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ORIGINAL RESEARCH 

 

Abstract—The need to accurately estimate evapotranspiration (ET0) in tropical regions with limited climatic data is prodigious, considering 

its influence on hydrology, agriculture, and agro-meteorology.  Evaluation of the ET0 model is particularly essential in developing countries 
where meteorological data needed to estimate ET0 using Penman-Monteith FAO-56 (PMFAO-56) model are limited or not available. The 
purpose of this study is to compare a few empirical ET0 models with the corresponding heuristic data-driven models to test their efficacy in 
the lower Donga basin, Taraba State, Nigeria.  For this purpose, a temperature-based model (Hargreaves) and a combination-based (PMFAO-
56) model was evaluated and validated with observed ET0.  Data-driven models consisting of Artificial Neural Networks (ANNs) and Gene 
Expression Programming (GEP) were employed for evaluating models using 32 years of daily meteorological data. The results were compared 
with the empirical models with respect to coefficient of determination, (R2), Nash Sutcliffe efficiency coefficient (NSE), root mean square error 
(RMSE), and scatter plots. ANNs and GEP models have the least RMSE with NSE and R2 of up to 1 and 0.95 at the training and testing 
periods, respectively. However, GEP models produced a set of equations as compared to ANNs and are therefore preferred for engineering 
applications. The proposed approach produced simple, yet reliable estimates for ET0 evaluations in the basin, which can serve as promising 
alternatives to the conventional methods. 
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——————————   ◆   —————————— 

1 INTRODUCTION 

vapotranspiration (ET) refers to the combined 
process of evaporation and transpiration from the 
surfaces of soil, water and stomata of leaves (Ahmad 

et al., 2017). It constitutes an essential component of the 
hydrological cycle, which finds wide applications in 
water resources managements as well as irrigation 
practice (Gonzalez del Cerro et al., 2020). Consequently, 
the estimation of potential evapotranspiration (ET0) is 
crucial for adaptation strategy (Gavili et al., 2018). In 
hydrological practice for instance, ET0 can be measured 
directly by lysimeter, pan evaporation or the water 
balance measurement method (Ali Benzaghta, 2012; 
Gavili et al., 2018). Using a lysimeter at all times, may be 
tasking and time consuming (Li et al., 2018; Ghozat et al., 
2020). In the light of this, mathematical models as 
alternatives are commonly used to estimate ET0 from 
relevant meteorological datasets including relative 
humidity, solar radiation, air temperature and wind 
speed (Islam et al., 2020). With these variables, the 
development of different ET0 models like radiation-based, 
temperature-based, and combination-based models had 
been achieved over the years by different researchers 
across the world.  
Although, majority of these methods have limited validity 

over the global range, but are rather commonly used under 

local/regional calibrations (Gavili et al.,2018; Ali Benzaghta, 
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2012; Allen et al., 1998).  Penman-Monteith (PM) model is 
particularly complex but robust, as compared to other ET0 
models. Reports have shown PM to perform satisfactorily 
in different climates and regions of the world, without 
any need for local calibration (Rahimikhoob et al., 2020). 
Moreover, its accuracy has been reported to be verified by 
lysimeter over a global range. This superior features of the 
PM lead to the official recommendation of the model by 
Food and Agricultural Organization of the United 
Nations (FAO) (Allen et al., 1998; Gavili et al., 2018) 
leading to the formulation of FAO56 Penman-Monteith 
(PMFAO-56). Hence, the PMFAO-56 equation has been 
widely applied in previous literature as a reference model 
(Allen et al., 1998) and it is currently being used by 
scientists for calibration. However, the major 
shortcoming of the PMFAO-56 method lies in its large 
meteorological data requirements (Trajkovic et al., 2020), 
which are not realistic in many regions, particularly 
developing countries like Nigeria. 
Heuristic approaches are computational intelligence (CI) 
inspired by intuition and wisdom of human beings to 
solve complex problems. They are robust tools, suitable 
for solving non–linear, complex water resources 
problems, owing to their ability to learn and experience. 
Moreover, they are skilful in adapting themselves to 
conditions and are able to make the best decisions 
(Chandwani et al., 2015). Some of the new approaches to 
the estimation of ET0 in recent literatures, include; 
Artificial Neural Networks (ANNs) (Pandorfi et al., 2016; 
Nema et al., 2017; Ali Benzaghta, 2012), Adaptive Neuro-
Fuzzy Inference Systems (ANFISs) (Dou and Yang, 2018; 
Gavili et al., 2018; Goyal et al., 2014; Shiri et al., 2014), 
Fuzzy Logic (FL) (Goyal et al., 2014), Gene Expression 
Programming (GEP), Support Vector Machine (SVM) 
(Shiri et al., 2014), and Extreme Learning Machine (ELM) 
(Dou and Yang, 2018). However, the efficacy of these 
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modern techniques has not been tested in the lower 
Donga basin, Taraba State.  
In this study, ANN and GEP models were used to 
estimate ET0 in Donga basin.   These were compared with 
empirical models such as; PMFAO-56 and Hargreaves, 
with pan evaporation record as reference ET0, to 
accurately estimate the daily evapotranspiration in the 
basin. The performances of the models were examined 
with respect to their statistical indices; such as Nash–
Sutcliffe efficiency coefficient (NSE) coefficient of 
determination (R2), and root mean square error (RMSE) 
for decision on the best model.  

2 MATERIALS AND METHODS 

2.1 DESCRIPTION OF THE STUDY SITE AND DATASETS 

The study area comprises of the lower reaches of river 
Donga and some of its tributaries and Benue Littorals 
(south-eastern region of Benue); where River Donga 
debauches into River Benue, near Jibu in Taraba State, 
Nigeria. The catchment extends between latitudes 07o 13' 
and 08o 13' N and longitudes 090 45' E and 100 35' E, 
respectively.  The basin is blessed with abundant water 
resources and extensive arable land suitable for irrigated 
agriculture. The Donga basin as a whole, commands a 
large catchment area of approximately 19,440 km2 of 
which 17,000 km2 lie within the Federal Republic of 
Nigeria, which is about 95 % of the total catchment. Thus, 
the remaining part conversely lies within the Federal 
Republic of Cameroun. The river system is the second 
largest tributary of river Benue after river Katsina-Ala. It 
took source from the border beyond Gembu (Mambilla 
Plateau) and drains a distance of approximately 310 km 
before draining into River Benue at Jibu. The river falls 
from over 1,800 m above mean sea level on the Mambilla 
Plateau in the south to about 90 m at the confluence with 
river Benue (MRT Consulting Engineers (Nigeria) Ltd, 
1978). Figure 1 shows the study area map. 
The climate of Donga basin is tropical with identified two 
distinctive seasons viz–a- vis: the dry and the wet seasons. 
The dry season starts from November to April; while the 
wet season extends from May to October. However, the 
upper reaches of the basin around Mambilla Plateau has 
cold climate. Thus, the dry season only span from 
November to February. 32 years records of daily 
meteorological variables at Ibi station were procured 
from Nigerian Meteorological Agency (NiMET), Abuja 
for this study. Similar records for Gassol and Gembu 
stations were obtained from Upper Benue River Basin 
Development Authority, Yola. These consist of rainfall, 
minimum and maximum temperatures, relative 
humidity, wind speed, sunshine hours, and evaporation. 
The quality of the datasets was assessed through 
comparisons with gridded datasets like the Climate 
Research Unit (CRU), and Global Precipitation 
Climatology Centre (GPCC) to ensure a reliable data 
source for building the ET0 models. These datasets are 
widely embraced by researchers due to their good 
performance, globally and particularly over Nigeria 
(Olayiwola et al., 2024).  
  

 
 

Figure 1. Map of the Study Area 

2.2 EMPIRICAL MODELS 

PMFAO-56: The Penman method, initially developed for 
estimating open water evaporation, was modified by 
Monteith to apply to cropped surfaces, resulting in the 
Penman-Monteith model. Further refinement defined a 
reference surface to establish crop-specific evaporation 
parameters at different growth stages (Allen et al., 1998), 
leading to the PMFAO-56 method. The equation defines 
ET0 in mm/day as shown in Eq (1). 

𝐸𝑇0 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273

𝑈2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑈2)
        (1) 

where Rn is net irradiance at the crop surface (MJm−2 

day−1), 𝛾 = psychrometric constant (kPa ∘C-1),  G = ground 
heat flux density measured in (MJm−2 day−1), U2 = wind 
speed at 2 m (ms-1), T = mean daily air temperature at 2 m 
(∘C), es = saturation vapour pressure (kPa), ∆ = slope 
vapour pressure curve (kPa ∘C-1), ea = actual vapour 
pressure (kPa), es – ea defines saturation vapour pressure 
deficit (kPa). 
 
HARGREAVES: Hargreaves et al. developed the 
equation shown in Eq. (2) to calculate daily ET0 from daily 
averages based on extensive work carried out on grass 
lysimeters. The model is widely used in the research 
community for ET estimation for practical applications, 
owing to its acceptable level of accuracy and simplicity. 
The model requires only three readily available 
parameters for evaluation.  

𝐸𝑇0 = 0.0023(𝑇𝑚𝑒𝑎𝑛 + 17.78)(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 (
𝑅𝑎

2.45
)  (2) 

where Tmean, Tmax, and Tmin refer to mean, maximum and 
minimum daily air temperature at 2 m (∘C), respectively, 
and 𝑅𝑎  is extra-terrestrial radiation (MJm−2 day−1). 
 

PAN EVAPORATION: The pan evaporation method gives 
evaporation from free water surface. The effects of several 
meteorological variables such as; rainfall, humidity, air 
temperature, windspeed and solar radiation are 
integrated. The ET model from pan evaporation is 
expressed as follows. 

𝐸𝑇0 = 𝑘𝑝𝐸𝑝                                                     (3) 
where, kp = pan coefficient and Ep = pan evaporation 
(mm). The values of kp depend on the pan type. In any 
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case, reports have shown humidity, wind and fetch to 
have a more significant effect on kp values than other 
meteorological variables (Ahmad et al., 2017). 

2.3 ARTIFICIAL INTELLIGENCE  

Using two different heuristic methods along with the 
above stated universally accepted empirical models are 
deemed sufficient to accurately estimate the 𝐸𝑇0 in lower 
Donga basin, considering the size of the catchment. 
 
ANN MODEL: The ANN network, consists of 
interconnected nodes otherwise known as neurons which 
are arranged in three distinctive layers as: input, hidden 
and output. Basically, the input layer is used to feed data 
to the network, but makes no computations; data are 
processed in the hidden layer; while the output layer 
produces results for a given input data. This type of 
network which passes information in one-way manner is 
known as feed forward network (FFN) (Dawson and 
Wilby, 1998).  
The ANN models comprise of feed forward 
backpropagation (FFBP) models alongside Bayesian 
Regularization (BR), and Levenberg–Marquardt (LM) 
algorithms. FFN are commonly used for hydrological 
applications due to their simplicity, accuracy and 
associated high processing speeds (Tayfur et al., 2006). 
Moreover, the most widely used supervised training 
algorithm in literature in the multilayer FFN is Back-
propagation, owing to its ability to modify weights by 
minimizing errors between the target (observed) and the 
model (simulated) outputs. (Tokar and Johnson, 1999). 
Figure 2 shows Multilayer perceptron ANN network 
topology. 

 

Figure 2. ANN Architecture 

 
GEP MODEL: The GEP, genetic algorithms (GAs) and 
genetic programming (GP), are similar in principle, since 
they all use basic genetic operators to select from 
populations of individuals based on fitness and 
consequently institutes genetic variation (Ferreira, 2001). 
Despite the fact that they share similar evolutionary 
computational algorithms, there exists fundamental 
difference between the three categories. The GAs for 
instance, consist of linear strings of fixed length known as 
chromosomes; whereas, the GP are made up of nonlinear 
entities of varying sizes and shapes referred to as parse 
trees; consequently, the GEP combined the features of 
both GAs and GP (Ferreira, 2001; Muhammad et al., 2018).  
The mingled attributes gave rise to each entity being 
encoded as linear strings which are later expressed as 

nonlinear entities  
The GEP optimisation technique made it suitable to solve 
symbolic regression problems. The fact that the 
chromosomes are simple entities which are relatively 
small, linear, compact, and easy to manipulate genetically 
gave it upper hand over other classical optimisation 
algorithms (Ferreira, 2001). Furthermore, the GEP 
produces expression trees, which expresses their 
respective chromosomes; upon which the selection acts 
and, are selected to reproduce with modification based on 
fitness, and are subsequently transmitted to the next 
generation. Nonetheless, the GAs and GP have 
limitations. In any case, reports have shown GAs to be 
easy to manipulate genetically, but suffers serious setback 
in functional complexity; consequently, the GPs are 
particularly difficult to reproduce with modification even 
if they demonstrate some degrees of functional 
complexity. Based on these features, GEP have been 
reported to outperform other EAs due to its versatility 
and computational capability in solving complex 
engineering problems (Ferreira, 2001; Fernando et al., 
2009; Salaudeen et al., 2016). 
 

2.4 METHODS OF ESTIMATION 

In estimating ET0 for the selected study area, being an 
agricultural catchment, PMFAO-56 and Hargreaves 
models were chosen as recommended by FAO using daily 
averages of 32 years (1981-2013) meteorological variables 
as input data. The resulting ET0 were accordingly 
compared with those developed using ANN and GEP 
architectures relative to the reference observational ET0. 
In each model, two separate input datasets are 
considered. The PMFAO-56 dataset comprises of 
minimum and maximum temperatures, wind speed, solar 
radiation and relative humidity. While in the case of 
Hargreaves; minimum, maximum and mean 
temperatures, and extra-terrestrial radiation are 
considered as the input parameters. About 70 % of the 
datasets are used for the training; while the remaining 30 
% are used for testing the models. 

Sensitivity analysis using a Monte Carlo simulation was 
run about 1,000 times, each time with randomly sampled 
input values assuming a uniform probability distribution. 
Thus, the variability of the output in response to input 
changes were analyzed statistically, allowing the 
identification of the most sensitive inputs. 
 

2.5 GOODNESS OF FIT MEASURES 

Nash-Sutcliffe Efficiency Coefficient (NSE): NSE [Eq. 
(4)] is a statistical tool commonly used to measure the 
predictive power of hydrologic models. This finds wide 
applications in hydrology because of its flexibility for use 
for various types of mathematical models. It is the 
complement to unity of the ratio between the mean 
square error of measured and simulated values and the 
variance of the observations. An NSE = 1 denotes a perfect 
match, while a NSE less or equal to 0 signifies a weak 
model (Gupta and Kling, 2011; Ritter and Muñoz-
Carpena, 2013).  
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𝑁𝑆𝐸 = 1 −
∑ (𝐸𝑇𝑖,𝑝𝑟𝑒𝑑 − 𝐸𝑇𝑖,𝑜𝑏𝑠)

2
𝑖

∑ (𝐸𝑇𝑖,𝑜𝑏𝑠 − 𝐸𝑇𝑜𝑏𝑠)
2

𝑖

            (4)    

Where 𝐸𝑇𝑖,𝑜𝑏𝑠, 𝐸𝑇𝑖,𝑝𝑟𝑒𝑑 and 𝐸𝑇𝑜𝑏𝑠 are the observed, 
predicted and mean observed evapotranspiration, 
respectively. 
 
The Root Mean Square Error (RMSE): RMSE [Eq. (5)] is 
the square root of mean square error (MSE) - is a statistical 
estimator which quantitatively measures the average of 
the squares of the errors between the observed and 
predicted values. The units of the predicted values are 
expressed in terms of the units of the observed variables. 
The value ranges from 0 to ∞. where RMSE = 0 indicates 
a good model (Ritter and Muñoz-Carpena, 2013). 

  RMSE = √
∑ (𝐸𝑇𝑂𝑏𝑠− 𝐸𝑇𝑃𝑟𝑒𝑑)2𝑛

𝑖=1

𝑛
                                (5)                                                                                                                                             

where ETobs = observed evapotranspiration, ETpred = 
Predicted evapotranspiration, and n = number of 
observations. 
 
Coefficient of determination (R2): R2 Eq. (6) is the square 
of the Pearson’s product - moment correlation coefficient. 
This measures the degree of collinearity between 
simulated and observed data. Thus; it gives a meaningful 
indication of the prediction accuracy of a hydrologic 
model (McCuen, 1989). The values range between 0 and 1 
with higher values indicating perfect match. Although, R2 
has been widely for quantitative assessment of model 
performance, this statistic is known for its high sensitivity 
to outliers and consequently, insensitive to additions and 
proportional difference between model predictions and 
measured data (Legates and McCabe, 1999).  

𝑅2 =
∑ (𝐸𝑇𝑝𝑟𝑒𝑑 − 𝐸𝑇𝑚𝑒𝑎𝑛)2𝑛

𝑖

∑ (𝐸𝑇𝑜𝑏𝑠 − 𝐸𝑇𝑚𝑒𝑎𝑛)2𝑛
𝑖

                               (6) 

Graphical presentation:  Scatter plot is another useful 
tool to visualize the fitness between the measured and 
simulated data. It presents the degree of association 
between the variables. These can either be positive or 
negative. 

 3 RESULTS AND DISCUSSION  

In this study, PMFAO-56, Hargreaves, ANN and GEP 
models were compared with the observed ET0 in Donga 
lower basin to test the efficacy of CI in simulating the non 
– linear complex parameters involved in estimating ET0 
considering daily time step. There exists extensive arable 
land for irrigation practice alongside the abundant water 
resources which require accurate estimate of ET0 to boost 
agricultural produce in the basin. Thus, the comparisons 
were limited to the two most prominent ET0 models 
recommended by FAO.  In the light of this, ANN and GEP 
models were developed to optimise the input parameters 
without necessarily compromising the output results. 
Consequently, about 50 % of the datasets (1981-1996) 
were used for the training, while the remaining 50 % 
(1997-2013) for testing of the models.  Table 1 gives the 
overview of the summary statistics of the meteorological 

data used for the study at Ibi station; whereas the results 
of the analyses are presented and discussed as follows. 

 
Table 1. Statistics of Training and Testing Datasets  

 

Statistics ET0  

(mm d-1) 
RH 

 (%) 

Tmax 

 (0C) 

Tmin  

(0C) 

Ra  

(mm d-1) 

U2  

(m/s) 

Training 

Mean 4.93 53.82 32.67 22.06 14.54 2.64 

Stdev 0.85 19.1 2.59 2.28 0.79 0.47 

Skew 0.03 -0.41 0.30 -0.47 -0.79 -0.34 

CV 0.17 0.35 0.08 0.10 0.05 0.18 

Testing 

Mean 4.98 54.79 33.68 22.33 14.54 2.69 

Stdev 0.9 20.52 2.84 2.49 0.79 0.48 

Skew -0.01 -0.37 0.24 -0.48 -0.79 0.29 

CV 0.18 0.37 0.08 0.11 0.05 0.18 

 

3.1 MODELS TRAINING RESULTS 

The results from the training of the daily averages of the 
available data are as shown in Figure 3 (a-c). Figure 3(a) 
compares results from observed ET0 with those of 
PMFAO-56 and Hargreves; 3(b) and 3(c) compare ANN 
and GEP models with observed data, considering 
Hargreaves and PMFAO-56 datasets. Similar to Figure 3, 
Figure 4 (a-f) present the scatter plots comparing between 
the observed ET0 and simulated values. The idea was to 
optimise the parameters such that; the best of the models 
can be chosen for practical applications. Based on the 
obtained results, GEP appeared to be the best of all, 
having NSE and R2 equal to unity, with least error of 0.019 
mm/day. The PMFAO-56 method was observed to 
overestimate the ET during the winter months and 
consequently underestimate the model during the 
summer period. The NSE, R2 and RMSE are 0.65, 0.90 and 
0.50 mm/day respectively. Table 3 presents the 
quantitative performance measures for the models. The 
CI methods were noted to have significant superiority 
over the empirical models in terms of robustness and 
simplicity. More importantly, the GEP method provides 
models with practical applications; though its learning 
speed is slower than that of ANN approach but with 
overall best performance. 
  

 
Figure 3 (a)-(c). Comparison between the observed 

and predicted ET0 models during training (a) 

Empirical Models (b) ANN models using Hargreaves 

and PMFAO-56 datasets (c) GEP using Hargreaves 

and PMFAO-56 datasets.  
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3.2 MODELS TESTING RESULTS 

The performances at the testing period followed similar 
trends with those of the training period as evident from 
the time series plots, scatter plots and the quantitative 
performance measures (see Figure 4 (d-f) and Figure 5 (g-
l).  

 

Figure 4 (d)-(f). Comparison between the observed 
and predicted ET0 models during training (d) 
Empirical Models (e) ANN models using Hargreaves 
and PMFAO-56 datasets (f) GEP using Hargreaves 
and PMFAO-56 datasets.  
 

The CI approaches outperformed the existing models in 
consonant with the training periods. The ANN and GEP 
models using PMFAO-56 datasets have the best 
performances as indicated by the NSE, R2 and RMSE of 
0.95, 0.94, 0.96 0.95 0.195 mm/day and 0.208 mm/day 
respectively (see Table 2). 

 

Figure 6. (a)-(f). Comparison of ET0 between measured 
and simulated by data – driven models in the training 
period (a) PMFAO-56 (b) Hargreaves (c) ANN (PMFAO-
56) datasets (d) ANN (Hargreaves) datasets (e) GEP 
(PMFAO-56) datasets (f) GEP (Hargreaves) datasets.  

3.3 GEP MODELS 

Equations (4) and (5) are the two sets of equations 
obtained from GEP model. Eq (4) consists of three 
parameters only for estimating ET0 in lower Donga Basin. 
These are: minimum, maximum temperatures in degree 
Celsius and solar radiation in mm/day. Similar to this, Eq 

(5) requires extra–terrestrial radiation in mm/day in 
addition to the temperature data. The 3-parameter 
equations can be simply implemented and can as well 
provide accurate estimates of ET0 in lower Donga basin.  
This can reliably be used to replace the PMFAO-56 and 
Hargreaves with accuracy of up to 95 %. 

 

Figure 5(g)-(l). Comparison of ET0 between measured and 
simulated by data – driven models in the training period 
(g) PMFAO-56 (h) Hargreaves (i) ANN (PMFAO-56) 
datasets (j) ANN (Hargreaves) datasets (k) GEP (PMFAO-
56) datasets (l) GEP (Hargreaves) datasets.  
 
Table 2. Performance measures between the observed 

and predicted models for the training and testing    
 

Statistic Harg.  PM 
ANN 

(Harg.) 

ANN 

(PM) 

GEP 

(Harg.) 

GEP 

(PM) 

Training 

NSE 0.9 0.65 0.98 1 0.97 1 

RMSE 0.27 0.5 0.12 0.03 0.15 0.02 

R2  0.94 0.97 0.98 1 0.97 1 

Testing  

NSE 0.87 0.48 0.92 0.95 0.89 0.94 

RMSE 0.31 0.61 0.24 0.2 0.29 0.21 

R2  0.88 0.96 0.93 0.96 0.9 0.95 

Harg. = Hargreaves model, PM = PMFAO-56 model. 

𝐸𝑇0 = Exp (
1.3050 × 10−5 − 𝐸𝑅

𝐷
) + 𝑅𝑠

+ (8.2356 × 10−9 × Exp (
−4.3145

𝑇𝑚𝑖𝑛

))

− Exp (
1.1315 × 10−35 − 𝐸𝑅

𝐷
)    (4a)  

where:  

𝐸𝑅 = 𝐸𝑥𝑝(𝑅𝑠
3)                                                                   (4𝑏) 

𝐷 = 𝑇𝑚𝑖𝑛(𝑅𝑠 + 𝑇𝑚𝑎𝑥)                                                      (4𝑐) 

 

𝐸𝑇0 = log(0.049 + 𝑇𝑚𝑎𝑥𝑇𝑑𝑖𝑓𝑓) + log(B)

+ Sin(8.9065 − √𝐴 )                  (5a)  

where: 

𝑇𝑑𝑖𝑓𝑓 = 𝑇𝑚𝑎𝑥 − 1                                                           (5𝑏) 
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𝐴 = 3.0417𝑇𝑚𝑎𝑥 + 1                                                     (5𝑐) 

B = 2𝑇𝑚𝑎𝑥 − 0.4632𝑅𝑎 + 𝑆𝑖𝑛(𝑇𝑚𝑎𝑥)                        (5𝑑) 
 

3.4 SENSITIVITY ANALYSIS RESULTS 

The 1,000 Monte Carlo Simulation results compared 

favourably with the ET0 model results in terms of mean, 

percentiles and standards error of estimates as shown in 

Table 3. The closely matched ET0 model mean with the 

Monte Carlo mean suggests that the model provides 

reasonable estimates. Similarly, comparing the ET0 

model's results to the Monte Carlo percentiles highlights 

how optimistic the ET0 model is relative to the range of 

simulated outcomes. Consequently, the low standard errors 

from both the model and Monte Carlo results implies the 

ET model appropriately captures uncertainty. In this case, 

the range lies between +5 and -5% which translates to 0.5 

to about 1°C change in the air temperature and 

approximately 0.3 to 0.65 (mm/d) increase in the extra-

terrestrial radiation values 
 

Table 3. Comparison of ET0 model output with Monte 
Carlo Simulation Results    

 

Statistics 

(mm/day) 

ET0 

Model 

results 

Monte Carlo  

simulated 

results 

% Change 

Daily mean  5.22 5.50 5.1 

25th percentile  4.28 5.02 14.7 

50th percentile 5.02 5.51 8.8 

75th percentile  5.63 5.98 5.8 

99.5th percentile  6.66 6.52 -2.2 

Standard Error  0.017 0.018 5.7 

 

The findings in this study in terms of accuracy and 

predictive capabilities, flexibility and computational 

efficiency aligned with studies by Jamali et al. (2021), 

Achite et al., (2022), and Heramb et al. (2023). 

8 CONCLUSION 

The availability and reliability of high-quality 

meteorological data, particularly in developing countries, 

is often limited. As a result, there is a need to create simple 

yet robust models for estimating reference 

evapotranspiration (ET0) in the lower Donga basin. 

Artificial intelligence (AI) presents a promising solution, 

as it can learn from data without requiring prior 

knowledge. In this study, the performance of the 

Hargreaves temperature-based ET0 model and the 

combination-based PMFAO-56 model were compared to 

observed ET0 data. Artificial neural networks (ANN) and 

gene expression programming (GEP) were employed to 

train and test 32 years of meteorological data. The models 

developed using the Hargreaves and PMFAO-56 datasets 

were evaluated against conventional methods. The soft 

computing techniques demonstrated superior 

performance, outperforming existing models with only 

three parameters. Although site-specific, these models 

proved robust and accurate, with an efficiency of up to 

95%. Additionally, they require fewer meteorological 

parameters. However, the limitations of AI models lie in 

data dependency, black box nature, the tendency for 

overfitting and higher computational demands. As a 

result, future research that will incorporate transfer 

learning technique is recommended for better water 

resources planning and management in diverse 

environments.   
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