information from different feature layers into the 
residual module, which then produces higher-level 
feature maps as output. This approach significantly 
reduces the number of network parameters while 
simultaneously enhancing the quality of residual feature 
information, thereby improving the network's ability to 
learn features compared to the ResNet architecture.  
Additionally, in the original YOLOv4 backbone, the SPP 
block has been incorporated into CSPDarknet53, 
connected to the PANET, thus replacing the Feature 
Pyramid Networks (FPN) utilized in other YOLO 
variants. This leads to a notable expansion of the 
network's receptive field. The SPP employs an efficient 
approach to detecting objects of varying scales. 
Initially, the input feature layer undergoes convolution 
within the SPP. Subsequently, an optimal maximum 
pooling operation, determined through osprey 
optimization, is performed by pooling kernels of four 
different sizes. The classification network's receptive field 
is further expanded by concatenating and further 
convolving the pooled feature information from the SPP. 
The feature information obtained from both the backbone 
and the SPP undergo convolution and are subsequently 
up-sampled in PANET, resulting in a feature layer twice 
the size of the original input. 
The feature layers obtained by the 
OspreyDCSPDarknet53 are blended post-convolution 
and then up-sampled and down-sampled in order to 
capture more semantic data. This process is integrated 
with the remaining feature layers to enhance the fusion of 
features. Consequently, the neck component within the 
backbones plays a pivotal role in extracting intricate 
semantic features crucial for precise classification. 
Ultimately, within the YOLOv4 model, tailored for 
specific input image dimensions, the classification head 
can identify bounding boxes at three distinct scales. 
Initially, the input image is divided into N-N evenly 
spaced grids. Should the target fall within a grid cell, the 
model will produce predictive bounding boxes alongside 
corresponding confidence scores. Subsequently, the 
optimal bounding box classification from each scale is 
refined using a Non-Maximum Suppression (NMS) 
algorithm, culminating in the determination of the final 
bounding box.  
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While both the current iterations of YOLOv4 and 
CSPDarkNet53 have been effective in enhancing the 
model's classification accuracy, the task of fabric defect 
classification encounters several distinct challenges 
within complex environments. These challenges include 
densely populated fine-grain fabric defects, irregular 
geometric morphologies of affected areas, the presence of 
multi-scale infected lesions, similarities in texture 
between affected areas and their surroundings, varying 
lighting conditions, as well as instances of overlapping 
and occlusion. Consequently, the existing YOLOv4 model 
may yield suboptimal classification accuracy, leading to a 
significant number of missed classifications and false 
object identifications. This is primarily due to insufficient 
extraction of fine-grain features required for addressing 
the multi-scale fabric defect classification problem. 
Furthermore, YOLOv4 incurs high computational costs 
and longer training times, rendering it potentially 
unsuitable for deployment on mobile devices in field 
settings. 

 

3.3.1 The developed network architecture  

   To address the aforementioned challenges 
encountered in real-time fabric defect classification, this 
study enhances and optimizes the cutting-edge 
denseNetYOLOv4 (DCSPDarknet53) algorithm for 
precise classification of fine-grain, multi-attribute images 
within complex backgrounds. The comprehensive layout 
of the refined YOLOv4 network architecture is depicted 
in Fig. 3, with each modification briefly discussed within 
this study. The proposed enhancements encompass the 
incorporation of the Osprey-DenseNet transitional block 
preceding the standard CSPDarknet53 residual blocks, 
the introduction of two new residual blocks in both the 
backbone and neck sections to bolster feature extraction 
and reduce computational costs, integration of the 
Osprey-SPP block, and implementation of the Osprey-
PANET in the neck segment of the network to preserve 
finely-detailed localized information. The original 
YOLOv3 head will be retained for use as it can identify 
bounding boxes at three distinct scales resulting in 
prediction at three levels of detection granularity. 
 

 
 
Fig 3. Schematic diagram of the developed 
OspreyDCSPDarknet53 network for fabric defect 
classification. 
 

3.3.2 Enhancement of the backbone feature    

    extraction network   

   The residual model within the 
OspreyDCSPDarknet53 aids the network in acquiring 
more nuanced features while concurrently reducing the 
number of trainable parameters, thereby enhancing its 
efficiency for real-time classification. The residual unit 
(Res-unit) in the original YOLOv4 model performs 1 x 1 
convolutions, followed by 3 x 3 convolutions, and then 
combines the two outputs with the feature information 
that was retrieved. Within the CSPDarknet53 network, 
feature layers of input images undergo continuous down 
sampling through convolution operations to extract 
detailed, semantic information. Given that the last three 
layers harbor relatively heightened semantic information, 
they are forwarded to both the Osprey-SPP and the 
Osprey-PANET. As shown in Figure 3.2, the last layers 
contain the best feature information and are connected to 
the Osprey-SPP, and the other two layers are 
incorporated into the Osprey-PANET. While YOLOv4's 
residual module lowers computational expenses, it also 
lessens the amount of memory needed for high-resolution 
real-time categorisation. A novel residual block, CSP1-n 
(where n is the number of residual weighting operations), 
is proposed within the OCSPDarkNet53 network 
topology to increase classification performance. 
 

3.5 Implementation of the developed denseNet  

  (OspreyDCSPDarknet53) 

  The system was implemented in MATLAB  (R2022) 
on window 10 ultimate 64bit operating system, intel core 
i7 CPU with a speed of 4.4GHZ, 8GB RAM and 1 terabyte 
hard disk drive to detect the fabric defects and evaluate 
the performance of the system was done using these 
parameters: False Positive Rate (FPR), Specificity, 
Sensitivity and accuracy to validate the system. 
 

4.  RESULTS AND DISCUSSION 
  An interactive Graphic User Interface (GUI) was 
developed in MATLAB using guide toolbox with a real 
time database  consisting of 3793 fabric defects dataset 
reflecting stain defects in order to determine the system 
performance to classify stain defects in fabric by 
optimizing DenseNet YOLOv4 (DCSPDarknet53) using 
Osprey Optimization Algorithm. The development tool 
was MATLAB (R2022) on window 10 ultimate 64bit 
operating system, intel core i7 CPU with a speed of 
4.4GHZ, 8GB RAM and 1 terabyte hard disk drive. 
The system was experimented with 2655 fabric defects 
dataset. The datasets contains 1310 defectives (stain) and 
1345 non-defectives which were used in training the 
system. The system was trained with YOLOv4 
(CSPDarknet53), denseNetYOLOv4 (DCSPDarkNet53) 
and Osprey-denseNet YOLOv4 
(OspreyDCSPDarknet53). To test the performance of the 
system, 1138 datasets were used as 562 defectives and 576 
non-defectives. The system is tested with YOLOv4, 
DCSPDarkNet53 and OspreyDCSPDarknet53 one after 
the other in order to find their False Positive Rates (FPR), 
specificities, sensitivities and classification accuracies. 

 

4.2 Results for YOLOv4 
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  Table 1 presents overall results of YOLOv4 for stain 
defects at threshold values 0.25, 0.35, 0.5 and 0.85 and the 
best accuracy was recorded at threshold 0.85 on 516 True 
positive (TP), 46 False Negative (FN), 43 False Positive 
(FP), 533 True Negative (TN) while FPR, Specificity, 
Sensitivity, and Accuracy for YOLOv4 were 7.47%, 
92.53%, 91.81%, and 92.18%, respectively. 

 
Table 1: Results generated with YOLOv4 

  

Threshold   TP  FN   FP   TN  FPR(%)SPEC(%)   SEN(%)   ACC(%)   

    

 0.25      519   43    51   525   8.85         91.15          92.35        91.74       
  

 0.35      518   44    48   528   8.33         91.67          92.17        91.92 

  
 0.5           517   45    45   531   7.81         92.19          91.99        92.09  

 

 0.85        516   46    43   533   7.47         92.53          91.81        92.18  

 

4.3 Results for DCSPDarkNet53 

  Similar procedure was carried out to test the system 
with DCSPDarkNet53 for stain defects at threshold values 
0.25, 0.35, 0.5 and 0.85 and the best accuracy was recorded 
at threshold 0.85. Table  2 presents overall results of 
DCSPDarkNet53 for all the defects based on 531 True 
positive (TP), 31 False Negative (FN), 28 False Positive 
(FP), 458 True Negative (TN), 4.86% while FPR, 
Specificity, Sensitivity, and Accuracy for DCSPDarknet53 
were 4.86%, 95.14% 94.48%, and 94.82%, respectively. 

 
Table 2: Results generated with DCSPDarkNet53 

  
Threshold    TP  FN   FP   TN FPR(%)SPEC(%)SEN(%)  ACC(%)

  

 0.25      534     28    36   540     6.25         93.75         95.02       94.38 

  

 0.35      533     29    33   543     5.73         94.27         94.84       94.55 
  

 0.5           532     30    30   546     5.21         94.79         94.66       94.73 

  

 0.85        531     31    28   548     4.86         95.14         94.48       94.82 

  

4.4 Results for OspreyDCSPDarkNet53 

  Similar procedure was carried out to test the system 
with OspreyDCSPDarkNet53 for stain defect at threshold 
values 0.25, 0.35, 0.5 and 0.85 and the best accuracy was 
recorded at threshold 0.85. Table 3 presents overall results 
of OspreyCSPDarkNet53 for all the defects based on 540 
True positive (TP), 22 False Negative (FN), 19 False 
Positive (FP), 557 True Negative (TN), while FPR, 
Specificity, Sensitivity, and Accuracy for 
OspreyDCSPDarknet53 were 3.30%, 96.70%, 96.09%, and 
96.40%, respectively. 

 
Table 3: Results generated with 

OspreyDCPDarkNet53 

 
Threshold   TP   FN   FP   TN    FPR(%) SPEC(%) SEN(%)  ACC(%)

  

 0.25     543    19    27   549     4.69         95.31         96.62       95.96 

  
 0.35     542    20    24   552     4.17         95.83         96.44       96.13 

  
 0.5          541    21    21   555     3.65         96.35         96.26       96.31 

  

 0.85       540    22    19   557     3.30         96.70         96.09       96.40 

  

4.5 Comparison of Results among YOLOv4,  

 DCSPDarkNet53 and    OspreyDCSPDarkNet53 

  Summarily, Table 4 shows the measured parameters 
and values obtained after implementing Osprey 
Optimization Algorithm and DCSPDarkNet53 and the 
results of their combination which is 
OspreyDCSPDarkNet53 on Fabric Defects datasets. Each 
of the classified results is interpreted as follows: True 
Positive, False Negative, False Positive, True Negative, 
False Positive Rate, Specificity, Sensitivity, and 
Classification Accuracy. The study discovered that the 
optimization of DCSPDarkNet53 with Osprey 
Optimization Algorithm has better performance in 
classification accuracy than DCSPDarkNet53 and 
YOLOv4 Algorithm as enumerated in table 4.4. The 
Classification Accuracy with YOLOv4 generates 7.47% 
False Positive Rate (FPR), 92.53% Specificity, 91.81% 
Sensitivity, and 92.18% overall Classification Accuracy. 
DCSPDarknet53 generates 4.86% False Positive Rate 
(FPR), 95.14% Specificity, 94.48% Sensitivity, and 94.82% 
overall Classification Accuracy while 
OspreyDCSPDarknet53 generates 3.30% False Positive 
Rate (FPR), 96.70% Specificity, 96.09% Sensitivity, and 
96.40% overall Classification Accuracy while fig. 4 and 
fig. 5 show the Interface of the system after testing with 
OspreyDCSPDarknet53 and the chart that describes the 
results comparison among the three techniques 
respectively. 
 
Table 4: Comparison Results among YOLOv4, 
DCSPDarkNet and OspreyDCSPDarkNet53 

  

SN        YOLOv4   CSPDarkNet53  OCSPDarkNet53 
 

TP     531   531      540 

FN     31    31       22 

FP     28    28       19 

TN     548   548      557 

FPR(%)   4.86   4.86      3.30 

SPEC(%)  95.14  95.14     96.70 

SEN(%)   94.48  94.48     96.09 

ACC(%)   94.82  94.82     96.40 

 
 

 
Fig. 4. Interface of the system after testing with 
OspreyDCSPDarknet53 
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Fig. 5. Chart showing the comparison results among the 

three techniques 

 

5. CONCLUSION AND RECOMMENDATION 
 In conclusion, this research has successfully developed 

and implemented an optimized deep learning technique 

for fabric defect classification using the Osprey 

Optimization Algorithm. The utilization of the Osprey 

Optimization Algorithm to enhance DCSPDarkNet53 has 

not only contributed to achieving high detection accuracy 

but has significantly enhanced the system specificity and 

sensitivity with reduced False Positive Rate (FPR). This 

work has demonstrated the potential of the Osprey 

Optimization Algorithm, particularly on the deep 

learning DCSPDarkNet53, to address critical challenges 

associated with the existing fabric defect detection 

system. The focus on detection accuracy, specificity, 

sensitivity, and FPR aligns with the broader goals of 

ensuring an accurate and reliable defect detection system. 

It is recommended that future research can be carried out 

by hybridizing other object classification algorithms with 

the considered algorithms in this research to detect 

different types of fabric defects and predict the type of 

fabric defect detected. The best-performing algorithm in 

terms of overall classification accuracy can also be found 

using the same method. 
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