
FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 565

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://.doi.org/10.46792/fuoyejet.v9i4.2
 engineering.fuoye.edu.ng/journal

Mobile Agent-Based Network Administration System

Stephen O, Ohwo.1, Jonathan O. Erihri O.2, Maryann Anya 3

Department of Computer Science, Delta state polytechnic, Ogwashi-Uku, Nigeria 1,2,3

steveohwo@yahoo.com1,2, steveohwo@gmail.com3

Received: 12-JUNE-2024; Reviewed: 21-NOV-2024; Accepted: 12-DEC-2024
https://dx.doi.org/10.4314/fuoyejet.v9i4.2

Abstract— Managing, monitoring, and maintaining computer networks are complex process, especially when dealing with diverse networks.
Automating and streamlining network management across heterogeneous networks remains a significant challenge. To address this, our
research proposes a framework that leverages on mobile agents to perform network management tasks. This framework accommodates the
limitations of various network devices that cannot run mobile agents. The objectives of this study is to create a network management
framework using mobile agents to investigate the utility of equipment, internet protocol (IP) routers, asynchronous transfer mode (ATM)
switches and several management stations in real heterogeneous network. Also, the framework can be utilized on existing networks.
Methodology: previous frameworks were reviewed and a framework was proposed, thereafter a mobile Agent-based network administration
system (diagnostic and search) was developed. Experimental results show that the mobile agents developed can efficiently execute certain
network management tasks, particularly search and diagnostic tasks, which can pinpoint the root cause of network failures by exploring
alternative paths to gather additional data and the model have 92.78% accuracy performance from analysis.

Key words - Network management, Mobile agents, Network diagnosis, Framework

——————————  ——————————

1 INTRODUCTION

Network management encompasses various processes

and activities to ensure network reliability, security, and

performance. These processes include network

monitoring, configuration management, fault

management, performance management, security

management, troubleshooting, and network optimization.

Traditional network management systems have

limitations, such as centralized management (Liotta et al.,

2012) and vendor-specific solutions. To address these

limitations, researchers have explored the use of mobile

agents for network management. Mobile agents offer

decentralization, flexibility, and automation capabilities,

making them suitable for efficient network management.

Various research projects, such as MAMAS (Mobile

Agents for the Management of Applications and Systems)

proposed in (Bellavista et al., 2023), JAMES (Silva et al.,

2021), and the Network Management and Artificial

Intelligence Laboratory at Carleton University, have

developed mobile agent-based solutions for network

management, demonstrating their potential for

improving network management efficiency

and performance. Novel architectures inspired by simple

life organisms have been proposed. One such architecture

is called ECOMOBILE (Rossier and Scheurer, 2020). It uses

mobile agents to execute task objectives, but these agents

are not by themselves network tasks. They have a life,

compete with each other, exchange and take or leave task

objectives at any time. This architecture offers an

interesting way to regulate its mobile agent population

while achieving network management tasks. ANTNET

(Di Caro and Dorigo, 2018)

*Corresponding Author: teveohwo@yahoo.com
Section B- ELECTRICAL/COMPUTER ENGINEERING & RELATED SCIENCES

Can be cited as:

Ohwo. S.O., Erihri J. O., Anya M. (2024). Mobile Agent-Based Network

Administration System. In FUOYE Journal of Engineering and Technology

(FUOYEJET), 9(4), 565-574. https://dx.doi.org/10.4314/fuoyejet.v9i4.2

is architecture in that field. It was introduced at first to use

mobile agents for adaptive routing. However, it has

inspired a lot of research (Pagurek et al. 2020). The

common point of this research is the accomplishment of

complex objectives using simple mobile agents. On the

concept of proximity, a research group ((Liotta et al., 2022)

has studied efficient ways to place mobile agents on a

network combining both mobility and remote

monitoring. Monitoring is one part of network

management and may be used for fault management as

well.

Recently in (Bohoris and Liotta, 2023) a performance

management system based on mobile agents for virtual

home environment has been proposed. However, this

system is limited to performance management. New

approaches using active nodes and lightweight agents,

such as Weaver (Koon-Seng and Stadler, 2021) have been

proposed in the literature. Likewise, Rayan et al., (2023),

proposed Network management platform based on

mobile agents. The new management platform

architecture was based on ontology-driven mobile agents.

Papavassiliou et al. (2022), proposed Mobile agent-based

approach for efficient network management and resource

allocation: framework and applications. They adopted

efficient integration and adoption of mobile agents and

genetic algorithms in the implementation of a valuable

strategy for the development of effective market based

routes for brokering purposes in the future multi-

operator network marketplace. The proposed genetic

algorithm provides a kind of stochastic algorithm

searching process in order to identify optimal resource

allocation strategies. The agent-based network

management approach represents an underlying

framework and structure for the multi-operator network

model, and can be used to facilitate the collection and

dissemination of the required management data, as well

as the efficient and distributed operation of the algorithm.

It also presents some numerical results to assess the

https://creativecommons.org/licenses/by-nc/4.0/
http://.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal
about:blank
about:blank
mailto:steveohwo@gmail.com3
mailto:steveohwo@gmail.com3
https://dx.doi.org/10.4314/fuoyejet.v9i4.2
https://dx.doi.org/10.4314/fuoyejet.v9i4.2
https://onlinelibrary.wiley.com/authored-by/Stephan/Rayan
https://ieeexplore.ieee.org/author/37268508000

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 566

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

performance and operation effectiveness of our approach,

by applying it in some test case scenarios.

These systems are highly-scalable but, in general, they

cannot be utilized on existing networks since the majority

of commercial routers do not permit the execution of user-

supplied code. However, workarounds can be used, for

instance, by attaching to each router a single-board

computer (Koon-Seng and Stadler, 2021) or by using

shared proxies. The first objective of this study is to create a

network management framework using mobile agents to

investigate the utility of them in real networks. Even though the

concept of using mobile agents for network management has

been considered before, it is the first time that such framework

is implemented and tested using a heterogeneous network

(containing, among other equipment, internet protocol (IP)

routers, asynchronous transfer mode (ATM) switches and

several management stations) in various environments. The

proposed framework can also be used to manage elements that

cannot receive mobile agents. The second objective of the study

is that the framework can be utilized on existing networks.

However, Automating and streamlining network management

across heterogeneous networks remains a significant challenge.

To address this, our research proposes a framework that

leverages on mobile agents to perform network management

tasks. This framework accommodates the limitations of various

network devices that cannot run mobile agents.

2. RELATED WORK

2.1 THE FRAMEWORK

The proposed framework recommends assigning one or two

agents per network management task, which helps minimize

inter-agent communication overhead. This approach avoids

using multiple small or dependent agents, which can lead to

inefficiencies. Research has shown that utilizing a single mobile

agent for a task increases response time but reduces overall

network traffic (Rubinstein, 2021). A performance evaluation of

a real-world configuration task (Boyer, 2022) compared the use

of a single mobile agent to parallel mobile agents for a task,

providing valuable insights into the trade-offs involved. In fact,

communication and synchronization between multiple agents

slows the whole task to a point where a single agent performs

better in both areas. It is therefore impossible to give an optimal

choice for every topology, network size and management task.

Our choice to use few mobile agents for one task is based on

(Boyer, 2022) and on our motivation to limit the network load

and agent building complexity. For tasks where there are few

dependencies between each device, we suggest using multiple

instances of the same mobile agent to divide the task. Network

management is done using network tools already available. The

advantage of using existing protocols such as SNMP is pointed

out by (Zapf, 2020). They are already widely supported and

implemented in network devices and limit the effort involved in

building a network management framework. Also, mobile

agents tend to use these tools more efficiently.

Management table: The management table is the only

knowledge of the network that the framework provides. Any

other knowledge is taken from the network as needed by mobile

agents. This table keeps links between network elements and

network management stations. One important experiment,

associations in this table were static, meaning that one

management station was bind permanently to one or many

elements. The association is based on proximity; proximity may

be determined by a wide selection of factors. In our case, it is

simply the number of hops between the station and the element.

Static associations do not mean that an element is always

managed by the same station. It only tells the mobile agent the

preferred management station for a particular element. The

framework could use a dynamic update for this table and a way

to adapt to network modifications made on topology. Liotta et

al., (2022) offers interesting ideas on how this aspect could be

improved. For optimization purposes, these tables are installed

on each management station, freeing the mobile agent’s

memory to save bandwidth. This also allows local optimizations

when it is not clear whether a central element must be managed

by one station or another depending on the point of view.

Network Management Interface: Uniform interfaces are key

parts of many mobile agent systems (Gavalas, 2021). However,

our framework is not tied to uniform interfaces. This lets us

introduce two kinds of mobile agents, general agents and

specialized agents. The general agent will mostly use uniform

interfaces, managing the network with limited functionality.

The specialized agent is able to do a lot more tasks and use

specialized features. Stationary agents are used to implement

network management code that has to be dynamic, but may be

totally inefficient to move with mobile agents. By dynamic, we

mean that they could keep a state, be modified easily; keep local

information in cache for fast and efficient retrieving. This code

is moved once and stays permanently on the station. Stationary

agents implement a set of uniform management interfaces. The

management table that keeps references between management

stations and elements also keeps a set of network management

abilities for an element. Such abilities could be an operating

system application programming interface (API), a protocol

like SNMP or any other way to manage an element. These

stationary agents look like interface agents found in (Timon,

2023) but fill a wider range of functionalities and utilities.

Intelligence: Mobile agents need a great load of intelligence to

be able to manage networks of heterogeneous devices.

Although the framework uses uniform interfaces, it is still

difficult to give agents sufficient intelligence to let them

manage these networks confidently. Some research tends to use

artificial intelligence or collective intelligence (White, 2020).

Our focus was to use an expert system, but the framework is not

limited to a specific form of intelligence. The network tasks

implemented using our framework aim to use proven

procedural instructions that are best implemented by an expert

system. Security and fault-tolerance: For networks where

agents should move on user stations, the framework suggests,

but does not yet implement, letting only the approved mobile

agent’s code to get back from user stations. For confidentiality

purposes, mobile agents should give up sensible information

from the network before entering a user station. Quotas may

also be used to counter flooding. Since the framework is on top

of any network management system, it does not interfere with

these systems and is not needed for management. Fault

management mobile agents described later are able to tell if the

network management system is faulty, but they cannot recover

completely from such a failure. Global view of the framework:

Two logical networks are present: the management network and

the normal network. The management network is essentially the

management stations and the links between them. The normal

network is the part assigned to useful applications. Both logical

networks may be the same, have some devices and links shared

or be completely different networks. In Fig. 1, we see a general

view with a network device that can accept a mobile agent

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 567

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

(active node) and a device that cannot (passive node). Each

passive node must have an associated management station

(management node) to be managed. Mobile agents on the

network are depicted as a person icon. We also see the

composition of a management mobile agent which is mainly its

data, its execution state, its intelligence and its abilities. Each

management station runs a mobile agent platform and installs

basic elements and stationary agents used by mobile agents.

Mobile agents can migrate in selected private networks and are

not allowed to migrate on public networks unless it is in a

strictly controlled manner. This requirement serves the minimal

security model explained earlier. Management stations are

detailed in Fig. 2. Each management station of the framework

runs a mobile agent platform that can receive and launch mobile

agents. A station contains a network management mobile agent

bank that stores each mobile agent that may be needed to

accomplish a task. These mobile agents, through stationary

agents, may access local operating system functions and any

ability installed on this station.

We begin by describing the technologies employed in the

framework and mobile agents. Building on the key framework

elements presented earlier, we explain the implementation of

management tables, uniform interfaces, stationary agents, and

inter-agent communication. Next, we delve into the details of

the mobile agents designed to validate the framework. Two

mobile agents were developed to detect a set of network failures,

without claiming to identify all possible errors. The Diagnostic

agent attempts to traverse the network to find the root cause of

a failure, a capability that could also be replicated by a

stationary agent. The Search agent, on the other hand, is

designed to pinpoint the exact cause of a network failure. The

framework's implementation utilizes both Java and C++

programming languages, with Java being the primary language

used and C++ employed for advanced functions accessed

through JNI. This demonstrates the framework's ability to

integrate multiple technologies and manage heterogeneous

networks. The mobile agents are built using the Grasshopper

platform and API (Application Program Interface) (Timon,

2013), leveraging its simplicity, maturity, and support for

various operating systems and standards. AdventNet's easy-to-

use classes and Java Beans are used to access SNMP elements,

with the MIB-II management information base employed."

3. METHODOLOGY

Implementation of the management tables

Management tables are placed on each network management

station. The current implementation does not require that a

management table be installed on each station, but strongly

suggests it. Mobile agents find and access these tables by

creating a proxy to the table. We give more information on this

type of communication later. The management table

implementation uses a hash map to link the management station

to network devices. The key of the map is a unique identifier

(Table 3), therefore allowing a management station to manage

any devices and restrict a device to having only one

management station assigned per table.

2.3 Communication, interfaces and stationary agents

In our framework, remote procedure calls (RPCs) serve as the

primary communication method between agents, rather than

utilizing KQML (Knowledge Query Manipulation Language) or

ACL (Agent Communication Language). This approach allows

for greater control over communication mechanisms.

Additionally, we employ the Grasshopper proxy

communication mechanism to facilitate agent communication.

Fig.1: Global View of the Framework

Our framework prioritizes local communication between

mobile agents, promoting efficient and localized

information exchange.

Fig. 2: Detailed view of a management station

and stationary agents on the same place to use as few network

resources as possible. Mobile agents that have to manage the

network with a global view use proxy communications to access

technologies and functionalities that are hidden inside the

stationary agents. They therefore lower their need to carry

technology dependent code. The framework favours an

installation of these agents on each relevant management

station. Access to a stationary agent works like a lookup

mechanism. For example, let’s say that a mobile agent has to

manage a device named A. It also knows the interfaces needed

for this network management task. The mobile agent then tries

to find a stationary agent that implements the interface and has

the ability to manage the device A. To do so, it uses a basic set

of tests on each stationary agent installed locally. One test

allows the mobile agent to test if a stationary agent is able to

manage the device. A management station should at least

provide one implementation of each interface for each device it

has to manage. Otherwise, some devices may not be

manageable. Interfaces and functions offered by the framework

are given in Table 1. This table is not exhaustive, but is a good

snapshot of the abilities of the framework.

Execution environment

(Virtual machine)

Operating

System

Available

access and

management

technologies

Operating

System

libraries

Device to manage

(if application)

Mobile Agent

platform

Networ

k

manage

ment

mobile

agent

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 568

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

Table 1: Interfaces and functions of the framework

Table 2: Stationary Agents of the framework and

implementation interface

Stationary Mgt. Agent Implementation

Interface

SSnmp Interrogation

Performance

Routing

SBase Base

SWindow Query

Performance

Routing

Table 3: Mangement Tables Usede for all Tests

We used three stationary agents in our framework.

These agents are listed in Table 2. A stationary agent SBase

implements server-side functions that are not dependent on the

device management technologies. SSnmp is used for network

devices and SWindows is used to manage Windows

workstations that run mobile agent platforms and are considered

as a part of the network to manage.

Diagnostic Agent: One fact is that a network failure could cause

many alarms and cause many direct or indirect failures. The

diagnostic mobile agent is used when a failure occurs between

a source and a destination. It is informed of these two

parameters, as well as the port used and nothing more. The

diagnostic agent never stops on the first failure. For this reason,

its first task is not to diagnose, but accumulate a series of proofs

containing facts and places where these proofs are found. Then,

at the end of the proof finding phase, it can establish a

diagnostic. The proof finding phase ends when the diagnostic

agent is unable to move further has moved on or near the

destination or has no clues on how to continue (management

system down or no route to host). Before terminating, it may try

to launch a search agent that returns with an alternate path to the

next element. If this agent is slow, a timeout tells the diagnostic

agent to continue without waiting longer. The last phase is

called the diagnostic phase.

Fig. 4: Diagnostic global Algorithm

Devices Management

Stations

Router Montreal

Router Vancouver

Router Boston

Switch Fidji

Management Station Montreal

Management Station Vancouver

Management Station Boston

Montreal

Vancouver

Boston

Montreal

Montreal

Vancouver

Boston

Mobile agent

must

interrogate

device A

Search of a

stationary

agent

implementatio

n this interface
and one of

these

This agent

knows

Interrogation

Interface

Device A can

be managed by

technologies B

and C

A stationary

agent of

technology C

implements the

Interrogation

interface and can

manage device

A

Local search

Proxy

generation

Parent Ability for all interface

Functions Description

Management-station-

available

Tell if a component

management system is active

and may be manage using

technology

Base

Functions Description

Ping Ping a network address

Verify-Service Verify that a given service is

available

Performance
Functions Description

Get-congested Return the congestion rate

Get-utilization Return the utilization rate

Routing
Functions Description

Next-component Return the component

physically connected to the

device

Next-component Return the component

physically connected to the

device to join a given

destination

Interrogation
Functions Description

Get-Interface-Address Return all address of an

interface

Get-Interface-Information Return useful information about

an interface and state

Get-Interface-Index Return interface number given

an address

Get-Value Return value of variable or state

Is-Device-Answering Try to reach the device and

return true if is accessible

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 569

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

Fig. 5A: Diagnostic Agent Global Algorithm

Fig. 5B: Detail Analysis Phase

 Fig. 6: Detail Diagnostic Phase

Current device

Analysis

Current

device

destinat

ion

Next

device

Migration to mgt. station

Migrati

on

proble

m

Diagnostic

Back to source

Search agent lunch (if

applicable)

Can manage

on the

current

station

Search

agent find

a new

path

Diagnostic agent use this path

Give Diagnostic

manager

Diagnostic agent

lunch

Y

N

N

Y

N

Y

N

Y

N

Y

Analysi

s start

Find

Devic

e

Current
interface = in

interface

Performance

Analysis

Interface state

analysis

Current
interface = Out

interface

Is
curren

t
interfa
ce is
out

End of

analysis

Y

N

N

Y

Take a problem

in the know

problem list in

the diagnostic
agent

E

n

d

of

Li

st

Present result

Proof

analysis

to solve

problem

Pro

ble

m

fou

nd

?

Does

result

allow

agent

to

conclu

Refineme

nt

N

Y

N

N Y

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 570

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

Table 5: Results of test one for all three cases

These phases are detailed in Fig. 4, where a white box inside

a gray box indicates the start of the algorithm while a white

box inside a white one indicates a possible end. Grayed

boxes indicate algorithm portions that are detailed later in

Fig. 5 and 6. The proof finding phase starts when the

algorithm starts, it ends when the Diagnostic phase is

reached and it may be suspended when the mobile agent uses

an alternate path given by the search agent. The first thing

that the diagnostic agent does is a full analysis of the current

device. It then tries to know which device is next on the path

between source and destination. By asking the management

table, the mobile agent can know which management station

is responsible for this device and it tries to migrate on that

station. If it is a success, the mobile agent restarts its analysis

on the current device and the new management station. If it’s

not, it tries to manage the device from its current

management station. If successful, the algorithm restarts to

perform analysis. If not, this tells the diagnostic agent that it

has reached a point where it cannot obtain more information.

It then has the option of establishing a diagnostic or

launching a mobile agent to help find an alternate route

(search agent will be explained later). The analysis step is

described in Fig. 5. This phase is dependent on which

network failures we want to be able to find. The mobile agent

does a series of tests without trying to diagnose. A possible

optimization here would be to limit the mobile agents to run

superfluous tests. For now, this phase has no intelligence.

The analysis phase examines a series of facts. These facts are

collected in a proof list which is inserted in a path list. The

path list is built by collecting information on each interface

on the real path between the source and destination. The next

detailed phase is the diagnostic phase presented in Fig. 6.

The mobile agent intelligence is mostly concentrated in this

phase. It tries, using refinement and testing known cause

with collected proofs, to know the best location and possible

cause that fit current facts about the network. This diagnostic

is usually more precise if more facts are found about the

problem. It never assumes that the last fact collected is the

more relevant for the location or the problem.

 Search agent: The search agent clones itself on each route

it finds on a given node. Its goal is to find the destination

using another path in the network that routing tables may not

contain. When it finds the destination, it then tries to come

back to the source using routing tables. When it finds a point

where it cannot move using these tables, this lets it know that

this may be the other end that the diagnostic agent was trying

to reach. It then reuses the alternate path to come back to the

place where the diagnostic agent is, to give it the extra

information. The diagnostic agent then suspends its proof

finding phase to move to the element found by the search

agent using the alternate path. Arrived at destination, it

restarts its proof finding phase. This is a summary of the

complete algorithm found in Fig. 7. In case the search agent

S/

n

Manage

ment

station

Network

failure

Failure causes So

lut

io

n

rat

in

g

Response

time (s)

So

ur

ce

De

stin

ati

on

U

ni

q

ue

Iden

tifie

d

n

e

ar

1 2 3

1 M

ti

BO

S

Link

ATM00/1

1 1,2,

3

 Be

st

7

0.

3

4

5

0.

3

7

6.

2

2 M

ti

BO

S

Link

ATM00/0

1 1,2,

3

 Be

st

6

0.

3

4

7

8.

2

7

0.

3

4

3 M

ti

BO

S

Interface

ATM00/1

on

Fidji(Adm

in down)

1 1,2,

3

 Be

st

5

0.

6

0

3

4.

5

6

6

0.

3

4

4 M

ti

BO

S

Interface

ATM00/0

on Fidji

(Admin

down)

1,

2,

3

1,2,

3

 Sa

me

8

0.

4

5

6

5.

7

5

0.

6

0

5 M

ti

BO

S

Interface

ATM3/0.1

on Bos

(Admin

down)

1 1 2

3

Be

st

7

0.

2

8

7.

1

8

0.

4

5

6 M

ti

BO

S

Link BOS

station to

hub

 1,2,

3

 Sa

me

6

0.

1

6

9.

3

7

0.

2

7 M

ti

BO

S

Interface

ATM3/0.1

on Mti

(Admin

down)

1,

2,

3

1,2,

3

 Sa

me

2

3.

4

5

6

6.

7

5

0.

3

8 M

ti

VA

N

Link VAN

to Mti

1 1,2,

3

 Be

st

5

0.

3

3

4.

5

7

8.

2

9 M

ti

VA

N

Interface

E0/0 on

Mti

1,

2,

3

1,2,

3

 Sa

me

7

8.

2

7

0.

1

3

4.

5

6

10 M

ti

VA

N

Interface

E0/1 on

VAN

1 1 2

3

Be

st

3

4.

5

6

6

7.

8

6

5.

7

11 M

ti

VA

N

Router

VAN

crashes

 1,2,

3

 Be

st

6

5.

7

6

4.

2

8

7.

1

12 M

ti

VA

N

Service

down on

VAN

station

 1,2,

3

 Sa

me

8

7.

1

4

5.

7

6

5.

3

13 M

ti

VA

N

VAN

station

crashed

1,

2,

3

1,2,

3

 Sa

me

6

9.

3

7

6.

2

5

0.

3

14 M

ti

VA

N

Link VAN

station to

VAN

router

 1,2,

3

 Sa

me

6

6.

7

7

0.

3

4

7

8.

2

15 V

A

N

Mti Interface

E0/0

(Admin

down)

 1,2,

3

 Be

st

8

7.

3

6

0.

3

4

3

4.

5

6

16 V

A

N

Mti Crashed 1 1 Be

st

3

4.

5

5

0.

6

0

6

5.

7

17 V

A

N

BO

S

Interface

E0/0 on

VAN

 1,2,

3

 Sa

me

7

0.

1

8

0.

4

5

8

7.

1

18 V

A

BO

S

Interface

F2/0 on

1,

2,

1,2,

3

 Sa

me

6

7.

7

0.

6

9.

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 571

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

never returns, the diagnostic agent is still able to give a good

estimation of the problem just like a remote management

solution. The Search agent is an addition that takes advantage

of multi-path networks. To limit its spawn, a hop counter is

implemented to terminate itself after too many jumps. This

maximum hop value should be set carefully according to

network scale and desired precision and performance.

Interactions: To clearly see how the search and diagnostic

mobile agents works together, let’s look at a brief example

illustrated in Fig. 8. In this case, the link between devices A and

B is broken. Normally, this will cause one network interface on

each of these devices to be automatically deactivated (the

operational down state). If the diagnostic mobile agent is used

alone, it will see only one deactivated interface. Knowing that

the other side is also automatically deactivated will help

conclude that something between these two interfaces has gone

wrong. If that other interface has been deactivated manually, it

becomes apparent that only this interface is the problem. In our

case, being able to find an alternate path enables the diagnostic

agent to collect more facts about the failure and gives a better

diagnostic. This path finding is handled by the search agent. In

Fig. 8, the diagnostic agent is stopped at device A. It launches a

search agent that finds an alternative route using devices D and

E. The search agent comes back to inform the mobile agent of

this alternate path. The diagnostic agent may then use this

alternate path to pursue its analysis phase on the other end of the

failure. It is important to note that on this alternate path, the

diagnostic agent does not collect information about devices D

and E.

Fine tuning: Our framework leaves mobile agent code on each

management station. The mobile agent code is implemented in

a class. The real mobile agents that move on the network inherit

this class without implementing any new functions. This way,

we can tell Grasshopper to only move that lighter inheriting

class and install the real code on each management station as

core classes. Grasshopper never moves core elements such as its

own platform classes and java native classes. What is then

moved is only data and execution state and this increases the

responsiveness of the system and limits traffic. One drawback

is that mobile agent code cannot be updated dynamically. This

technique was inspired by the JAMES (Silva, 2019) architecture

which uses a more complex system. It uses version checking

and only downloads mobile agent’s code as needed. Another

important technique that we used was to make sure to drop

useless data before each movement. This practice is strongly

suggested. By useless data, we mean information that is not used

anymore, redundant or easy to get at a later time. For instance,

after a correlation of alarms, some of those can be typically

dropped.

3 RESULTS

Tests: In our preliminary tests, it became apparent that using the

diagnostic agent in conjunction with the search agent was an

improvement in diagnostic precision, but had two serious side-

effects: high response time and high total traffic on the network.

We then choose to use two test networks to run our tests. The

first one was used to show how easily the combination of the

search and the diagnostic agent could locate and diagnose

network fault. The easiness was based on the ability of mobile

agents to enhance diagnostic precision over stationary mobile

agents even if it comes at a high price. This first test network,

shown in Fig. 9, offers alternate paths. This test network also

has a second goal: evaluate qualitatively the advantages of using

management mobile agents in real networks. It unravels areas

where mobile agents are better suited than remote management:

path finding and searching. This evaluation will be part of our

analysis.

On this test network, we made a first test (Test 1) involving

twenty random single faults. These twenty faults were

simulated for the three following cases: diagnostic and search

mobile agents (Case 1), diagnostic mobile agent alone (Case 2)

and stationary diagnostic agent alone (Case 3). In each case, we

evaluated the precision of the diagnostic and we measured the

response times. We also ran a test (Test 2).

Fig. 10: Second test Setup

to demonstrate that the diagnostic agent (mobile or not) was

able to know that the management system was in failure. This

test is important to be able to discriminate between a network

failure involving a loss of service and a management system

Fig. 9: First test Setup

Fig 8: Simple example using search
and diagnostic Agents

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 572

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

failure. Another simple test (Test 3) was run to ensure that the

diagnostic agent does not mistakenly report network failure in a

fully operational network. The second test network’s goal was

to evaluate mobile agents in terms of raw performance. While

this test has already been done for various applications including

network management,

Table 6: Special Case experiment (Test 1and test 2)

it was important to know how our framework rates against an

equivalent remote approach. To achieve this, we built a test

setup that enabled the mobile agent to be the closest possible to

the device to manage. It is obvious that being closer to devices

should lower the total traffic on the network while load

balancing the charge on many devices. What is less obvious is

calculating the penalty of moving network management code

from one place to another (Gavalas, 2012). The second test

network uses a restrained version of the first test network. The

result of this subset is a network with only one route from one

host to another. The mobile agent can manage each device from

the closest management station. This test network makes it

easier to test the performance of mobile agents against

stationary agents. The last test (Test 4) was limited to failures

that imply at least one migration for the mobile diagnostic

agent. It does not use the search agent to provide a fair

comparison. The mobile agent returns to the source to show its

diagnostic, even if it has the ability to do its diagnostic at the

destination. The stationary agent uses the same diagnostic

algorithm, but is limited to no mobility at all. All tests were

made with static routing and single failure scenario. These

choices were made to lower the complexity of algorithms and

mobile agents. Therefore, mobile agents presented in this study

are built for this type of scenario only. It is a limitation for our

test, but it still shows possibilities of mobile agents for more

typical scenarios. By single failure scenario, we mean that the

tests are conducted with only one failure, but this failure may

cause more than one alarm and more than one consequence on

the network. The content of the management table described is

shown in Table 3 and the specifications of the main elements of

test networks are shown in Table 4. By reviewing the elements

in Table 4, it appears clearly that the focus was on using

different types of devices and different transport and

management technologies. Our test network can be classified as

a heterogeneous network.

4. RESULTS AND DISCUSSIONS

4.1 Results

The results of the first test are shown in Table 5. The results are

for the three cases already stated which are: diagnostic and

search mobile agents (Case 1), diagnostic mobile agent alone

(Case 2) and stationary diagnostic agent alone (Case 3). Here,

each table shows the best results for each session in bold. The

solution rating column is based on a comparison of Case 1

against the two other cases. It is interesting to note that Case 2

and Case 3 gave the same precision but not the same response

times. Session 11 gave the same precision for each case, but we

still rate the solution of Case 1 as best because it returned more

relevant information about the problem than other cases. The

failure cause found is separated in three columns. The first one,

denoted unique, indicates that the exact cause of the failure was

found and presented as the unique cause. This is the ideal

diagnostic for a network administrator. The second one, noted

identified, indicates that the cause was identified but lies among

a series of other relevant but not exact causes. It may also

indicate that the cause was not found precisely, but the right

device was found. The last one, called near, indicates that the

diagnostic was wrong, but near the cause of the failure. By using

the search and diagnostic mobile agents, we always got a better

or equivalent precision against the diagnostic agent alone,

mobile or not. However, by using the search mobile agent, we

significantly increased the response time and the total traffic on

the network. The total traffic was not measured

sess

ion

Management

station Network

failure

Respo

nse

time

(s)

Caus

es

foun

d

source

Dest.

1 Mti BO

S

None 12.09 None

2 Mti VA

N

None 7.30 None

3 VAN Mti None 12.40 None

4 VAN BO

S

None 6.40 None

5 BOS Mti None 10.60 None

6 BOS VA

N

None 8.70 None

7 Mti BO

S

Fidji Mgt.

disable

189.70 yes

8 Mti VA

N

Mti Mgt.

disable

194.70 yes

9 VAn BO

S

BOS Mgt.

disable

195.5 yes

10 BOS Mti BOS Mgt.

disable

198.7 yes

11 BOS VA

N

VAN Mgt.

disable

203.60 yes

Fig. 11: Traffic measurement for diagnostic mobile agent (test 4)

Fig. 12: Response time for diagnostic mobile agent

Fig. 13: Traffic measurement for diagnostic stationary agent (test 4)

Fig. 14: Response time for diagnostic stationary agent (test 4)

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 573

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

for each session but tends to be, on average, eight times greater

when the search agent is used.The next two tests are shown in

Table 6. As we can see, the diagnostic mobile agent behaved

like expected. The diagnostic agent is able to see a difference

between a network failure and a management system failure.

Also, it behaved as expected in sessions without any network

failure. All results we have shown until now on were to evaluate

mobile agent technology advantages over remote solutions and

stationary agents. The next results give a better idea of the load

imposed on networks by mobile agents against stationary

agents. The traffic measurements are shown in Fig. 11 and 12

for the diagnostic mobile agent and in Fig. 13 and 14 for the

diagnostic stationary agent. Both agents provide the same

identification precision. Figures 11 to 14 show that the

stationary agent always got a better response time. It also

generates less total traffic in each case and less traffic around

almost all routers. Fig. 15 shows total traffic value for mobile

and stationary agents for each session and Fig. 16 compares

each traffic value for each router. To measure traffic values

around router, we used out bytes value on each interface of a

given router.

4.2 DISCUSSIONS

Initially, the stationary agent appears to be the better choice

based on performance. However, we believe that mobile agents

will ultimately prove superior, even in terms of performance,

when considering the small test network used. Our reasoning is

based on the following observations: the total traffic value for

complex network tasks is similar for both diagnostic stationary

and mobile agents (Fig. 15), and the average network load on

the first router is high for the stationary agent (Fig. 16).

Complex tasks, such as Sessions 3, 4, and 6, require extensive

information querying, which offsets the cost of mobile agent

movement. In contrast, Session 5 of Test 4 (Fig. 15) involves

minimal information querying, resulting in poorer performance

for the diagnostic mobile agent compared to the stationary

agent. While the cost of remote management may not justify

using mobile agents in small networks, our results suggest that

mobile agents will outperform stationary agents in larger

networks with multiple simultaneous tasks and higher.

Another point of interest is the network load imposed on

equipment near the remote management station. Fig. 16 shows

that if we would like to execute more than one management

task at the same time, the first router may become a bottleneck.

It is now a fact, that mobile agents have a higher response time

and may create more traffic overall. However, one main interest

about them is their potential of repartition of the network load

on the whole network. One bad point about our results is the

high traffic variation of 54.8% imposed by mobile agents on the

Vancouver router. This is mainly due to the diagnostic agent

having to return home and may be optimized further by only

sending a report to the source if the result is needed at the

source. From here, we did a performance analysis. We are also

interested, in the mobile agent domain of research, to find tasks

that are enabled only by

mobile agents. So far, it seems that there is no such task.

However, what we saw in our experiments are tasks that are

more easily executed by mobile agents. For example, we have

demonstrated that the search and diagnostic mobile agents were

able to find more precisely a cause of a network failure by

finding alternate paths to gather more data about the failure

(Table 5). In seven of the twenty random failures, they were

able to find a better solution. In these seven cases, mobile agents

were able to gain access easily to interesting information about

the failure that remote management was not able to see. This

precision seems to be related to the number of alternate paths a

network offers. Also, another point of interest is that diagnostic

mobile agents can still work efficiently in an unreliable network

whereas its remote counterpart may have a hard time doing the

same task. Finally, they offer ways to use existing network

management utilities and facilities by their ability to access

local resources directly and efficiently.

5. CONCLUSION

This study proposed a network management framework

utilizing mobile agents, presented key components of the

framework, and discussed implementation details.

Experimental results demonstrated the effectiveness of mobile

agents in executing network management tasks, particularly

search and diagnostic tasks. The framework achieved its two

primary objectives: creating a mobile agent-based network

management framework for real-world applications and

ensuring compatibility with existing networks. However, the

framework has several limitations that need to be addressed,

including security, fault-tolerance, and limited management

capabilities. Future improvements include expanding the set of

management functionalities, enhancing the diagnostic mobile

agent to handle various network types and errors, and

integrating machine learning techniques to improve the

diagnostic algorithm. While mobile agents show promise in

automating network fault localization and diagnostic tasks,

further research is needed to overcome the current limitations

and fully realize their potential."

REFERENCES

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

FUOYE Journal of Engineering and Technology, Volume 9, Issue 4, December 2024 ISSN: 2579-0617 (Paper), 2579-0625 (Online)

 © 2024 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. 574

This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)
http://dx.doi.org/10.46792/fuoyejet.v9i4.2

 engineering.fuoye.edu.ng/journal

Baldi, M., S. Gai and G.P. Picco, 1997. Exploiting code

mobility in decentralized and flexible network

management. Proc. Intl. Workshop on Mobile Agents,

MA'97, pp: 13-26.

Baràn, B. and R. Sosa, 2000. A new approach for antnet routing.

Proc. Intl. Conf. on Computer Communications and

Networks, ICCCN’00, pp: 303-308

Bellavista, P., A. Corradi and C. Stefanelli, 2023. An open

secure mobile agent framework for systems

management. J. Network and System Management, 7:

323-339.

Bieszczad, A., B. Pagurek and T. White, 1998. Mobile agents

for network management. IEEE Communications

Surveys, 1: 1.

Bohoris, C., G. Pavlou and A. Liotta, 2023. Mobile agent-based

performance management for the virtual home

environment. J. Network and System Management, 11:

133-149.

Borselius, N., 2002. Mobile agent security. Electronics &

Communication Engineering J., 14: 211-218.

Bossardt, M., L. Ruf, B. Plattner and R. Stadler, 2000. Service

deployment on high performance works nodes. Proc.

IEEE/IFIP Network Operations and Management

Symposium, NOMS’02, pp: 915-917.

Boyer, J., B. Pagurek and T. White, 1999. Methodologies for

PVC configuration in heterogeneous ATM. pp: 211-228.

Di Caro, G. and M. Dorigo, 1998. Ant colonies for adaptive

routing in packet-switched communications networks.

Proc. Parallel Problem Solving from Nature, PPSN’98,

pp: 673-682.

Gavalas, D., D. Greenwood, M. Ghanbari and M. O’Mahony,

2002. Hierarchical network management: A scalable

and dynamic mobile agent-based approach. Computer

Networks, 38: 693-711.

Gavalas, D., D. Greenwood, M. Ghanbari and M. O'Mahony,

1999. An infrastructure for distributed and dynamic

network management based on mobile agent

technology. Proc. IEEE Intl. Conf. on Communications,

ICC’99, pp: 1362-1366.

Liotta, A., G. Pavlou and G. Knight, 2022. Exploiting agent

mobility for large-scale network monitoring. IEEE

Networks, 16: 7-15.J. Computer Sci., 2 (8): 646-659,

2006 659

Koon-Seng, L. and R. Stadler, 2021. Weaver: Realizing a

scalable management paradigm on commodity routers.

Proc. IFIP/IEEE Intl. Symp. On Integrated Network

Management, IM’03, pp: 409-424.

Pagurek, B., Y. Wang and T. White, 2000. Integration of mobile

agents with SNMP: Why and how. Proc. IEEE/IFIP

Network Operations and Management Symposium,

NOMS’00, pp: 609-622.

Puliafito, A. and O. Tomarchio, 1999. Advanced network

management functionalities through the use of mobile

software agents. Proc. Intl. Workshop on Intelligent

Agents for Telecommunications Applications,

IATA’99, Springer-Verlag, pp: 33-45.

Putzolu, D., S. Bakshi, S. Yadav and R. Yavatkar, 2000. The

phoenix framework: A practical architecture for

programmable networks. IEEE Commun. Mag., 38:

160-165.

Rayan Stephan, Pradeep Ray, N. Paramesh, 2023. Network

management platform based on mobile agents. An

international journal of Network Management, 10: 1002.

Rossier, D. and R. Scheurer, 2020. An ecosystem-inspired

mobile agent middleware for active network

management. Proc. Intl. Workshop on Mobile Agents

for Telecommunication Applications, MATA’02, pp:

73-82.

Rubinstein, M.G., O. Duarte and G. Pujolle, 2000. Reducing the

response time in network management by using multiple

mobile agents. Proc. Third Intl. Conf. on Management

of Multimedia Networks and Services, Kluwer

Academic Publishers, pp: 253-265.

Rubinstein, M.G., O. Duarte and G. Pujolle, 2002. Scalability

of a network management application based on mobile

agents. J. Communications and Networks, 5: 240-248.

Schoonderwoerd, R., O. Holland and J. Bruten, 1997. Ant-Like

agent for load balancing in telecommunication

networks. Proc. Intl. Conf. on Autonomous Agents,

Agent’97, pp: 209-216.

 Papavassiliou S., A. Puliafito, O. Tomarchio and J. Ye, 2022.

"Mobile agent-based approach for efficient network

management and resource allocation: framework and

applications," in IEEE Journal on Selected Areas in

Communications, vol. 20, no. 4, pp. 858-872, doi:

10.1109/JSAC.2022.1003050.

Silva, L.M., P. Simoes, G. Soares, P. Martins, V. Batista, C.

Renato, L. Almeida and N. Stohr, 2021. JAMES: A

platform of mobile agents for the management of

telecommunication networks. Proc. Intl. Workshop on

Intelligent Agents for Telecommunications

Applications, IATA’99, Springer-Verlag, pp: 77-95.

Timon, C. Du, Eldon Y. Li and An-Pin Chang, 2003. Mobile

agents in distributed network management.

Communications of the ACM, 46: 127-137.

White, T., B. Pagurek and A. Bieszczad, 1999. Network

modeling for management applications using intelligent

mobile agents. J. Network and Systems Management, 7:

295-321.

White, T. and B. Pagurek, 1998. Towards multi-swarm problem

solving in networks.

<http://dsp.jpl.nasa.gov/members/payman/swarm/white

98-icmas.pdf>Proc. Intl. Conf. on Multi-Agent

Systems, ICMAS '98, pp: 333-340.

Zapf, M., K. Herrmann and K. Geihs, 1999. Decentralized

SNMP management with mobile agents. Proc. of the

Sixth IFIP/IEEE Intl. Symp. On Distributed

Management for the Networked Millennium, pp: 623-

635.

https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.46792/fuoyejet.v9i4.2
http://engineering.fuoye.edu.ng/journal

