Design and Development of a Jominy End-Quench Apparatus

¹Zainab Muhammad-Bako, ²Oyebamiji Muideen Oladele, *³Yusuf Aliyu and ⁴Ahmed Abiola Abdullateef

^{1,2,3,4} Department of Mechanical Engineering, School of Infrastructure, Process Engineering, and Technology,

Federal University of Technology Minna, Niger State, Nigeria.

muhammad.m1700273@st.futminna.edu.ngloyebamijimuideenoladele@gmail.comlaliyu.m1702870@st.futminna.edu.ngl abdullateef.m1702864@st.futminna.edu.ng

> Received: 12-MAY-2024; Reviewed: 21-SEPT-2024; Accepted: 25-SEPT-2024 https://dx.doi.org/10.4314/fuoyejet.v9i3.1

ORIGINAL RESEARCH

Abstract— This study describes the design, fabrication, and testing of an end-quench apparatus for Jominy hardenability testing of steel according to ASTM A255-10 standards. This design aims to improve on previous designs which are heavy resulting in difficulty in mobility of the apparatus, inadequate water circulation, less compact of the entire system and unreliable power supply. This apparatus design incorporates a quenching chamber, frame, reservoir, drainage tanks, quenchant channel, pump, and battery. Material selection prioritized performance and cost-effectiveness. Each component was built to standard specifications, assembled, and painted for corrosion resistance. Testing employed a Leeb testing machine and three identical steel specimens quenched with water, 3.5% brine, and 5% brine. Hardness measurements were taken at designated distances from the quenched ends. The specimen quenched with 3.5% brine exhibited the highest hardenability, with hardness values decreasing with depth for all specimens. The apparatus achieved an estimated efficiency of 77.5%. Notably, the design incorporates a DC power source to mitigate potential disruptions during quenching caused by power failures.

Keywords- hardness, hardenability, Jominy specimen, quenchants, quench test,

INTRODUCTION 1

etals are widely employed in manufacturing a wide **L**range of engineering applications, including construction components, automotive components, and aeronautical structures, (Muhammad, et al., 2018 & kumar, 2012). Achievement of the requisite hardness profile across diverse applications necessitates the selection of a material with appropriate hardenability. Hardenability is a critical property of steel that governs the depth of the zone exhibiting enhanced hardness following quenching from the austenitizing temperature. (Yekinni, et al., 2014; Landgraf, et al., 2021 and Colla, et al., 2023). In-depth understanding of steel hardenability is paramount for selecting optimal alloy-steel combinations. This knowledge facilitates the mitigation of thermal stresses and distortions that may arise during and after the heat treatment processes employed in manufacturing components. Furthermore, it is crucial to recognize the influence of section size on hardenability (Yekinni, et al., 2014). It is imperative to distinguish between hardness and hardenability of steel. Hardness represents a material's resistance to permanent deformation, such as scratching or indentation. Conversely, hardenability reflects the steel's inherent potential to achieve increased hardness through quenching processes. The Jominy end quench test serves as a well-established technique for evaluating the hardenability of steel and other materials.

*Corresponding Author

Can be cited as:

Muhammed-Bako, Z., Oladele, M. O., Aliyu, Y., and Abdullateef, A. A. (2024). Design and Development of a Jominy End-Quench Apparatus, FUOYE Journal of Engineering and Technology (FUOYEJET), 9(3), 464-469. https://dx.doi.org/10.4314/fuoyejet.v9i3.1

Steel's unique properties and versatility have driven its ever-increasing demand in the face of technological advancements and ever-evolving human needs. This enduring material has demonstrably exerted a profound influence on the course of human history (Ikumapayi, et al., 2018 & Akinlabi, et al. 2020) The Jominy end quench test, developed by metallurgists Walter E. Jominy and A. L. Boegehold, is a standardized experimental method for evaluating the hardenability of materials. This technique is based on the principle that during the quenching of a heated specimen, the region in direct contact with the quenching medium (typically water) experiences a rapid temperature decrease, with a gradual progression towards a more uniform temperature distribution throughout the material as the distance from the quench interface increases. (Akinlabi, et al. 2020; Kandpal, et al., 2011 & Yazdi, et al. 2008). The Jominy end quench test offers significant advantages within the manufacturing sector. This standardized technique facilitates the selection of steels with optimal hardenability characteristics for various industrial applications. Through the evaluation of hardenability, manufacturers can identify steels that are best suited for processes like drilling and machining, ensuring the production of components with the requisite mechanical properties (Akinlabi, et al. 2020).

Mechanical properties can be manipulated to leave desired properties in particular steel through heat treatment. Hardness of a steel is one of the mechanical properties that can be manipulated and for that to take place, the hardenability of a steel has to be known. Hardenability is a very useful and important property of steel which can be measured using the Jominy curve. The Jominy curve is plotted after the Jominy end-quench test is done. During the testing process,-a steel is heated to its

Section C- MECHANICAL/MECHATRONICS ENGINEERING & RELATED SCIENCES

austenitizing temperature in a furnace and then moved for quenching in an apparatus and the apparatus is known as the Jominy end-quench test apparatus. This design aims to improve on previous designs which are: heavy weight resulting in difficulty in mobility of the apparatus, inadequate water circulation, some lack compact of the entire system, and unreliable power supply (Yekinni, *et al.*, 2014). Thus, this design was made smaller, more compact, and less weighty compared to previous designs. This research focused on the design and fabrication of an environmentally friendly, portable, friendly user-interface, easy mobility, and cost-effective Jominy end-quench testing machine which will enable the engineer, technician, or student to have an easy and stress-free experience using it.

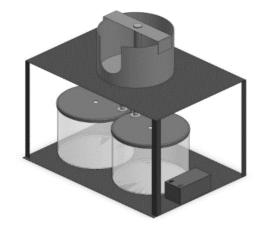
2 Materials and Methods

2.1 Design Considerations

The materials for each component were selected based on their reliability, ease of fabrication, ease of joining, mechanical properties and cost.

Stainless steel was the material selected for the quenching chamber and all the parts attached to it as a result of its resistance to high temperature which it will be subjected to after the specimen to be quenched is austenitized and placed on it for quenching. It can be easily fabricated to the desired shape and cost less compared to other materials that can serve the same purpose. It was painted to prevent corrosion and elongate its lifespan.

Carbon Steel was used for the frame due to its high strength to withstand the load of the quenching chamber and specimen. It is less costly compared to other metals that can serve a similar purpose. It was also painted to prevent corrosion.

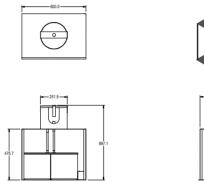

The reservoir tank and drainage tank will be used to store quenchants in them and place the DC pump. Therefore, corrosion resistance and electrical resistance are the properties we sought out for. As a result, Plastic tanks were selected due to their resistance to corrosion, electricity and their cost.

2.2 DESIGN CALCULATION FOR THE DEVELOPMENT OF JOMINY END-QUENCH APPARATUS

Table 1: Summary of the Design calculation

QUAN TITY	INITIAL DATA	FORMULA/CALC ULATIONS	RESULTS
Area of the legs of the specime n holder	F=3.855, l = 0.62m, $\epsilon = 190GP$ a, $\delta = 10^{-6}$	$A = \frac{Fl}{\epsilon \delta}$ $A = \frac{3.855 \times 0.62}{190 \times 10^9 \times 1 \times 10^{-6}}$	1.26×10^{-5} m ²
Volume of Tanks	r=0.125, h=0.245	$V = \pi r^2 h$ V $= \pi \times 0.125^2$ $\times 0.245$	0.012m ³

Area of plates	l = 0.535,	$Ap = l \times b$	0.22m ²
1	b=0.41	$Ap = 0.535 \times 0.41$	
Area of	F=7.55,	$Ac = \frac{F.l}{\epsilon.\delta}$	1.79 ×
frame	l = 0.45,	€.0	$10^{-5} m^2$
columns	ϵ =190GP	$Ac = \frac{7.55 \times 0.45}{190 \times 10^{9} \times 1 \times 10^{-6}}$	
	а,	190×10 ⁹ ×1×10 ⁻⁶	
	$\delta = 10^{-6}$		
Flow	V=3L,	Q =	3.1L/min
rate of	t=1min	volume of water delivered time taken	
the			
pump		$Q = \frac{10.5L}{3.39min}$	
		^Q – 3.39 <i>min</i>	
Diamete	Q=2.61,	$d = \sqrt{\frac{4Q}{\pi v}}$	0.016m
r of pipe	v= 12981	$\sqrt{\pi v}$	
		4×2	
		$d = \sqrt{\frac{4 \times 3}{\pi \times 14920.78}}$	
		· · · · · · · · · · · · · · · · · · ·	
D			
Pressur		$p = \rho g h$	3912.23N/m ²
e of			3912.231N/m ²
		p	3912.23N/m ²
e of	p=3912.2		120N/m ²
e of water Deliver	p=3912.2 3,	$p = 977 \times 9.81 \times 0.4$	
e of water Deliver y	-	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl = 3912.23 + (0.115)$	
e of water Deliver	3,	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl$	
e of water Deliver y pressur	3, L=0.115	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl = 3912.23 + (0.115)$	
e of water Deliver y pressur e of	3, L=0.115 p=	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl = 3912.23 + (0.115 \times - 32.976)$	
e of water Deliver y pressur e of pump	3, L=0.115 p=	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl = 3912.23 + (0.115 \times -32.976)$ $\frac{\eta}{actual flow rate of pump}{expected flow rate} \times$	120N/m ²
e of water Deliver y pressur e of pump Efficien	3, L=0.115 p=	p $= 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl$ $= 3912.23 + (0.115 \times - 32.976)$ $\eta = actual flow rate of pump \times$	120N/m ²
e of water Deliver y pressur e of pump Efficien cy of	3, L=0.115 p=	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl = 3912.23 + (0.115 \times -32.976)$ $\frac{\eta}{actual flow rate of pump}{expected flow rate} \times 100\%$	120N/m ²
e of water Deliver y pressur e of pump Efficien cy of	3, L=0.115 p=	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl = 3912.23 + (0.115 \times -32.976)$ $\frac{\eta}{actual flow rate of pump}{expected flow rate} \times 100\%$	120N/m ²
e of water Deliver y pressur e of pump Efficien cy of	3, L=0.115 p=	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl = 3912.23 + (0.115 \times -32.976)$ $\frac{\eta}{actual flow rate of pump}{expected flow rate} \times$	120N/m ²
e of water Deliver y pressur e of pump Efficien cy of pump	3, L=0.115 p= - 32.976	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl$ $= 3912.23 + (0.115 \times -32.976)$ $\frac{\eta}{expected flow rate of pump}{expected flow rate} \times 100\%$ $\eta = \frac{3.1}{4} \times 100\%$	120N/m² 77.5%
e of water Deliver y pressur e of pump Efficien cy of pump	3, L=0.115 p= - 32.976	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl = 3912.23 + (0.115 \times -32.976)$ $\frac{\eta}{actual flow rate of pump}{expected flow rate} \times 100\%$	120N/m ²
e of water Deliver y pressur e of pump Efficien cy of pump Power require	3, L=0.115 p= - 32.976 Q=3, ΔP =	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl$ $= 3912.23 + (0.115 \times -32.976)$ $\frac{\eta}{a ctual flow rate of pump}{expected flow rate} \times 100\%$ $\eta = \frac{3.1}{4} \times 100\%$ $P = \frac{Q \Delta P}{\eta}$	120N/m² 77.5%
e of water Deliver y pressur e of pump Efficien cy of pump	3, L=0.115 p= - 32.976	$p = 977 \times 9.81 \times 0.4$ $\Delta p = p + Lpl$ $= 3912.23 + (0.115 \times -32.976)$ $\frac{\eta}{expected flow rate of pump}{expected flow rate} \times 100\%$ $\eta = \frac{3.1}{4} \times 100\%$	120N/m² 77.5%



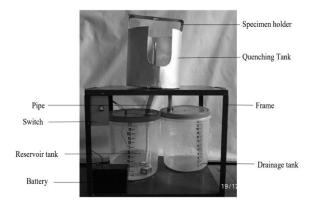
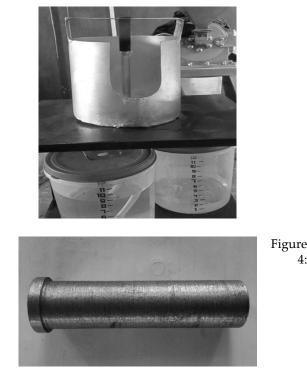
. ...

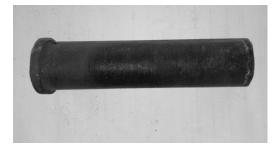
 $h_m = 1 \times h$

465

Figure 1: The isometric view of the Jominy end quench Quenchin apparatus model

Figure 2: Orthogonal view of the Apparatus


Figure 3: The Jominy end quench apparatus model develop


3 RESULTS AND DISCUSSION

The results obtained after testing the apparatus are shown in Table 2.

Quenching process

(5a)

(b)

Figure 5a, b, c: Prepared specimen, Quenched specimen, marked dimensions where the hardness is to be tested.

Table 2: Summary of information obtained from the quenching processes.

		Quenchants used			
	Data		Brine solution of 3.5% salt	Brine solution of 5% salt	
	Temperature of specimen before quenching (T1)	700	700	700	
ure 4:	Temperature of specimen after quenching (T2)	170.2	172.6	175.1	
	Temperature loss by specimen (T5= T1- T2)	529.8	527.4	524.9	

466

⁽c)

quenchant before 6 433 507 44 Temperature of 30.6 30.3 30.4 8 431 492 44 quenchant after 10 429 489 44 quenchant after 10 429 489 44 gained by 11 1.5 1.6 12 429 486 444 gained by $quenchant (Te= T_4)$ 14 424 486 433 remperature loss 528 525.9 523.3 16 421 474 433 to environment (Ts- T_6) 11 11 11 11 30 412 455 422 Volume of 11 0.3 0.2 50 397 434 412 quenchant after $quenching (V_2)$ L 40 409 433 402 Volume of 10 10.7 10.8 70 395 428 400 Quenchant used 10 10.7 10.8 70								
quenching (T3) 6 433 507 44 Temperature of quenchant after quenching (T4) 10 429 489 44 Temperature quenching (T4) 10 429 489 44 Temperature quenchant after quenchant (Te= T4 - T3) 1.6 12 429 486 433 Temperature loss to environment (T5 - T6) 528 525.9 523.3 16 421 474 433 Volume of quenchant before quenching (V1) L 11 11 11 30 412 455 422 Volume of quenchant after quenching (V2) L 0.3 0.2 50 397 434 411 Quenchant after quenching (V2) L 0 10.7 10.8 70 395 428 400 Volume of (V1 - V2) L 10 10.7 10.8 70 395 428 400 Volume of quenching (t1) 10 10.7 10.8 70 395 428 400 Temperature before quenching (t1) 10 10.7 10.8 70 395 428 400 Quenchart steed (V1 - V2) L	1	28.8	28.8	28.8	4	436	569	446
Important et al for quenchant after quenching (T4) 10 429 489 44 Temperature loss for gamma for environment (T5 - T5) 1.6 12 429 486 44 Temperature loss for environment (T5 - T6) 14 424 486 43 Volume of quenchant before quenching (V1) L 11 11 11 30 412 455 422 Volume of quenchant after quenching (V2) L 10 10.7 10.8 70 395 428 40 Volume of quenchant used (V1 - V2) L 10 10.7 10.8 70 395 428 40 Time before quenching (t2) L 50 393 418 400 400 409 434 422 Volume of 10 10.7 10.8 70 395 428 40 Quenchant used (V1 - V2) L 100 373 376 397 Time after quenching (t2) 3.42 3.46 40 409 433 40 Volume of 10 10.7 10.8 70 395 428 40 Mole (V1 - V2) L 100 373 <td>-</td> <td></td> <td></td> <td></td> <td>6</td> <td>433</td> <td>507</td> <td>445</td>	-				6	433	507	445
quenching (T4) 10 429 439 44 Temperature 1.8 1.5 1.6 12 429 486 44 gained by quenchant (Te T4) 14 424 486 43 - T3) 16 421 474 43 remperature loss 528 525.9 523.3 16 421 474 43 (Ts - Te) 18 420 469 43 Volume of 11 11 11 30 412 455 42 quenchant before 11 11 11 30 412 455 42 Volume of 1 0.3 0.2 50 397 434 41 quenchant after 60 396 429 40 quenchant used 10 10.7 10.8 70 395 428 40 quenching (V1) L 10 10.7 10.8 80 393 418 40 quenching (t1) 10 10.7 10.8 70 395 428	Temperature of	30.6	30.3	30.4	8	431	492	444
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-				10	429	489	442
quenchant ($T_{6}=T_4$ 14 424 486 433 -T3) 16 421 474 433 Temperature loss 528 525.9 523.3 16 421 474 433 (T5 - T6) 18 420 469 433 Volume of 11 11 11 30 412 455 422 quenchant before 10 0.3 0.2 50 397 434 414 Quenchant after 60 396 429 400 quenchant used 10 10.7 10.8 70 395 428 400 Volume of 10 10.7 10.8 70 395 428 400 Quenchant used 80 393 418 400 (V1 - V2) L 80 393 418 400 Time before 0.00 0.00 90 383 398 399 quenching (t) 70 373 376 394 394 394 Time after 3.29 3.42	-	1.8	1.5	1.6	12	429	486	440
Temperature loss528525.9523.316421474433To environment1528525.9523.318420469433 $(T_5 - T_6)$ 20414469433Volume of quenchant before quenching (V1) L111130412455423Volume of quenchant after quenching (V2) L10.30.250397434419Volume of quenching (V2) L1010.710.870395428400Volume of quenchant used (V1 - V2) L0.000.0090383398399Time before quenching (t1)0.303.423.46100373376395Time after quenching (t2) mins3.293.423.46100373376395	0				14	424	486	438
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	EDO	E2E 0	E00.0	16	421	474	438
20414469433Volume of quenchant before quenching (V1) L111130412455423Volume of quenchant after quenching (V2) L10.30.250397434419Volume of quenching (V2) L1010.710.870395428400Volume of quenchant used (V1 - V2) L1010.710.870395428400Time before quenching (t1)0.000.0090383398399Time after quenching (t2) mins3.293.423.46100373376395	to environment	528	525.9	525.5	18	420	469	432
quenchant before quenching (V1) L 30° 412° 433° 422° Volume of quenchant after quenching (V2) L1 0.3° 0.2° 50° 397° 434° 41° Volume of quenching (V2) L10 10.7° 10.8° 70° 396° 429° 400° Volume of quenchant used (V1 - V2) L10 10.7° 10.8° 70° 395° 428° 400° Time before quenching (t1)0.000.000.00 90° 383° 398° 399° Time after quenching (t2) mins 3.29° 3.42° 3.46° 100° 373° 376° 391°	(T ₅ - T ₆)				20	414	469	432
quenching (V1) L4040943442Volume of quenchant after quenching (V2) L10.30.25039743441460396429400Volume of quenchant used (V1 - V2) L1010.710.8703954284008039341840040040040040040010010.710.870395428400quenchant used (V1 - V2) L80393418400Time before quenching (t1)0.000.0090383398390Time after quenching (t2) mins3.293.423.46100373376390		11	11	11	30	412	455	423
volume of 1 0.3 0.2 quenchant after 60 396 429 403 quenching (V2) L 60 395 428 400 Quenchant used 70 395 428 400 quenchant used 80 393 418 400 (V1 - V2) L 80 393 418 400 Time before 0.00 0.00 0.00 90 383 398 399 quenching (t1) 100 373 376 390 390 390 Time after 3.29 3.42 3.46 100 373 376 390 mins 90 383 90 90 383 398 390	-				40	409	434	421
quenching (V2) L 00° 390° 425° 400° Volume of1010.710.8 70° 395° 428° 400° quenchant used80 393° 418° 400° (V1 - V2) L80 393° 418° 400° Time before0.000.000.00 90° 383° 398° quenching (t1)100 373° 376° 390° Time after 3.29° 3.42° 3.46° 100° 373° 376° mins 100° 373° 376° 390°	Volume of	1	0.3	0.2	50	397	434	419
Volume of quenchant used $(V_1 - V_2) L$ 10 10.7 10.8 70 395 428 400 Solution of the second contract of the second contresecond contract of the second contresecond contresec	1				60	396	429	408
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Volume of	10	10.7	10.8	70	395	428	406
Time before 0.00 0.00 0.00 90 383 398 399 quenching (t1) 100 373 376 399 Time after 3.29 3.42 3.46 100 373 376 399 quenching (t2) mins 100 373 376 399	1				80	393	418	405
Time after 3.29 3.42 3.46 quenching (t2) mins 100 373 376 39.	Time before	0.00	0.00	0.00	90	383	398	399
quenching (t ₂)		3 79	3 1 2	3.46	100	373	376	395
-	quenching (t2)	5.29	3.42	5.40				
Thie taken to 0.12 0.12 0.10	mins Time taken to	3.29	3.42	3.46		JOMINY HA	ARDENABILITY CURV	E

Average temperature loss by the specimen = $\frac{529.8+527.4+524.9}{3} = 527.37$ °C

quench (t2-t1)

mins

Average temperature gained by quenchants = $\frac{1.8+1.5+1.6}{3}$ = 1.63°C

Average temperature loss to the environment = $\frac{528+525.9+523.3}{3} = 525.73$ °C

The average volume of quenchant used $=\frac{10+10.7+10.8}{3}=10.5L$

Average time taken to quench the specimen = $\frac{3.29+3.42+3.46}{3}$ = 3.39 mins

Table 3: Average hardness values of different distances from the quenched end with different quenchants.

Distance	Average Hardness Values (HL)				
from the Quenched end (mm)	Water	Brine Solution of 3.5% Salt	Brine Solution of 5% Salt		
2	465	578	448		



Figure 1: Jominy hardenability curve of different quenchants used for quenching specimens of the same compositions.

From the Jominy hardenability curve shown in Figure 1, the specimen quenched with brine solution with 3.5% salt content has the highest hardness from the quenched end, while, the specimen quenched with brine solution with 5% salt content has the lowest hardness from the quenched end, but as the distance from the quenched end increases, specimen quenched with water had the lowest hardness from a distance of 4mm to 100mm where the hardness of both water and brine solution of 3.5%

quenched specimen coincides. The brine solution of 5% salt content quenched specimen has a little variation of hardness from the quenched end to the top.

3.1 DISCUSSION

From the result of the quenching process shown in Table 2, the average temperature loss during quenching is 527.37°C, while losing the majority of the heat to the environment and losing a negligible temperature to the quenchant, an average of 1.63°C. The average volume of quenchant used for quenching was 10.5L for an average time of 3.39 minutes. As a result of this analysis, we can calculate the flow rate of the pump, the pump efficiency and the cooling rate as:

Flowrate =	volume in liter delivered	10.5 L	_
riowrate –	time taten in minutes to deliver the volume		_
3.1L/min		(1)	

Efficiency of pump $\eta = \frac{actual flow rate of pump}{expected flow rate} \times 100\% = \frac{3.1}{4} \times 100\% = 77.5\%$ (2)

Cooling rate $=\frac{temperature \ loss}{time \ taten \ in \ minutes \ to \ loss \ the \ temperature} = \frac{527.37^{\circ}C}{3.39 mins} = 155.57^{\circ}C/min$ (3)

The efficiency of the pump defines the efficiency of the apparatus, since the pump is the main component for quenching in the apparatus. Therefore, the efficiency of the apparatus can be said to be 77.5%.

Specimen quenched with water had a Leeb hardness of 465 HL and 373 HL from a distance of 2 mm and 100 mm respectively from its quenched end; the specimen quenched with a brine solution of 3.5% of salt content had a hardness of 578 HL and 376 HL from a distance of 2 mm and 100 mm respectively from its quenched end and specimen quenched with a brine solution of 5% of salt content had a hardness of 448 HL and 395 HL from a distance of 2 mm and 100 mm respectively from the quenched end. From the analysis, it appeared that specimen quenched with 3.5% of salt contend had the highest hardenability. (Abdullah, et al., 2023), had a similar evaluation in their research with a quenched medium of normal and cold water using the Brinell hardness test having 218 HB and 136 HB. The solution of salt content of 25 and 100% were 176 HB and 148 HB respectively. Their best performing medium was a salt solution containing 50% with 187 HB.

4.0 CONCLUSIONS

The design and fabrication of a Jominy end-quenching apparatus was done successfully according to the standard of ASTM A255-10. The incorporation of a DC power source has helped tackled power failures that may occur during quenching process. The hardenability of mild steel using different quenchants was characterized during the apparatus testing stage; this enabled the calculation of the efficiency of the apparatus which is 77.5%. Hardness values were highest at the quenched end and decreased along the depth of the specimens. The apparatus was tested using mild steel, water and brine solutions as quenchants, but other types of steel and quenchants (having viscosity similar to water) can be tested on it as it will enable the determination of their hardenability. Jominy end-quench testing is a very important test in the determination of the hardenability of steels to be used for designs in different engineering applications.

Hardenability requirements are dependent on the specific application of a component. High hardenability is not always required, but this apparatus did not provide the necessary means to determine low hardenability. The low hardenability can be determined using a quenchant of high temperature, which can be obtained by varying quenchant temperature. The apparatus was designed for less viscous quenchants influenced by the type of pump used in the design. It also lacks pressure variation. For improvement of this design, a temperature and pressure varying means should be added. The developed apparatus works in a short time cycle and with a shorter processing time, the amount of water used was enhanced, similar result was reported by (Yekinni, et al., 2014).

4.1 RECOMMENDATION

Hardenability requirements are dependent on the specific application of a component. High hardenability is not always required, but this apparatus did not provide the necessary means to determine low hardenability. Low hardenability can be determined using quenchant of high temperature, which can be obtained by varying quenchant temperature. The apparatus was designed for less viscous quenchants influenced by the type of pump used in the design. It also lacks pressure variation. For improvement of this design, the following solutions were proposed.

- 1. Temperature Control: Implement a system that allows for precise control and adjustment of the quenchant temperature. This will enable the determination of hardenability across a wider range of conditions, including those requiring low hardenability.
- 2. Quenchant Viscosity Flexibility: Consider using a pump or other mechanisms that can handle a broader range of quenchant viscosities. This will increase the apparatus' compatibility with various materials and quenching processes.
- 3. Pressure Variation: Incorporate a means to vary the quenching pressure. This will provide greater control over the cooling rate and allow for more accurate hardenability testing.

REFERENCES

Abdullah, T., Abdulhakeem B. M., & Mohammed, A., A. M. (2023). The Effect of Quenching Media on the Hardness of Low Carbon Steel. Sabha University Journal of Pure & Applied Sciences vol.21 no.4

http://dx.doi.org/10.51984/jopas.v21i4.2152

- Akinlabi, E. T., Ikumapayi, O. M., Bodunde, O. P., Adaramola, B. A., Uchegbu, I. D. & Fatoba, S. O. (2020). Impact of Quenching on the Hardenability of Steels EN-3 (~1015), EN-8 (~1040) and EN-24 (~4340) during Jominy End Quench Technique. International Journal on Emerging Technologies, 11(5): 290-297.
- ASTM A255-10. (2014). Standard specification for carbon steel bars for forging and heat treatment. ASTM International.
- Colla, V. Vannucci, M., Matino, I. & Valentini, R. (2023). A deep learning-based approach to estimation of Jominy profile of medium Carbon quench hardenable steels. steel research international. 95.

http://dx.doi.org/10.1002/srin.202300374

- Hwang, J. K. (2021) Effects of Water Jet Height and End Dipping on the Cooling Rate and Hardenability in the Jominy End Quench Test. Processes 2021, 9, 607. https://doi.org/10.3390/pr9040607
- Ikumapayi O. M., Okokpujie I. P., Afolalu S. A., Ajayi O. O., Akilabi E. T., Bodunde O. P (2018). Effects of Quenchants on Impact Strength of Single-Vee Butt Welded Joint of Mild Steel. IOP Conf. Series: Materials Science and Engineering, 391, 012007 http://dx.doi.org/10.1088/1757-899X/391/1/012007
- Kandpal, B. C., Chutani, A, Harsimran, A. G., Sadanna, C. (2011). A review on Jominy test and determination of the effect of alloying elements on the hardenability of steel using the Jominy end quench test. International Journal of Advances in Engineering & Technology, 1(3): 65-71
- Kumar, S. (2013). Design and analysis of aerospace structures using advanced materials. In Aerospace Structures and Materials (pp. 3-74). Springer, Dordrecht.
- Landgraf, P., Birnbaum, P., Meza-García, E., Grund, T., Kräusel, V., Lampke, T. (2021) Jominy End Quench Test of Martensitic Stainless Steel X30Cr13. Metals 2021, 11, 1071. https://doi.org/10.3390/met11071071
- Muhammad, A. H., Muhammad, M., Muhammad, O., Muhammad, N., & Syed M. K. H. (2018), Design and Fabrication of Jominy End-Quench Testing Machine: Hardenability Evaluation of AISI-8620 Case-Hardening Steel, Journal of Testing and Evaluation, http://dx.doi.org/10.1520/JTE20170185
- Yazdi A.Z., Sajjadi S. A., Zebarjad S. M., & Nezhad M. (2008). Prediction of hardness at different points of Jominy specimen using quench factor analysis method. Journal of Materials processing technology, 199(1-3): 124-129 http://dx.doi.org/10.1016/j.jmatprotec.2007.08.035
- Yekinni, A. A., Agunsoye, J. O., Bello, S. A., Awe, I. O. & Talabi, S.I. (2014) Fabrication of End Quenched Machine: Hardenability Evaluation. Journal of Minerals and Materials Characterization and Engineering, 2, 107-113. http://dx.doi.org/10.4236/jmmce.2014.22014