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ORIGINAL RESEARCH 

 

Abstract— In this study, we have developed a new type of finite difference scheme using dynamically renormalized denominator functions 

and trigonometric and exponential interpolating functions. These schemes show local stability, convergence, and consistency. The model 
provides an improved numerical scheme for the Harmonic Oscillator Differential Equation. Additionally, we compared the new model with a 
previous discrete model for the Harmonic equation and also confirmed the suitability of the new schemes for the numerical simulation of the 
tested problems. 
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1 INTRODUCTION 

he concept of a harmonic oscillator is commonly 

exemplified by a single spring and single mass 

system, assuming the absence of friction and damping. In 

reality, such ideal models are rare, as practical 

applications often involve factors like damping, friction, 

and external forces. These considerations lead to more 

complex but realistic harmonic equations, enabling a 

detailed study of the modelled physical phenomena. 

Dealing with motion in a resistive medium is a 

challenging task. We often make simplifying assumptions 

about the nature of resistance, which is reasonable in 

many real-life scenarios. Starting with the ideal harmonic 

oscillator, where there is no resistance, we derive a family 

of numerical schemes that replicate the behaviour of the 

appropriate second-order initial value equation 

expressing specific harmonic oscillator differential 

equations. We hope that this discrete model will give 

solutions and curves displaying behaviours close to the 

exact non-standard schemes proposed by Mickens (1994). 

Finite difference schemes have become a prominent tool 

for addressing this equation, as they provide a means to 

transform the continuous problem into a set of discrete 

algebraic equations that can be numerically solved (Sprott 

& Hoover, 2017). The damped harmonic oscillator model, 

in particular, has been the focus of extensive research, as 

it represents a more realistic representation of physical 

systems, where frictional forces are present (Alharthi et 

al., 2023). 
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Several types of damped oscillation have been studied, 

with the simple harmonic oscillator being a subclass of 

this broader category. 

Researchers have compared various FDM techniques, 

such as the Euler method, Verlet algorithm, and Gear's 

predictor-corrector method, to assess their performance 

in simulating one-dimensional oscillators (Salehi and 

Granpayeh, 2020). Recent literature has expanded the 

scope of FDM to tackle complex scenarios, including 

multi-dimensional oscillators and quantum systems. For 

example, the Schrödinger equation in polar coordinates 

has been solved using a finite-difference time-domain 

(FDTD) method, demonstrating the method's 

adaptability to different coordinate systems and its ability 

to handle quantum harmonic oscillators (Jain et al., 2021), 

while (Darley et al., 2021) studied the impact of lightning 

electromagnetic pulses (LEMP) on a transmission line 

using a cross-linked polyethene (XLPE) insulated power 

cable using finite difference. 

These new discrete models are noteworthy due to their 

close resemblance to earlier schemes for oscillator 

equations. They have been subjected to numerical 

experiments, yielding intriguing graphs. 

 

2 MATERIALS AND METHODOLOGY 

This method is characterized by replacing the 

denominator (h) in the first-order discrete derivative with 

a nonnegative function or a more complex function of the 

step sizes (𝜇(ℎ)) that satisfies 𝜇(ℎ) → ℎ + 0(ℎ2) as ℎ → 0. 

This alteration is intended to improve the qualitative 

behaviour of the numerical solutions. The nonlinear 

terms in functions are approximated in a nonlocal way, 

meaning they use a function of several points of the mesh 

rather than just a single point. This approach is designed 

to enhance stability and accuracy. 

T 
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The nonstandard rules from Micken (1994) and their 

extensions in Anguelov and Lubuma (2003) as well as in 

Obayomi and Oke (2016) are presented below. 

𝑦′ =
𝑦𝑘+1 − 𝑦𝑘

𝜇
;  𝜇(ℎ) → ℎ + 0(ℎ2) 𝑎𝑠 ℎ → 0 (1) 

𝑦′  ≡ 
(𝑦𝑘+1−∝yk)

𝜇
;  𝜇(ℎ) → ℎ + 0(ℎ2),   

∝ (ℎ) → 1 𝑎𝑠 ℎ → 0                            (2) 

  ≡ 𝑦′ =
(𝑦𝑘+1−∝yk−1)

2𝜇
 ;  𝜇(ℎ) → ℎ + 0(ℎ2),   

𝛽(ℎ) → 1 𝑎𝑠 ℎ → 0                            (3) 

𝑦′′ =
𝑦𝑘+1−2yk+ 𝑦𝑘−1

𝜓2
  ; 𝜓(ℎ) → ℎ2 + 0(ℎ𝑛 )  

𝑎𝑠 ℎ → 0 𝑓𝑜𝑟 𝑛 > 2              (4) 

then, 

𝑦𝑘+1  ≡ 𝑝𝑦𝑘+1 + 𝑞𝑦𝑘;    𝑝 + 𝑞 = 1                           (5) 

𝑦𝑘      ≡ 
(𝑦𝑘+1+∝yk)

2
 ;   ∝ (ℎ) → 1 𝑎𝑠 ℎ → 0            (6) 

𝑦𝑘+1  ≡ 
(2𝑦𝑘+∝yk−1)

3
 ;   ∝ (ℎ) → 1                     (7) 

then, 

𝜇 =sin (𝛽ℎ) , 𝛽ϵ R → ℎ + 0(ℎ2)                       (8) 

𝜇 = 
(𝑒𝛾h−1)

𝛾
 , 𝛾ϵ R → ℎ + 0(ℎ2)                        (9) 

 ∝= cos(𝛽ℎ), 𝛽ϵ R → 1                        (10) 

                        
𝜓 = 4𝑠𝑖𝑛2 (

ℎ
2

)

ℎ2𝜇 → 0(ℎ4)
}                              (11) 

 

2.1 THE HARMONIC OSCILLATOR EQUATION 

The equation of the harmonic oscillator describes the 

model under consideration, as given by 
                                     𝑦′′ + 2ε𝑦′ + y = 0                  (12)       

 Where; 

 x= the distance or displacement of the body involved in 

the oscillation, and it varies with time. 

In his study, Mickens (1994) has proposed a nonstandard 

strategy for this model. 

{ 
𝑦𝑘+1−2yk+ 𝑦𝑘−1

𝜓2 }= 2ε { 
yk− 𝜇𝑦𝑘−1

𝜓 
}+{ 

2(1−𝜇)yk+(𝑥2+𝑥2−1)𝑦𝑘−1)

𝜓2 }

                   (13) 

with 𝜇 = cosh    𝜓 = 4sin2(
h

2
)     

 

2.2 NON-LINEAR INTERPOLATION FOR 
DERIVATION OF THE STANDARD FINITE 
DIFFERENCE SCHEME  

 

We begin with the general harmonic equation (1), the 

solutions to the simplified differential equation without 

the velocity term resemble sine and cosine functions, 

while the solutions to the simplified differential equation 

without the acceleration term resemble exponential 

functions. 

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑒𝛽𝑥+𝑎2 sin(∝ 𝑥2 + 𝑘)  (14) 

 

The choice of the interpolation function is influenced by 

the combination of linear displacement, growth, decay at 

each time t, and sinusoidal motion.  

y(x) = 𝑎0 +  𝑒𝛽𝑥 + 𝑎1𝑥 + 𝑎2 sin(𝛼𝑥2 + 𝑘) 

𝑦′ = β𝑒𝛽𝑥 + 𝑎1 + 𝑎22 ∝ 𝑥 cos(∝ 𝑥2 + 𝑘)   (15) 

𝑦′′ = 𝑎2[2 ∝ 𝑥(−2 ∝ 𝑥 sin(∝ 𝑥2 + 𝑘) + 2 ∝ cos(∝ 𝑥2 +

𝑘)]+𝛽2𝑒𝛽𝑥 

𝑦′′ = 𝑎2[−(2 ∝ 𝑥)2 sin(∝ 𝑥2 + 𝑘) + 2 ∝ cos(∝ 𝑥2 +

𝑘)]+𝛽2𝑒𝛽𝑥                                                 (16) 

𝑦′′′ = 𝑎2[−(2 ∝ 𝑥)3 cos(∝ 𝑥2 + 𝑘) + 4 ∝ 𝑥 sin(∝ 𝑥2 +

𝑘)]+𝛽3𝑒𝛽𝑥                                                 (17) 

From (15), (16), (17) 

 

𝑎1 = 𝑦′ − 𝛽𝑒∝𝑥 − 𝑎22 ∝ 𝑥 cos(∝ 𝑥2 + 𝑘)    (18) 

𝑎2 =
𝑦′′−𝛽2𝑒𝛽𝑥

[−(2∝𝑥)2 sin(∝𝑥2+𝑘)+2∝cos(∝𝑥2+𝑘)]
     (19) 

The discrete form 

y(x) = 𝑎0 +  𝑒𝛽𝑥 + 𝑎1𝑥 + 𝑎2 sin(𝛽𝑥2 + 𝑘) 

y(𝑥𝑛−1) = 𝑎0 + 𝑒𝛽𝑥𝑛−1 + 𝑎1𝑥𝑛−1 + 𝑎2 sin(∝ 𝑥𝑛−1
2 + 𝑘) 

y(𝑥𝑛) = 𝑎0 +  𝑒𝛽𝑥𝑛 + 𝑎1𝑥𝑛 + 𝑎2 sin(∝ 𝑥𝑛
2 + 𝑘) 

y(𝑥𝑛+1) = 𝑎0 + 𝑒𝛽𝑥𝑛+1 + 𝑎1𝑥𝑛+1 + 𝑎2 sin(∝ 𝑥𝑛+1
2 + 𝑘) 

 y(𝑥𝑛+1)–  2y(𝑥𝑛) + 𝑦(𝑥𝑛−1)  = (𝑎𝑜 − 2𝑎𝑜 + 𝑎𝑜) +

(𝑒𝛽𝑥𝑛+1 − 2𝑒𝛽𝑥𝑛 + 𝑒𝛽𝑥𝑛−1) + 𝑎1(𝑥𝑛−1 + 𝑥𝑛+1 − 2𝑥𝑛) +

𝑎2[(sin( ∝ 𝑥𝑛−1
2 + 𝑘) + sin ( ∝ 𝑥𝑛+1

2 + 𝑘) − 2sin(∝ 𝑥𝑛
2 + 𝑘)]

                               (20) 

 

 𝐸𝑛 = [(sin( ∝ 𝑥𝑛−1
2 + 𝑘) + sin ( ∝ 𝑥𝑛+1

2 + 𝑘) − 2sin(∝
𝑥𝑛

2 + 𝑘)] 

put 𝑥𝑛−1 = 𝑎 + ℎ(𝑛 − 1),   and 𝑥𝑛−1 = 𝑎 + ℎ(𝑛 + 1),      

 𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1 ≡  𝑒𝛽(𝑎+𝑛ℎ)(𝑒𝛽ℎ + 𝑒−𝛽ℎ − 2) + 𝑎2[𝐸𝑛] 

𝐸𝑛 = [(sin( ∝ 𝑥𝑛−1
2 + 𝑘) + sin ( ∝ 𝑥𝑛+1

2 + 𝑘)
− 2sin(∝ 𝑥𝑛

2 + 𝑘)] 

Let  

                          

𝐴 =∝ (𝑥𝑛
2 + ℎ2) + 𝑘

𝐵 = 2 ∝ ℎ𝑥𝑛

𝐶 = (∝ 𝑥𝑛
2 + 𝑘)

}                              (21) 

⇒ 𝐸𝑛 = [(sin( 𝐴 + 𝐵) + sin ( 𝐴 − 𝐵) − 2sin(𝐶)] 
𝐸𝑛 = 2 sin( 𝐴) cos( 𝐵) − 2sin(𝐶)] 
𝐸𝑛 = 2 sin( ∝ (𝑥𝑛

2 + ℎ2) + 𝑘) cos( 2 ∝ ℎ𝑥𝑛) − 2sin(∝ 𝑥𝑛
2 +

𝑘)]                                                                            (22) 

 

𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1 =   𝑒𝛽(𝑎+𝑛ℎ)(𝑒𝛽ℎ + 𝑒−𝛽ℎ − 2) +
{𝑦′′−𝛽2𝑒𝛽𝑥}[𝑃𝑛]

[−(2∝𝑥)2 sin(∝𝑥2+𝑘)+2∝cos(∝𝑥2+𝑘)]
                                         (23) 

 

=   𝑒𝛽(𝑎+𝑛ℎ)(𝑒𝛽ℎ + 𝑒−𝛽ℎ − 2) +
{𝑦′′−𝛽2𝑒𝛽𝑥}[2 sin(∝(𝑥𝑛

2 +ℎ2)+𝑘) cos( 2∝ℎ𝑥𝑛)−2sin(∝𝑥𝑛
2 +𝑘)]

[−(2∝𝑥)2 sin(∝𝑥2+𝑘)+2∝cos(∝𝑥2+𝑘)]
            (24) 

sub 𝜓 for ℎ 

≡
𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1

ℎ2

≡  
𝑦𝑛+1 − 2𝑦𝑛  + 𝑦𝑛−1

𝜓2
                                                        (25) 

 using (11), we have a new scheme (New-h) 

then  

𝜓 = {

sin (ℎ)

𝑒𝛾ℎ − 1

𝛾

 

 we have schemes (New-Sin) and (New-Exp) respectively. 
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3 QUANTITATIVE PROPERTIES OF THE 
NEW SCHEME 
Theorem 2 (Henrici, 1962) 

In the defined region, let the incremental function of the one-

step scheme above be continuous and jointly a function of its 

arguments.  

𝑥 ∈ [𝑎, 𝑏]𝑎𝑛𝑑 𝑦 ∈ (−∞ , ∞), 0 ≤ ℎ ≤ ℎ0; ℎ0 > 0  

and let there exist a constant L such that   

𝜁(𝑥𝑛, 𝑦𝑛 , ℎ) − 𝜁(𝑥𝑛, 𝑦𝑛
∗, ℎ) ≤ 𝐿|𝑦𝑛 − 𝑦𝑛

∗|  

for all  (𝑥𝑛 , 𝑦𝑛 , ℎ) and (𝑥𝑛 , 𝑦𝑛
∗, ℎ) in the defined region. 

Then  

(𝑥𝑛 , 𝑦𝑛; 0) =  (𝑥𝑛, 𝑦𝑛
∗) is a necessary condition for the 

convergence of the new derived scheme. 

 

Theorem 2 (Fatunla, 1998) 

Let  𝑦𝑛= 𝑦(𝑥𝑛) and  𝑝𝑛= 𝑝(𝑥𝑛) denote two different numerical 

solutions of the differential equation with the initial condition 

specified as  

𝑦0= 𝑦(𝑥0) = 𝜗 and  𝑞0= 𝑞(𝑥0) = 𝜗∗  

 ⇒ |𝜗−𝜗∗|< 𝜉   𝜉 >0 

we have  

𝑦𝑛+1= 𝑦𝑛+ℎ𝜁(𝑥𝑛 , 𝑦𝑛; ℎ) 

𝑞𝑛+1= 𝑞𝑛+ℎ𝜁(𝑥𝑛 , 𝑞𝑛; ℎ) 

 |𝑦𝑛+1 − 𝑞𝑛+1| ≤ 𝑘|𝜗−𝜗∗|  is the schemes’ stability and 

convergence necessary and sufficient condition. 

 

3.1 PROOF OF CONVERGENCE 

Let 

En = 2 sin( ∝ (xn
2 + h2) + k   )  cos( 2 ∝ hxn)

− 2sin(∝ xn
2 + k)]                               (26) 

𝑦′ = 𝑓𝑛 ,  𝑦′′ = 𝑓𝑛
′  and  𝑦′′′ = 𝑓𝑛

′′ 

Pn = [−(2 ∝ xn)2 sin(∝ xn
2 + k) + 2 ∝ cos(∝ xn

2 + k)] 

Qn =  β2𝑒βxn 

Rn = 𝑒β(𝑎+𝑛ℎ)(𝑒βℎ + 𝑒−βℎ − 2)    

𝑦𝑛+1 = 2𝑦𝑛  + 𝑦𝑛−1 +  Rn + [
(𝑓𝑛

′−𝑄𝑛)𝐸𝑛

𝑃𝑛
]  (27) 

                  2𝑦𝑛 −  𝑦𝑛−1 ≅   𝑦𝑛 (small h) 

𝑦𝑛+1 =  𝑦𝑛  + Rn + [
(𝑓𝑛

′−𝑄𝑛)𝐸𝑛

𝑃𝑛
]     

   

    𝑦𝑛+1 =  𝑦𝑛  + Rn + [
(𝑓𝑛

′−𝑄𝑛)𝐸𝑛

𝑃𝑛
]          (28) 

𝑦𝑛+1 =  𝑦𝑛 + [Rn −
𝑄𝑛𝐸𝑛

𝑃𝑛

] +  [
𝐸𝑛

𝑃𝑛

] 𝑓𝑛
′                                (29)  

 with incremental function 

𝜁(𝑥𝑛, 𝑦𝑛; ℎ) = [Rn −
𝑄𝑛𝐸𝑛

𝑃𝑛
] +  [

𝐸𝑛

𝑃𝑛
] 𝑓𝑛

′    (30) 

𝜁(𝑥𝑛, 𝑦𝑛, ℎ) = 𝑀 + 𝑁𝑓𝑛
′     [M is fixed (n<∞)] 

 
𝜁(𝑥𝑛 , 𝑦𝑛; ℎ) − 𝜁(𝑥𝑛 , 𝑦𝑛

∗; ℎ)
=  𝑀[𝑓′(𝑥𝑛 , 𝑦𝑛; ℎ) − 𝑓′(𝑥𝑛 , 𝑦𝑛

∗; ℎ)]     (31) 

 =  𝑀[𝑓′(𝑥𝑛, 𝑦𝑛) − 𝑓′(𝑥𝑛 , 𝑦𝑛
∗)] 

=  𝑀[
𝜕𝑓′(𝑥𝑛,ӯ)

𝜕𝑦𝑛
(𝑦𝑛 − 𝑦𝑛

∗)] 

L = SUP(𝑥𝑛,𝑦𝑛)∈𝐷    
𝜕𝑓′(𝑥𝑛,ӯ)

𝜕𝑦𝑛
 

then   

𝜁(𝑥𝑛, 𝑦𝑛; ℎ) − 𝜁(𝑥𝑛, 𝑦𝑛
∗; ℎ) = 𝑀[𝐿(𝑦𝑛 − 𝑦𝑛

∗)]          (32) 

Let 𝐴 = 𝑀𝐿 

𝜁(𝑥𝑛, 𝑦𝑛 , ℎ) − 𝜁(𝑥𝑛, 𝑦𝑛
∗, ℎ) ≤ 𝐴|𝑦𝑛 − 𝑦𝑛

∗|         

 

3.2 SCHEME CONSISTENCY 

𝑦𝑛+1 =  𝑦𝑛 + [Rn −
𝑄𝑛𝐸𝑛

𝑃𝑛
] +  [

𝐸𝑛

𝑃𝑛
] 𝑓𝑛

′                                  (33)     

𝑦𝑛+1 = 𝑦𝑛 + 𝑀 + 𝑁𝑓𝑛
′    

If  ℎ = 0, Rn = 0, En = 0 & 𝑀 = 𝑁 = 0 

                 ⇒ 𝜁(𝑥𝑛, 𝑦𝑛; 0) ≡ 0                                                (34)  

 

3.3 SCHEME STABILITY 

𝑦𝑛+1= 𝑦𝑛+𝑀 + 𝑁𝑓𝑛
′(𝑥𝑛 , 𝑦𝑛) 

let 𝐺𝑛+1 = 𝐺𝑛 + 𝑀 + 𝑁 𝑓𝑛
′(𝑥𝑛 , 𝐺𝑛) 

𝑦𝑛+1 − 𝐺𝑛+1 = 𝑦𝑛 − 𝐺𝑛 + {𝑀 − 𝑀}
+  𝑁[𝑓𝑛

′(𝑥𝑛, 𝑦𝑛) − 𝑓𝑛
′(𝑥𝑛, 𝐺𝑛)]       (35) 

L = SUP(𝑥𝑛,𝑦𝑛)∈𝐷    
𝜕𝑓′(𝑥𝑛,   𝐺𝑛)

𝜕𝐸𝑛
 

𝑦𝑛+1 − 𝐺𝑛+1= 𝑦𝑛 − 𝐺𝑛  + 𝑀𝐿(𝑦𝑛 −  𝐺𝑛) 

|𝑦𝑛+1 − 𝐺𝑛+1|= |𝑦𝑛 − 𝐺𝑛|+ [ 𝑀𝐿 ]|(𝑦𝑛 − 𝐸𝑛)| 

|𝑦𝑛+1 − 𝐺𝑛+1|≤N 𝑄|𝑦𝑛 − 𝑆𝑛|                (𝑄 = 𝑀𝐿) 

          |𝑦𝑛+1 − 𝐺𝑛+1| ≤ 𝐾|𝜗−ϑ ∗|                                       (36) 

 

3.4 APPLICATION TO THE HARMONIC OSCILLATOR  

 Using (1), we have  

                           y′′ = −2εy′ − y                                         (37) 

                       

                           y′′′ = −2εy′′ − y′                                     (38) 

From the Nonstandard theory; 

y′ =
𝑦𝑛+1−𝑦𝑛 

𝜇
   

   𝑓𝑛
′ =  −2ε (

𝑦𝑛+1−𝑦𝑛 

𝜇
) − 𝑦𝑛  

   𝑓𝑛
′ =  −2ε (

𝑦𝑛+1 

𝜇
) + 2ε (

𝑦𝑛 

𝜇
) − 𝑦𝑛  

 from (25)  

𝑦𝑛+1 = 𝑦𝑛 + 𝑀 +  𝑁𝑓𝑛
′(𝑥𝑛, 𝑦𝑛) 

 

 𝑦𝑛+1 = 𝑦𝑛  + [Rn  −
QnEn

Pn

] − {
En

Pn

} {(
2ε 

𝜇
)} 𝑦𝑛+1

+ {(
2ε 

𝜇
) − 1} {

En

Pn

} 𝑦𝑛                          (39) 

 {
𝜇Pn+2εEn

𝜇Pn
 }  𝑦𝑛+1 =    {Rn  −

QnEn

Pn
} + {1 +

2εEn

𝜇Pn
−

En

Pn
} 𝑦𝑛 

𝑦𝑛+1 = {
𝜇Pn

𝜇Pn + 2εEn

 } {Rn  −
QnEn

Pn

}

+ {
𝜇Pn

𝜇Pn + 2εEn

 } {1 +
2εEn

𝜇Pn

−
En

Pn

} 𝑦𝑛  (40) 

En = 2 sin( ∝ (xn
2 + h2) + k   ) cos( 2 ∝ hxn)

− 2sin(∝ xn
2 + k)] 

Pn = [−(2 ∝ xn)2 sin(∝ xn
2 + k) + 2 ∝ cos(∝ xn

2 + k)] 

Qn =  𝛽2𝑒𝛽xn  
 

Rn = 𝑒𝛽(𝑎+𝑛ℎ)(𝑒𝛽ℎ + 𝑒−𝛽ℎ − 2) 

 

 

4 RESULTS OF NUMERICAL EXPERIMENT 
The method is used to solve harmonic equations 

(Mickens, 1994), and the schemes are tested using 

different step sizes. The results of the numerical 

simulation are presented in the graphs. NTSD-Ex 

represents the exact solution as derived from (Mickens, 
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1994). NTSD-Exp is the solution with the step size 

replaced by an exponential function, and NTSD-Sin is the 

solution with the step size replaced by a sine function. 

Similarly, we have NewSchExp, which is the new derived 

scheme using exponential functions as step-size, and 

NewSchSin, which is the new derived scheme employing 

a sine function as step-size.  

 

Problem I 

Graph for all schemes for h=0.001, 𝜀 = 0.0001, 

simulation parameters  𝑟 = 0.528, 𝛾 = 0.66 ,𝛽 = 1, 𝛼 =

−0.65. 

 
Fig. 1: Graph showing the solutions from all new 

developed schemes. 

 
Fig. 2: Graph showing the error deviation of new 

developed schemes. 

 

Problem II 

Graphs of all schemes for h=0.01 and 𝜀 = 0.0001 

simulation parameters  𝑟 = 0.528, 𝛾 = −1.5 ,𝛽 =

−1.45, 𝛼 = −0.65 

 
Fig. 3: Graph showing the solutions from all new 

developed schemes for problem II. 

 

 
Fig. 4: Graph showing the error deviation of new 

schemes compared to (Mickens 1994) for problem II. 

 

Problem III 

Graphs for all schemes for h=0.01 and 𝜀 = 0.0001 

simulation parameters  𝑟 = 1, = −0.01 ,𝛽 = 0.5, 𝛼 = 0.75 

 
Fig. 5: Graph showing the solutions for all new 

developed schemes for problem III. 
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Fig. 6: Graph showing the error deviation of new 

developed schemes for problem III. 

 

Problem IV 

Graphs of all schemes for h=0.0001, 𝜀 = 0.0001 

simulation parameters  𝑟 = 1, 𝛾 = −0.01 ,𝛽 = 0.5, 𝛼 =

−0.75. 

 

 
Fig. 7: Graph showing the solutions from all new 

schemes and the exact solution for problem IV. 

 

 
Fig. 8: Graph showing the error deviation of new 

developed schemes for problem IV. 

 

5 CONCLUSION 

In our comparative study, we evaluated (Mickens, 1994) 

scheme alongside new schemes using various step sizes. 

Our observations indicated the monotonicity and total 

monotonicity of solutions, as well as their monotonous 

dependence on initial values. As the step size, h decreases 

for any finite number of iterations, we noted total 

congruency. The new developed discrete hybrid 

nonstandard models, NewSchEx and NewSchSin, were 

found to produce solutions for the harmonic oscillator 

equation and have been analytically proven to be 

consistent, stable and convergent. Notably, our numerical 

experiments demonstrated that the absolute error of 

deviation for the hybrid schemes becomes zero as ℎ ⟶ 0. 

We reaffirm the efficacy of Mickens' non-standard 

modeling rules for discrete modeling of dynamical 

systems, emphasizing the powerful impact of carefully 

chosen interpolation functions and the potential for 

improved results when combined with nonstandard 

modeling. The harmonic oscillator model can simulate 

the behavior of springs and pendulums, which are 

essential components in machinery and vehicles, help 

design systems with desired oscillation properties, and 

analyze vibration issues. 
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