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ORIGINAL RESEARCH 

Abstract— Biometric authentication systems have gained significant attention in access control applications due to their ability to provide 

enhanced security and convenience. Among various biometric modalities, palm-vein recognition has emerged as a promising approach, 
offering high accuracy, reliability, and resistance to forgery. However, existing palm-vein recognition systems often face challenges in 
implementation costs, computational efficiency, and performance limitations. This research aimed to develop an enhanced palm-vein 
recognition system for access control applications by optimizing a Convolutional Neural Network (CNN) architecture. A palm-vein dataset 
comprising 1000 images from 200 LAUTECH students was acquired, with 5 images per individual. The dataset was split into 700 training 
images and 300 testing images. The acquired images were pre-processed for quality enhancement and region of interest extraction. A 
Gravitational Search Algorithm (GSA) optimized CNN (GSA-CNN) was then employed to extract deep features from the pre-processed 
images, which were classified using a SoftMax layer. Experimental results revealed that the CNN technique achieved a specificity, sensitivity, 
False Positive Rate (FPR), accuracy of 74.60%, 79.89%, 25.40%, 77.67% at 117.52 seconds, respectively. In contrast, the proposed GSA-
CNN technique demonstrated superior performance, achieving a specificity, sensitivity, FPR, accuracy of 92.06%, 92.53%, 7.94%, 92.33% at 
97.14 seconds, respectively. The GSA-CNN system outperformed the conventional CNN approach in terms of accuracy, specificity, sensitivity, 
FPR, and processing time, demonstrating its potential for reliable and efficient palm-vein recognition in access control applications. The 
findings have significant implications for developing robust and secure access control systems, contributing to enhanced privacy and security 
across various domains. 

Keywords— Recognition System, Biometric Authentication, Convolutional Neural Network, Gravitational Search Algorithm, 

Hyperparameter Optimization, Palm-Vein Recognition 

——————————      —————————— 

1 INTRODUCTION 

iometric recognition systems have gained significant 

traction in recent years for access control and security 

applications due to their ability to provide reliable 

personal identification and verification (Jain et al., 2016; 

Adetunji et al., 2018). Among various biometric modalities, 

palm-vein recognition has emerged as a promising approach 

because it offers several advantages over traditional methods 

such as fingerprint and iris recognition (Shaheed et al., 2021; 

Oguntoye et al., 2019). Palm-vein recognition is a cutting-edge 

biometric technology that uses unique vein patterns in the palm 

identification (Stanuch et al., 2020). Among various biometric 

modalities, palm-vein recognition has emerged as a promising 

approach, providing enhanced security, accuracy, privacy, 

versatility, and convenience (Amrouni et al., 2023; Okediran and 

Oguntoye, 2023).  
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Palm-vein patterns are unique to each individual, highly 

secure as they are internal features of the body, and 

resistant to forgery or tampering attempts (Oguntoye et al., 

2019). Deep learning, specifically Convolutional Neural 

Networks (CNNs), is utilized in palm-vein recognition to 

enhance accuracy and efficiency. CNNs streamline the 

authentication process by utilizing palm-vein features for 

user identification, reducing manual labour and 

simplifying the process (Fanjiang et al., 2021). These 

specialized neural networks have demonstrated 

remarkable performance in various computer vision tasks, 

including image recognition, object detection, and 

biometric identification, due to their ability to learn 

hierarchical representations from raw data and capture 

complex patterns (Jaapar et al., 2018; Khan et al., 2020; 

Oguntoye et al., 2023). 

Hyperparameter optimization is crucial for maximizing the 

performance of CNNs in palm-vein recognition systems 

(Famuyiwa et al., 2022; Ola et al., 2020; Obayya et al., 2020). 

Techniques like the Gravitational Search Algorithm (GSA), 

a nature-inspired metaheuristic optimization algorithm, 

can be employed to fine-tune hyperparameters, enhancing 

the network's ability to learn and make accurate predictions 

  B 
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(Akay et al., 2022; Dayana and Emmanuel, 2023). GSA is 

based on the principles of Newtonian laws of gravity and 

mass interactions, where the solutions are represented as 

objects with masses (Rashedi et al., 2009). GSA is known for 

its exploration and exploitation capabilities, making it 

effective in finding optimal or near-optimal solutions in 

complex search spaces (Ola et al., 2019; Ogundepo et al., 

2022). This optimization process is essential for achieving 

low False Positive Rates (FPR) and False Negative Rates 

(FNR), ensuring robust security and reliability in access 

control systems (Adetunji et al., 2015; Gifty et al., 2019; 

Sasikala, 2024). 

Despite the tremendous potential of palm-vein recognition 

technology, existing systems often face challenges in terms 

of implementation costs, accuracy, and efficiency (Zhong et 

al., 2019; Dargan and Kumar, 2020). Enhancing the 

performance and feasibility of palm-vein recognition 

systems is crucial for their widespread adoption in 

biometric security and access control applications (Ahmad 

et al., 2019; Zhou et al., 2020; Adedeji et al., 2021). This 

research aims to address these challenges by developing a 

robust palm-vein recognition system using an enhanced 

Convolutional Neural Network architecture optimized 

through the Gravitational Search Algorithm. 

2 RELATED WORKS  

Convolutional Neural Networks (CNNs) have emerged as 

a powerful tool for palm-vein recognition systems, as 

evidenced by several studies in this review. CNNs' ability 

to learn hierarchical representations and extract intricate 

patterns from raw data makes them well-suited for this 

task. However, the performance of CNN-based palm-vein 

recognition systems is heavily influenced by factors such as 

network architecture, optimization techniques, and data 

augmentation strategies. The development of accurate and 

efficient palm-vein recognition systems for verification and 

identification has been an active area of research. Several 

studies have explored the use of machine learning and deep 

learning techniques to improve the performance of these 

systems. Ganiyu et al. (2018) proposed a multimodal 

biometric system that fuses palm-vein and fingerprint 

features using Gabor filters, aiming to enhance security and 

accuracy. Their approach demonstrated the potential of 

combining biometric modalities for robust personal 

authentication. Oguntoye et al. (2019) proposed a particle 

swarm optimization (PSO) method to optimize support 

vector machine (SVM) parameters, achieving improved 

recognition accuracy compared to traditional SVM. 

Lefkovits et al. (2019) and Jhong et al. (2020) demonstrated 

the effectiveness of convolutional neural networks (CNNs) 

for palm-vein identification, with Lefkovits et al. comparing 

various CNN architectures and Jhong et al. achieving high 

accuracy using adaptive background filtering and cloud 

computing. 

 

Qin et al. (2021) introduced a single-sample-per-person 

(SSPP) approach using a multi-scale and multi-direction 

generative adversarial network (MSMDGAN) for data 

augmentation and a CNN for classification, achieving state-

of-the-art results. Hernández-García et al. (2022) developed 

a CNN-based model for gender and age classification using 

palm-vein images, achieving state-of-the-art performance. 

Alshakree et al. (2023) proposed a method combining deep 

learning networks and the gray wolf optimization 

algorithm for palm print recognition, outperforming 

existing methods. Wulandari et al. (2024) combined discrete 

wavelet transform, histogram of oriented gradient, and 

CNNs, demonstrating promising results in terms of 

accuracy, area under receiver operating characteristic curve 

(AUC), and equal error rate (EER) on multiple datasets. 

Ezzat et al. (2021) developed an optimized deep learning 

architecture for the diagnosis of COVID-19 disease. The 

authors used a Convolution Neural Network architecture 

called DenseNet121 and an optimization algorithm called 

Gravitational search algorithm (GSA) to select optimal 

values for the hyper-parameters of the CNN architecture 

with accuracy of 98.38% achieved.  

The reviewed studies demonstrate the potential of CNN-

based approaches for palm-vein recognition systems, 

particularly when combined with optimization techniques, 

data augmentation strategies, and hybrid feature extraction 

methods. The proposed research aligns well with these 

findings and aims to contribute to the advancement of 

palm-vein recognition systems for verification and 

identification applications by optimizing CNN 

hyperparameters using the Gravitational Search Algorithm. 

3 RESEARCH METHODOLOGY   

The methodology for developing a Palm-vein Recognition 

System for Access Control involves acquiring palm-vein 

data, pre-processing the data, extracting deep features 

using a CNN, classifying with SoftMax, and evaluating 

system performance. The aim is to create an accurate and 

reliable system for secure identification based on unique 

palm-vein patterns. 

 

3.1 IMAGE ACQUISITION  

The palm-vein pattern, due to its visibility in the near 

infrared spectrum and inability to be captured by ordinary 

cameras under visible light, necessitated the use of near 

infrared CCD sensitive cameras. In this study, 200 

individuals' palm-vein images were captured using such 

cameras. The images were acquired in the 256RGB colour 

format, with each channel having 8 bits per pixel. The 
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resolution of the images was set at 640×480 pixels. For each 

individual, five palm-vein images were captured, resulting 

in a total of 1000 images (200 individuals × 5 images). Out 

of these, 700 palm-vein images were utilized for training the 

system, while the remaining 300 images were employed for 

testing the system's performance.  

 

3.2 IMAGE PRE-PROCESSING  

In this study, the pre-processing steps encompassed the 

localization of Region of Interests (ROIs) and normalization 

using the Histogram Equalization technique. The emphasis 

was on identifying and isolating the ROIs to specifically 

target the relevant palm-vein patterns, thereby optimizing 

recognition performance. The following steps were 

employed to extract the ROIs for palm-vein: 

i. Image binarization; 

ii. Determination of gap boundaries; 

iii. Calculation of tangents for the two gaps; 

iv. Using the tangent as the Y-axis of the palm 

coordinate, establish a line connecting points (x1, 

y1) and (x2, y2); 

v. Utilizing a line passing through the midpoint of 

points (x1, y1) and (x2, y2), perpendicular to the Y-

axis, establish the X-axis line perpendicular to the 

tangent determined in step iii; 

vi. Locate the ROI as a fixed-size square centered at a 

fixed distance from the origin of the palm 

coordinate; 

vii. Extract the sub-image within the ROI. 

Deep learning approaches, such as CNN, were 

employed for certain pre-processing tasks, including the 

segmentation of data from a noisy background. The 

Histogram Equalization technique was utilized for 

enhancement of palm-vein images. Histogram equalization 

typically enhances the global contrast of an image. These 

pre-processing techniques significantly contribute to 

enhancing the overall quality and robustness of the 

biometric recognition system. Figure 1 shows some of the 

pre-processed and original images.  

   

Pre-

processed 

Images 

   

Original 

Images 

Fig. 1: Some of the pre-processed and original images 

3.3 THE STANDARD CNN  

In this study, a CNN architecture with four layers is utilized 

to process the palm-vein images. The Convolutional Neural 

Network employed in this study comprises four basic 

layers: the convolution layer, the rectified linear unit 

(ReLU) layer, the max pooling layer, and the fully 

connected layer. 

3.3.1 CONVOLUTION LAYER  

The first layer of CNN is convolution layer in which the 

original image (𝑖(𝑥, 𝑦)) is convolved with the filter kernel 

(𝐹𝑘) as given in Equation 1. This layer is also called as 

hidden feature extractor which describes the internal 

connectivity of the image region. The dimensions of the 

filter kernel used for convolution are 5×5×6. To maintain the 

size of convolutional map the original image is zero padded 

on the border. The filter weights are adjusted using mini-

batch gradient descent learning method. 
                                    𝐼𝐶𝑂𝑁𝑉 = 𝑖(𝑥, 𝑦) ⊗ 𝐹𝐾(5×5×6)           (1) 

3.3.2 Rectified Linear Unit (ReLU) Layer  

ReLU is applied after convolutional layer which uses 

nonlinear activation function as shown in Equation 2 to 

minimize the linearity introduced in the convolutional layer 

and. In this layer the all the neurons with negative weights 

are forced to zero.  

𝐼𝑅𝐸𝐿𝑈(𝑥, 𝑦) = 𝑚𝑎𝑥(𝐼𝐶𝑂𝑁𝑉(𝑥, 𝑦), 0)             (2) 

3.3.3 MAX POOLING LAYER   

Max pooling layer acts as non-linear down sampling 

method to reduce the number of neurons in the ReLU layer 

output. It divides the image into the non-overlapping 

region of N×N pixel and consider the maximum value of the 

local region. This layer minimizes the computation time 

and also control the overfitting.  

3.3.4 FULLY CONNECTED LAYER  

In fully connected layer, neurons from different layers are 

connected in one layer. Most of the classifiers needed the 

data in one dimensional therefore multidimensional feature 

map is converted in to 1-dimensional vector. 

For the learning of CNN mini batch gradient descent 

optimization algorithm is used. In the mini-batch gradient 

descent algorithm, the sum or average of the gradients is 

chosen. Taking the average helps reduce the variation of the 

gradient. This approach combines the robustness of 

stochastic gradient descent and the effectiveness of batch 

gradient descent. The mini-batch gradient descent method 

is frequently used in deep learning algorithms due to its 

computational efficiency. For each training epoch, the total 
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number of iterations is determined by T, where T is 

calculated as T = n/b, with "n" representing the total number 

of training dataset samples and "b" representing the batch 

size. The weights (w) of the CNN are optimized using an 

error function defined in Equation 3, specific to this study. 

This optimization process aims to improve the performance 

and accuracy of the CNN model. 

𝐸𝑡[𝑓(𝑤)] =
1

𝑏
 ∑ 𝑓(𝑤, 𝑥𝑖)

𝑡𝑏

𝑖=(𝑡−1)𝑏+1

                     (3) 

Where 𝑥𝑖 is ith sample of training data. At each iteration the 

weights are updated by rule mini batch gradient descent 

update rule with learning rate 𝜇 given in Equation 4. 

𝑤𝑡+1 = 𝑤𝑡 − 𝜇∇𝑤𝐸𝑡[𝑓(𝑤𝑡)]                             (4)  

3.4 THE GSA-CNN  

The proposed method employs the GSA to optimize the 

hyperparameters of a CNN for palm-vein recognition. The 

GSA is a population-based metaheuristic inspired by 

Newton's law of gravitation, where agents (solutions) are 

attracted by the force of gravity toward more massive 

agents (better solutions). The steps of the GSA-CNN 

technique are as follows: 

1. Initialize a population of N agents 𝑋𝑖(1, 2, … , 𝑁) with 

random positions within the hyperparameter ranges. 

2. Initialize the gravitational constant 𝐺0 and set the 

current iteration t = 0. 

3. Evaluate the fitness 𝑓𝑖𝑡𝑖(𝑡) for each agent 𝑋𝑖(𝑡) by 

training and evaluating the CNN with the 

corresponding hyperparameter values. 

4. Update the best fitness value 𝑏𝑒𝑠𝑡𝑓𝑖𝑡  and the best 

solution 𝑏𝑒𝑠𝑡𝑋  found so FPR.  

5. Calculate the mass 𝑀𝑖(𝑡) for each agent 𝑋𝑖(𝑡) based on 

its fitness: 

           𝑀𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) − 𝑊𝑜𝑟𝑠𝑡𝑓𝑖𝑡(𝑡)

𝑏𝑒𝑠𝑡𝑓𝑖𝑡(𝑡) − 𝑊𝑜𝑟𝑠𝑡𝑓𝑖𝑡(𝑡)
               (5) 

Where 𝑊𝑜𝑟𝑠𝑡𝑓𝑖𝑡(𝑡) is the fitness of the worst agent in the 

current population. 

6. Update the gravitational constant G(t) for the current 

iteration: 

                                𝐺(𝑡) = 𝐺0 ∗ exp (−𝛼 ∗ (
𝑡

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
))           (6)        

       Where 𝛼 is a constant, and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟is the maximum 

number of iterations. 

7. Calculate the total force 𝐹𝑖(𝑡) acting on each agent 

𝑋𝑖(𝑡): 

For each agent 𝑋𝑗(𝑡) (𝑗 ≠ 1): 

Calculate the Euclidean distance 𝑅𝑖𝑗(𝑡) between 

𝑋𝑖(𝑡) and 𝑋𝑗(𝑡) 

Calculate the force 𝐹𝑖𝑗(𝑡) acting on 𝑋𝑖(𝑡)  due to  𝑋𝑗(𝑡): 

       𝐹𝑖𝑗(𝑡) = 𝐺(𝑡) ∗
𝑀𝑖(𝑡) ∗ 𝑀𝑗(𝑡)

𝑅𝑖𝑗(𝑡)2
∗ (𝑋𝑗(𝑡) − 𝑋𝑖(𝑡))       (7) 

        Update the total force 𝐹𝑖(𝑡) acting on 𝑋𝑖(𝑡): 
          𝐹𝑖(𝑡) =  𝐹𝑖(𝑡) +  𝐹𝑖𝑗(𝑡)              (8)                                                                     

8. Calculate the acceleration 𝑎𝑖(𝑡) for each agent 

𝑋𝑖(𝑡): 

  𝑎𝑖(𝑡) =
𝐹𝑖(𝑡)

𝑀𝑖(𝑡)
                          (9) 

9. Update the velocity 𝑣𝑖(𝑡 + 1) and position 𝑋𝑖(𝑡 +

1) for each agent: 

𝑣𝑖(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 ∗ 𝑣𝑖(𝑡) + 𝑎𝑖(𝑡)    (10) 

            𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)     (11)   

        Where 𝑟𝑎𝑛𝑑𝑖 is a random number in [0, 1]. 

10. Check the stopping criteria. If the criteria are not 

met, increment 𝑡 and go to step 3. 

11. Return the best solution 𝑏𝑒𝑠𝑡𝑋, which represents 

the optimal hyperparameter values for the CNN. 

In this algorithm, the positions of the agents 

symbolize various hyperparameter configurations, while 

the fitness function assesses the CNN's performance using 

these configurations for palm-vein recognition. The 

algorithm updates the agents' positions iteratively by 

considering the gravitational forces exerted on them, which 

are determined by their fitness values. Agents with higher 

fitness attract other agents towards their positions, 

directing the search towards optimal hyperparameter 

values. The process flow used in the study is illustrated in 

Figure 2. 
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Fig. 2: The process flow 

 

3.5 CLASSIFICATION MODULE 

After applying the GSA-CNN technique to optimize the 

hyperparameters of the Convolutional Neural Network 

(CNN) for deep palm-vein feature extraction, the 

classification module employs a SoftMax layer to classify 

the extracted features. The SoftMax layer is a generalization 

of the logistic function that computes the probability 

distribution over multiple classes. The SoftMax function 

computes the probability of the input x belonging to each 

class j as follows: 

        𝑃(𝑦 = 𝑗|𝑥) =
𝑒𝑤𝑗

𝑇𝑋+𝑏𝑗

∑ 𝑒𝑤𝑗
𝑇𝑋+𝑏𝑗𝐾

𝑘=1

                          (12) 

where K is the number of classes, and w and 𝑏𝑗 are the 

weight vector and bias corresponding to class j respectively. 

The SoftMax layer outputs a vector of K probabilities, one 

for each class, summing to 1. The class with the highest 

probability is then selected as the predicted class for the 

input palm-vein feature vector x.  

3.6 DECISION MODULE 

The decision module determines the final classification of 

the input palm-vein image based on the output of the 

SoftMax layer. The decision module mathematically can be 

expressed as: 
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑙𝑎𝑠𝑠

= {
𝐴𝑐𝑐𝑒𝑝𝑡 (𝐺𝑒𝑛𝑢𝑖𝑛𝑒), 𝑖𝑓 𝑚𝑎𝑥𝑗   𝑃(𝑦 = 𝑗|𝑥)  ≥ 𝜃  

𝑅𝑒𝑗𝑒𝑐𝑡(𝐼𝑚𝑝𝑜𝑠𝑡𝑜𝑟), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             
       (13) 

The decision module compares the similarity score 

(output of the SoftMax layer) against the predetermined 

threshold 𝜃. 

The performances of the investigated biometric 

system were evaluated by calculating its specificity, 

sensitivity, false positive rate, accuracy. Confusion matrix 

was used to determine the value of the performance 

metrics. It contained True Positive (TP), False Positive (FP),  

 

 

False Negative (FN) and True Negative (TN). These metrics 

are defined as follows: 

  Sensitivity =  
TP

TP + FN
                                           (14) 

  Specificity =  
TN

FP + TN
                                            (15) 

  FPR =  
FP

FP + TN
                                                        (16) 

  Accuracy =  
TP + TN

FP + FN + TP + TN
                         (17) 

Fig. 3a: Confusion 
Matrix of CNN  

Fig. 3b: Confusion 
Matrix of GSA-CNN  
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4 RESULTS AND DISCUSSION 

  The experimental setup for this study was conducted using 

MATLAB R2021a on a Hewlett-Packard G56 laptop with an 

Intel® Core™ i5 Duo processor, Windows 10 Professional 

64-bit OS, 2.7GHz CPU, 16GB RAM, and a 1TB hard drive. 

The evaluation of the palm-vein recognition system's 

performance was conducted by analysing the results 

obtained from the Convolutional Neural Network (CNN) 

and the Gravitational Search Algorithm-CNN (GSA-CNN) 

techniques. Through empirical investigation, it was 

observed that the performance metrics of these techniques 

were significantly influenced by the threshold value 

employed. Notably, both methods exhibited optimal 

performance when the threshold value was set at 0.75. 

Consequently, the in-depth discussion and presentation of 

the results were primarily focused on the analysis and 

comparison of the two techniques at the threshold value of 

0.75, as this value yielded the most favourable outcomes. 

 

The dataset used in the evaluation consisted of 300 palm-

vein datasets, with 174 being genuine and 126 being 

impostor samples. With the CNN technique, as shown in 

Figure 3a, it correctly identified 139 genuine palm-vein 

datasets while incorrectly classifying 35 genuine samples as 

impostors. This indicates a true positive rate of 79.9% 

(139/174) and a false positive rate of 20.1% (35/174). On the 

impostor side, the CNN technique misclassified 32 

impostor samples as genuine, resulting in a false negative 

rate of 25.4% (32/126), and correctly identified 94 impostor 

samples, corresponding to a true negative rate of 74.6% 

(94/126).  

These results highlight the trade-off between security and 

convenience in access control systems. The CNN technique 

demonstrates a relatively high false positive rate, implying 

a certain vulnerability to impostor attacks. While it achieves 

a satisfactory true positive rate, the misclassification of 

genuine palm-vein datasets as impostors can lead to access 

denial for legitimate users (Zayed et al., 2023). This may 

result in inconvenience and frustration for individuals 

attempting to gain authorized access. In contrast, the GSA-

CNN technique, as depicted in Figure 3b, exhibits 

improved performance. It correctly classifies 161 genuine 

palm-vein datasets, achieving a true positive rate of 92.5% 

(161/174). However, it misclassifies 13 genuine samples as 

impostors, resulting in a false positive rate of 7.5% (13/174). 

On the impostor side, the GSA-CNN technique correctly 

identifies 116 impostor samples (true negative rate of 92.1%, 

116/126) and misclassifies 10 impostor samples as genuine 

(false negative rate of 7.9%, 10/126). 

The findings indicate that the GSA-CNN technique 

provides a higher level of accuracy and security compared 

to the CNN technique. The reduced false positive rate 

suggests a lower risk of impostor attacks, minimizing the 

chances of unauthorized access. Also, the higher true 

positive rate implies improved identification of genuine 

users, leading to a decreased false rejection rate and 

enhanced user experience (Song et al., 2017).  

Previous research studies on palm-vein biometrics have 

consistently reported observations pertaining to the 

inherent trade-off between security considerations and user 

convenience. Notably, these studies have underscored the 

critical importance of striking an optimal balance between 

the False Positive Rate (FPR) and the False Negative Rate 

(FNR) to achieve superior performance in access control 

systems (Jain et al., 2016). The results obtained from the 

Gravitational Search Algorithm-Convolutional Neural 

Network (GSA-CNN) technique exhibit a more favourable 

trade-off between FPR and FNR when compared to the 

conventional Convolutional Neural Network (CNN) 

technique. 

Theoretical standards, such as the ISO/IEC 19795-1:2011 

biometric performance testing and reporting standard, 

provide guidelines for evaluating biometric systems. These 

standards emphasize the need for low FPR and FNR rates 

to ensure accurate and reliable identification (ISO/IEC, 

2011). The GSA-CNN technique's performance, with its 

lower false positive and false negative rates, aligns more 

closely with these theoretical standards compared to the 

CNN technique. The results indicate that the GSA-CNN 

technique outperforms the CNN technique in several 

aspects. GSA-CNN demonstrates higher specificity 

(92.06%) compared to CNN (74.60%), indicating a lower 

false positive rate as described in Table 1. This implies 

reduced vulnerability to impostor attacks, improving the 

security of access control systems. GSA-CNN also exhibits 

higher sensitivity (92.53%) compared to CNN (79.89%), 

indicating a higher true positive rate and improved 

identification of genuine palm-vein samples as described in 

Table 1. 

Table 1: Performance of the Techniques 

The lower FPR of GSA-CNN (7.94%) compared to CNN 

(25.40%) further supports its superiority. A lower FPR 

ensures fewer instances of genuine samples being 

misclassified as impostors, minimizing inconvenience and 

Techniques 
Specificity 

(%) 

Sensitivity 

(%) 

FPR 

(%) 

Accuracy 

(%) 

Time 

(seconds) 

CNN 74.60 79.89 25.40 77.67 117.52 

GSA-CNN 92.06 92.53 7.94 92.33 97.14 
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access denial for authorized users. Moreover, GSA-CNN 

achieves a higher accuracy rate (92.33%) compared to CNN 

(77.67%), indicating better overall performance in palm-

vein recognition. The processing time of GSA-CNN (97.14 

seconds) is also significantly lower than that of CNN (117.52 

seconds). This implies that GSA-CNN offers faster palm-

vein recognition, potentially leading to improved system 

efficiency and user experience. 

The superior performance of the GSA-CNN technique can 

be attributed to the effective optimization of the 

hyperparameters of the CNN by the Gravitational Search 

Algorithm. This optimization process enables the CNN to 

learn more discriminative features from the palm-vein data, 

leading to improved classification accuracy, sensitivity, 

specificity, and reduced false positive and false negative 

rates. These findings are consistent with the observations of 

Bergstra and Bengio (2012), who demonstrated the 

significant impact of hyperparameter optimization on the 

performance of deep learning models. It also aligns with the 

findings of Wang et al. (2021), who emphasized the 

importance of minimizing false negatives in biometric 

recognition systems to ensure reliable user authentication 

and prevent unauthorized access denial. Therefore, the 

implementation of GSA-CNN can enhance the security and 

accuracy of palm-vein biometric recognition, reducing the 

risk of impostor attacks and access denial for genuine users.  

5 CONCLUSIONS  

The proposed palm-vein recognition system employing a 

Convolutional Neural Network optimized by the 

Gravitational Search Algorithm (GSA-CNN) has 

demonstrated superior performance compared to the 

conventional CNN approach. The GSA-CNN technique 

achieved higher specificity, sensitivity, and accuracy rates, 

along with lower false positive and false negative rates. 

These improvements can be attributed to the effective 

hyperparameter optimization by the GSA, enabling the 

CNN to learn more discriminative features from the palm-

vein data. Additionally, the GSA-CNN exhibited a 

significantly lower processing time, making it suitable for 

real-time access control applications. Based on the 

promising results of the GSA-CNN technique, it is 

recommended to consider its deployment in practical 

access control systems, where robust security, accurate user 

identification, and efficient processing are critical 

requirements. Furthermore, the integration of the GSA-

CNN system with other biometric modalities, such as 

fingerprint or facial recognition, could be explored to 

develop a multi-modal biometric system, potentially 

enhancing the overall security and reliability of the access 

control system. Future work includes exploring advanced 

optimization algorithms, data augmentation, and transfer 

learning to further enhance performance and 

generalization. Evaluating robustness under varying 

conditions, integrating with additional security measures, 

and developing scalable and adaptive learning mechanisms 

to handle larger databases and pattern changes over time 

are also recommended to improve real-world applicability
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