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ORIGINAL RESEARCH 

 

Abstract— Accuracy and model compactness are essential requirements for weather forecasting models designed for operation on low-

power embedded devices. This study developed Mixed-Input Residual Network (MIRNet), a compact temperature-forecasting deep neural 
network model. MIRNet integrates stacked bidirectional long short-term memory layers using concatenated 1-dimensional and 2-dimensional 
convolutional layers to improve model accuracy. MIRNet was trained and tested on two datasets: one, IfeData, comprising historical weather 
data from Ile-Ife, Nigeria and the other a standard weather forecasting dataset called the Jena dataset. Training was carried out using 100 
epochs of data partitioned in the standard 80:20 ratio, with an adaptable learning rate strategy. The model was tested for Nth-hour-ahead 
prediction for 1≤N≤24; where N∈ ℕ are natural numbers, and performance quantified using metrics such as mean absolute percentage error 
(MAPE) and mean square error (MSE). The model was also implemented on a Raspberry Pi 4 device with a 1.8 GHz 64-bit quad-core ARM 
Cortex-A72 processor. The model achieved a MSE of 1.00 x 10-3 on the IfeData dataset, and 1.23x10-4 on the Jena dataset for 1-hour ahead 
forecasting. This is currently the best verifiable result achieved on the Jena dataset by any prediction model globally. For Nth hour ahead 
forecasting, MIRNet achieved an MSE generally below 2.0x10-3 for all values of N on the standard Jena dataset. The MSE of MIRNet for N-
sequential 1-hour ahead and single Nth hour predictions using the Jena dataset reveal quadratic and linear relationships with N respectively. 
The model compares favourably with existing models for multi-hour predictions. The developed model is compact and has good forecasting 
properties.     
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——————————   ◆   —————————— 

1 INTRODUCTION 

ccurate weather forecasting plays an important role 
in various industrial sectors such as energy 
management, agriculture, transportation, and 

disaster preparedness. Among the numerous weather 
parameters, temperature stands as one of the 
fundamental and highly influential factors. Accurate 
temperature forecasts enable decision-makers, 
businesses, and individuals to plan effectively, mitigate 
risks, and optimise resource allocation. 
Over the years, advancements in computational 
techniques have transformed weather forecasting from a 
traditional, data-driven endeavour into a data-intensive 
scientific discipline (Kumar, 2023). The quality of weather 
forecasting is fundamentally dependent on the data on 
which the forecasting model is based. In this regard, the 
choice is usually between data gotten from in-situ or local 
instrumentation, versus data gotten from satellites. Each 
category offers a different trade-off between coverage 
area and local accuracy, with satellites offering more 
coverage than in-situ instruments, but being less accurate, 
in general, for any specific location.  
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This trade-off has implications on the prediction of very 
local or small-scale weather phenomena (Dirmeyer, 2003). 
Consequently, despite key advances in the qualities of 
global and regional weather models as well as available 
computational power to run them, there is still great 
interest in techniques for high-accuracy forecasting of 
weather parameters based solely on local measurements. 
Beside prediction accuracy, model compactness (to allow 
running the model on resource-limited platforms) is also  
a characteristic that is highly valued (Li et. al., 2020; 
Debelee and Ayano, 2022). For example, a nationwide 
network of low-cost weather stations in Nigeria named 
WeatherWAN is currently being prototyped by 
researchers under the Nigerian Communications 
Commision Research Innovations Grant. For 
sustainability and scalability of the weather stations, it is 
imperative that the network nodes being used are low-
power, durable, and require minimal maintenance 
without compromising the accuracy of the system. The 
weather stations require accurate local weather data and 
make their predictions without recourse to external data 
sources or computational resources. Use cases such as this 
partly explain the recent attention paid to deep learning 
weather forecasting models, particularly those that can be 
run on low-power, low-resource embedded devices. 
 
This paper introduces such a network, the Mixed-Input 
Residual Network (MIRNet), a temperature-forecasting 
framework that integrates residual blocks and 
bidirectional long short-term memory (BILSTM) 
networks, harnessing their capabilities to capture intricate 
temporal dependencies and enhance the modelling of 
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complex climate patterns. MIRNet utilises alternative 
residual paths for the variable of interest, as well as a 
multivariate representation of the full prevailing weather 
conditions over the last 48 hours.   
 
However, different from the existing work, we take into 
consideration model compactness without compromising 
good forecasting accuracy in order to achieve a  MIRNet 
system that significantly outperforms previous weather 
models. The system is demonstrated to run on a 5 W 
Broadcom BCM2711 device with a 1.8 GHz 64-bit quad-
core ARM Cortex-A72 platform. For model compactness, 
the MIRNet makes use of an adaptable sampling rate, 
along with optimised energy usage and time-share 
utilisation of various subsystems based on anticipated 
weather sensing. MIRNet is a solution that we have 
developed as a weather forecasting tool that can be used 
on resource-constrained devices, thus making them 
usable in in-situ low-cost weather stations such as 
WeatherWAN. 
 
The novelty in our research lies in the innovative 
integration of residual blocks and BiLSTM, aimed at 
addressing resource constraints. Additionally, our 
approach involves the effective fusion of single-
dimensional and multidimensional inputs. This 
combination not only enhances the model's capacity to 
capture long-term dependencies and utilise skip 
connections but also ensures adaptability to diverse data 
formats. The subsequent sections of the paper will delve 
into the methodology, experimental setup, results and 
discussions, showcasing the effectiveness of the 
developed model. 
Recent years have witnessed a surge of interest in deep 
learning techniques, particularly the class of recurrent 
neural networks (RNNs) called long short-term memory 
(LSTM) networks and convolutional neural networks 
(CNNs) for tackling temperature forecasting. CNNs are 
excellent for capturing spatial (two- or three- 
dimensional) patterns, while LSTMs are excellent for 
sequences or temporal dynamics. Haque, Tabassum and 
Hossain (2021) conducted a comparative study of six 
different deep network architectures: gated recurrent unit 
(GRU),convolutional neural network (CNN), simple 
recurrent neural network (SRN), long-short term memory 
(LSTM), and two hybrid models. The paper reported a 
RMSE value of 1.1729, 1.2010, 0.9764, 1.0270, 0.8575 and 
1.0277 for SRN, GRU, LSTM, CNN, CNN-LSTM and 
GRU-LSTM respectively for 1-hour ahead prediction 
which shows the excellent temporal and spatial extraction 
capabilities of the hybrid CNN-LSTM approach. 
 
One trend that has emerged in recent years is to utilise 
combinations of LSTMs and CNNs within the same 
model. This allows models to capture not just temporal 
dynamics, but inter-variable interactions. Hewage et al., 
(2021) proposed a novel compact data-driven weather 
forecasting model that utilises temporal modelling 
approaches of LSTM and temporal CNN. The 
performance of this model was compared with that of 
existing classical approaches, and it was shown that it out-
performed selected classical models for efficient and 
accurate weather forecasting up to 12 hr. LSTM-CNN 
Integration was also explored in Hou et al., (2022) in 

which a hybrid LSTM-CNN model was used for hourly 
temperature prediction. In that study, the time series data 
dimensionality was reduced using CNN, while the long-
term memory of the massive temperature time-series data 
was captured with LSTM.  
 
In the SeriesNet model proposed by Shen et al., (2020), a 
CNN network was integrated with an LSTM network 
which learned holistic features and carry out the 
reduction of multi-conditional data dimensionality, and a 
dilated causal convolution network which attempts to 
learn different time intervals. This model was said to be 
able to learn multi-level and multi-range features from 
time series data, and had higher predictive accuracy in 
comparison to models using fixed time intervals. 
Moreover, SeriesNet adopted residual learning which is 
another relatively common technique to improve model 
performance. Residual blocks enhance the training of 
deep neural networks by mitigating the vanishing 
gradient problem and enabling the successful training of 
extremely deep architectures. Improvements in 
performance have been documented for variations of 
residual learning (He et al., 2016; Zhao et al., 2016; Huang 
et al., 2017).  
 
A technique called stacking has also been investigated by 
numerous studies. Examples of this can be seen in Li et al. 
(2019) where a stacked LSTM was used to process 
temperature time series data and also carry out 
temperature prediction every half hour. The comparison 
of prediction and training with the two benchmark 
algorithms of deep neural network (DNN) and random 
forest (RF) on generated data under different sliding 
windows, found the stacked LSTM to perform better 
based on MSE, RMSE and MAE. Al Sadeque and Bui 
(2020) also provided evidence of benefits of stacking deep 
neural networks for improved forecasting accuracy.   
Another variation on standard LSTMS that has been 
applied for temperature forecasting is BiLSTM. Bi-LSTM 
processes sequences in both backward and forward 
directions (in contrast to LSTM training exclusively in a 
forward manner) enabling the model to incorporate 
future information into the prediction, and thereby 
enhancing the performance (Graves and Schmidhuber, 
2005).  Liang et al., (2021) proposed a BiLSTM-based 
model called BL-FC network for temperature modelling 
and forecasting. BL-FC has four layers: the first layer is a 
Bi-LSTM layer, which learns features from continuous 
temperature data in both backward and forward 
directions; the other three layers are fully connected 
layers, the second and third layers additionally extract 
data features, and the last layer  maps the final output of 
temperature prediction. The BL-FC model achieved 
values of 0.9761 and 0.7147 for MSE and MAE 
respectively for 4-hour ahead prediction. 

2 METHODOLOGY 

2.1. MIRNET DEVELOPMENT 
The following specifications were adopted in developing the 
MIRNet: 

●Bidirectional LSTM 
●Stacking 
●Residual learning 
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●Combined 2D CNN  
●Should run on embedded system 
 

The first four specifications are features that have been used 
individually or collectively in previous high-performing models, 
while the last was necessitated by the specific use case for which 
MIRNet was developed: to be used for environmental variable 
prediction on the nodes of a network of low-powered automatic 
weather stations. Figure 1(b) shows the BiLSTM structure used for 
this work contrasted against the conventional LSTM structure in 
Figure 1(a). 

 
(a) 

 
(b) 

Figure 1: Variants of the long short-term memory network 
structure (a) Conventional LSTM (b) BiLSTM structure 
 
The relationship for a single LSTM cell h in the reverse direction is 
given by (Shuster and Paliwal, 1997): 
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Where 𝜖ℎ
𝑡  is the back propagated output error on cell h at time t, 

V and W indicate weight matrices, and B denotes the group of 
cells. D is the error derivative for the cell's gates, and y is the 
output of each gate, where the subscripts ig, s, fg, and og represent 
input gate, state, forget gate, and output gate, respectively. The 
state value of  h is 𝑠ℎ , and the net output error at time t is 𝐸𝑡. 
According to the LSTM unit operation in the backward layer, 
BiLSTM can vary the parameters to reduce the forward layer 
propagated errors. 
 
Residual learning (He et al., 2016) is a popular choice for 
countermeasures because of its straightforward approach and 
proven effectiveness.  The desired mapping of the stacked layers 
in conventional DNN can be represented as 

 
                           𝜙(𝑥) = 𝜑(𝑥)          (7) 
 
where 𝜑(𝑥)  is the desired underlying mapping and 𝜙(𝑥) is the 
stacked nonlinear layers. For residual, we can learn another 
mapping, 𝜙(𝑥), defined as 
 
            𝜙(𝑥) = 𝜑(𝑥) − 𝑥            (8) 
 
This way, the original mapping can be reformulated as 
 
                    𝜙(𝑥) + 𝑥 = 𝜑(𝑥)          (9) 
 
This key adjustment in the network design shifts the focus from 
having the network learn the complete transformation from input 
to output, to simply learning the residual (or difference) mapping 
for each layer. When the mapping is close to being an identity 
function (meaning it does not change the input much), the 
network becomes adept at detecting subtle changes or 
perturbations. By stacking these residual blocks together, deep 
residual networks maintain or even improve forecasting accuracy 
without encountering diminishing returns. 
 
In normal usage, LSTM networks typically contain multiple layers, 
working concurrently with activated versions of the output. A 
variant of this structure, motivated by the Multilevel Residual 
Network (MRN) in Zhang et al., (2018), was adopted in this study. 
For such a multilevel residual network with stacked layers and a 
total of 2n layers, the output, 𝜑𝑛(𝑥) can be represented as: 
 
𝜑𝑛(𝑥) =  𝜙𝑛(𝜑𝑛−1 (𝑥))  + 𝜎(𝜔(𝜑𝑛−1 (𝑥)))  +  𝜎(𝜔(𝑥))  (10) 
 

where 𝜔(𝑥)  denote the 1D CNN output for input x, 𝜎(x) 
represents an activated output for input x.  
 
Concatenation was also employed to implement skip connections 
in ResNets. A repetitive concatenated structure such as that 
described in (Huang et al., 2017) was adopted, wherein the 
outputs of multiple stacked sub-networks were concatenated, and 
fed into subsequent sub-networks. In this network, the output of 
the jth stacked layer becomes 
 

 φj(x) = ϕj (φj−1(x)) ⧺ ((φj−1(x))) ⧺ ((φj−2(x))) ⧺ ⋯ ⧺ x    

                     (11) 
where ⧺ represents the concatenation operation. 
Previous implementations of similar models all utilised univariate 
approaches, wherein only historical temperature readings are 
utilised as input vectors.  They thus lack the inherent capability to 
effectively learn the spatial relationships within multivariate time 
series data. Multivariate time series data offers the advantage of 
capturing complex interactions between variables and 
dimensions, leading to more accurate modelling and valuable 
insights in time series prediction. 
 
To address these limitations, this study introduces an approach 
combining the strengths of equations (10) and (11) while also 
enhancing the model by incorporating multivariate capability 
which offers the advantage of capturing complex interactions 
between variables and dimensions, leading to more accurate 
modelling performance. This was done by integrating 2-
dimensional (2D) convolutional layers into the stacks. 
 
Consequently, the ith stacked layer output of MIRNet can be 
expressed as the combination of equations (10) and (11) in 
addition to the stacked 2D layers for the multivariate processing: 
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  φi (x)  = yi  ⧺  σ(ω(yi))  ⧺ (φi−1 (x))  ⧺  σ( ω(φi−1 (x))   ⧺
  x ⧺  ν(xm)                                      
        (12) 
where 𝑥 represents the input temperature feature, xm   denotes 
the multivariate input containing temperature and other 
correlated weather variables, 𝜑(𝑥)   is the desired mapping of 
stacked layers, 𝜙(𝑥)  represents the pure stacked layers, 𝜎(𝑧) 
denotes the activated output for input z, 𝜔(𝑧) denotes the 1D 
CNN output for input z and 𝜐(𝑥𝑚)  denotes the output from 
stacked layers of 2D CNN for input xm.. Consequently, each stack 
within the iterative structure of MIRNet consists of elements 
shown in Figure 2. MIRNet consists of repetitions of the basic block 
in Figure 2. 

 

 
Figure 2: Basic block of MIRNet 
 
The requirement of being run on an embedded system however 
places a constraint on how many of the blocks can be 
accommodated by MIRNet. Ultimately, by an iterative process, the 
optimal number of stacks was determined.  
 

2.2. TRAINING DATASETS 
 
Two training datasets are utilised in this study. The first dataset, 
which will be called the “IfeData” dataset in the rest of this paper, 
was obtained from Visual Crossing, an online platform that 
provides paid access to historical global weather data (accessible 
at https://www.visualcrossing.com/weather-data). Data for Ile-
Ife, with specific GPS coordinates 7.49705N, 4.51688E, were 
downloaded for 1-hr interval from January 1, 2018 to December 
31, 2022.  
 
The downloaded data from Visual Crossing were stored in comma-
separated columns, and contained variables such as  data and 
time, sea level pressure (in millibars), temperature (in ◦C), dew 
point (dew) humidity denoting air moisture as a percentage, 
percentage cloud cover,  solar radiation (in watts per square 
metre), precipitation (in mm), wind speed (km/h) and direction (in 
degrees),  precipitation probability (as a percentage), UV Index 
(indicating the level of ultraviolet radiation in a scale from 0 to 10),  
vapour pressure, and related metrics such as “feels like 
temperature”. 
 
It is to be noted that Weather Crossing data are acquired primarily 
through satellites, and as previously stated, satellites may lack 
accuracy at high geographical resolutions. Consequently, a second 
dataset, Jena weather dataset, was also utilised for testing 
MIRNet. The Jena dataset (discussed below) has become a 
standard dataset for testing weather prediction models, which 
facilitates easy comparisons of different models by various 
research groups worldwide. 
 

The Jena weather dataset originates from the meteorological 
station situated at the Max Planck Institute of Biogeochemistry in 
Jena, Germany. It encompasses a comprehensive compilation of 
14 distinct features, each meticulously recorded at 10-minute 
intervals. This extensive data collection spanned eight years, 
starting on January 1, 2009, and concluding on December 31, 
2016. This interval contains 420,551 timestamps, each associated 
with 14 weather parameters. The entire eight-year span was used 
in this study. The dataset is available at 
https://s3.amazonaws.com/keras-
datasets/jena_climate_2009_2016.csv.zip for download. 
 
The Jena dataset encompasses a range of meteorological 
information presented in comma-separated columns. This dataset 
includes essential data points such as Date and Time for temporal 
context. Pressure measurements are denoted in mbar, while 
temperature is conveyed both in degrees Celsius (C) and Kelvin (K). 
Tdew (degC) represents temperature in relation to humidity. The 
level of air saturation with water vapour is expressed as rh (%), 
and related metrics like saturated vapour pressure (mbar), actual 
vapour pressure (mbar), and vapour pressure deficit (mbar) are 
also included. 
Additional meteorological parameters include specific humidity 
(g/kg) and water vapour concentration (mmol/mol). Airtightness 
is quantified in g/m3, while wind-related data comprises wind 
speed (m/s) and maximum wind speed (m/s), along with wind 
direction in degrees.   
 

2.3. EXPERIMENTS 
 

2.3.1.  DATA PREPROCESSING 
 
Correlation analyses were carried out to determine how 
many of the 14 IfeData variables and 14 Jena variables to use, 
with the correlation coefficients with temperature of all 
variables sorted as shown in Table 1. The cloud condition 
variable of the IfeData was excluded as it is a qualitative 
score. Variables that strongly correlate with temperature 
selected, using a cutoff of 0.6 for the IfeData dataset, and 0.8 
for the Jena dataset. This resulted in  the following input 
variables being extracted for IfeData: temp, vapour_pressure, 
feelslike, solarradiation, uvindex. Seven variables ('T 
(degC)','Tpot (K)','VPmax (mbar)','Tdew (degC)', 'VPact 
(mbar)','H2OC (mmol/mol)', 'sh (g/kg)') were extracted from 
the Jena dataset. 
 
Table 1: Results of correlation analyses on IfeData and Jena 
datasets 

IfeData dataset Jena dataset 

Variable Coefficient  Variable Coefficient  

temp              1.000000 T (degC) 1.0000 

vapour_press
ure  

0.990656 Tpot(K) 0.9968 

feelslike        0.949192 VPmax (mbar) 0.9511 

solarradiation   0.657872 Tdew (degC) 0.8957 

uvindex          0.654772 VPact (mbar) 0.8677 

windspeed        0.272730 H2OC 
(mmol/mol) 

0.8672 

winddir          0.000487 sh (g/kg) 0.8668 

precipprob      -0.054596 VPdef (mbar) 0.7617 
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precip          -0.055685 max. wv (m/s) -0.0040 

dew             -0.064979 wv (m/s) -0.0050 

cloudcover      -0.135608 wd (deg) 0.0396 

sealevelpressu
re  

 -0.259744 P (mbar) -0.0454 

humidity        -0.749907 rh (%) -0.5721 

Cloud 
conditions 

Excluded rho (g/m**3) -0.9634 

 
Standardisation techniques include min-max standardisation, 
z-score standardisation, arctan inverse tangent function 
standardisation, and log function standardisation; among 
these, z-score standardisation and min-max standardisation 
are the most effective at avoiding numerical issues for 
gradient update, facilitating learning rate adjustment, 
optimising the search trajectory, and speeding up the search 
for the best solution. For this study the min-max technique 
was utilised since the sample is less noisy and less 
contaminated. The standard expression for min-max , x∗, is 
given by (13): 
 

x∗ =  
x − min

max − min
        (13) 

 

2.3.2.    MODEL TRAINING AND TESTING 

 
MIRNet was thereafter trained on IfeData. A summary of key 
hyperparameters is presented in Table 2. The whole 43,824 
hours of data comprising the IfeData dataset was partitioned 
into 80:20 splits for training and testing, with 25% of the 
training dataset being reserved for validation. The machine 
used for the training was a Hewlett-Packard Z640 workstation 
with a  20-core Intel Xeon ES-2630 v4 processor clocked at 2.20 
GHz and 32 GB DDR RAM, along with  280 GB Intel Optane 900P 
SSD as swap memory, running Ubuntu operating system 
version 18.04.6 LTS and an Nvidia Quadro RTX 8000 graphical 
processing unit (GPU) with 48 GB GDDR6, and 4,608 Tensor 
cores.  
 
Table 2: Hyperparameters and Test Settings 
 

SN Setting Value 

1 Batch size 100 

2 Epochs 100 

3 Training method Adam 

4 Loss function MSE, MAE, MAPE 

5 Activation Function SELU 

6 Input sequence length 48 

7 Output sequence length 1 

8 Training strategy ReduceLROnPlateau 

 
Performance metrics used in the literature for forecasting 
tasks include accuracy, mean absolute error (MAE), mean 
square error (MSE), root mean square error (RMSE), mean 
absolute percentage error (MAPE), R-squared (Coefficient of 
Determination) etc. Each of these measures have their 
strengths and weaknesses. Given that they are by far the most 
popular of the metrics used in literature, MAE, MSE, RMSE, and 

MAPE were all computed in assessing MIRNet performance on 
IfeData. 
MAE indicates the average absolute difference between 
predicted and actual values, giving a measure of the average 
error magnitude without consideration for their direction. The 
MAE is given as 
 

MAE =
1

n
∑ |pi − xi|

n
i=1          (14) 

 
where n is number of observations in the datasets, pi is the 
predicted value for the ith data point generated by the model, 
and xi is the ith datapoint in the dataset. 
 
MSE is the average of the squared differences between actual 
and predicted values. It gives a measure of the average 
squared error, emphasising larger errors. The following was 
used to compute MSE: 
 

MSE =
1

n
∑ (pi − xi)

2n
i=1         (15) 

 
RMSE is the square root of the average of the squared 
differences between predicted and actual values. It gives a 
measure of the magnitude of errors while penalising larger 
errors more heavily. RMSE was computed in this study using: 
 

RMSE = √
1

n
∑ (pi − xi)

2n
i=1       (16) 

 
MAPE calculates the average percentage difference between 
predicted and actual values relative to actual values. It gives an 
estimate of the relative accuracy of the forecasts. MAPE gives 
insights into the proportional error in the forecasts and is 
useful for comparing accuracy across different data ranges. 
MAPE was computed using the following expression: 
 

MAPE =
1

n
∑ |

pi−xi

xi
| × 100%n

i=1       (17) 

 
All of the foregoing experimental steps, from data 
preprocessing, to training and testing, and evaluation, were 
repeated for the Jena dataset, and all metrics recorded. 
  
MIRNet was designed from the ground up to be a single-step 
ahead model. However, its performance was evaluated for 
multi-step prediction. For this purpose, two approaches were 
tested. In one approach, the temperature at the Nth hour into 
the future was predicted using data from the 48 hours 
preceding the first predicted hour. N successive 1-step ahead 
predictions were then carried out, and each time, the most 
recent predicted result was added into the 48-point input 
vector in a first-in-first-out (FIFO) format. In the second 
approach, MIRNet was retrained solely on Jena data, while 
modifying the delta, D, between the hour labelled as the 
output, and the 48 hours forming the input. So, for example, 
for 1-step ahead prediction, D was 1. For true Nth-hour 
prediction, the training and testing were repeated a further 23 
times, for values of D = 2,3, ... ,24.  

 

2.3.3.   TESTING ON A CORTEX-A72 PROCESSOR 
 

In order to verify the suitability of MIRNet for the target 

use case of low-power devices, it was tested on a selected 
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node of the NCC WeatherWAN prototype within the 

network. The layout of the prototype network is shown in 

Figure 3.  As illustrated in Figure 3, various battery and 

supercapacitor chemistries are used for energy storage. 

However, irrespective of the chemistry used, none of the 

node power supply units exceed 10 W rating. 

Furthermore, nodes are powered through energy 

harvested using solar panels, making energy usage 

optimization essential. Furthermore, ultracapacitors and 

lithium-based storage chemistries possess vastly different 

advantages and disadvantages, which have necessitated 

the development of an intelligent hybrid power system 

that uses data, including predicted weather conditions, to 

optimally switch between the different storage 

chemistries and sampling rates. Consequently, a device 

capable of running a prediction model is required, but 

must be one that can operate within the limited energy 

budgets.  

 

Figure 3: Network on which MIRNet was tested 

A Raspberry pi 4 Block B device was adopted for this 

purpose. The device is built around a Broadcom BCM2711 

system on chip, with a 1.8 GHz 64-bit quad-core ARM 

Cortex-A72 processor, and a rated power of 5 W. 

Normally, the lowest-power state of the device is about 

1.48 W. However, through modifications made in the 

EEPROM's bootloader configuration, the 

"WAKE_ON_GPIO" parameter was disabled, and the 

"POWER_OFF_ON_HALT" parameter was enabled, 

bringing its consumption during its sleep state down to 

0.1 W. MIRNet was loaded onto the device, and used to  

carry out both single-step and multi-step predictions. 

Purpose of these tests was not to determine the accuracy 

of the model (which were already known from the tests in 

Section 3.2 of this paper) but the temporal, and energy 

costs of computation.  

3 RESULTS AND DISCUSSION  

3.1 RESULTS 

Figure 4 shows the variation of loss functions during the 
training of the MIRNet model using IfeData dataset. The 
performance of the model during training and testing were 
evaluated, and the results are presented in Table 3. It can be 
seen that the model converges very rapidly. So rapidly, in fact, 
that the chart has to use log vertical scaled to reveal more 
information. Multiple performance metrics (MSE, MAE, MAPE, 
RMSE) were extracted from the model training and testing in 
order to compare with previous results reported in literature. 
Wide variations are observed in the literature in terms of 
choice of evaluation metrics for forecasting tasks, and this is 
evident in the evaluation metrics for selected existing models 
in Table 4. The references listed in Table 4 show variations on 
a single-step prediction on temperature data.  
 

 
Figure 4: Training curved for the IfeData dataset, showing the 
variation of loss with epoch number 
 
Given, however, the known dependence of model 
performance on dataset characteristics, the experiment was 
repeated using the standard Jena dataset. The loss variation 
curves for that training are shown in Figure 5, while the 
performance is presented using various metrics in Table 5.   For 
comparison, Table 6 presents a list of published results carrying 
out the single-step task on the Jena dataset. 
Finally, the results when MIRNet was used for N sequential 1-
hour ahead, and true Nth-hour ahead prediction on the Jena 
dataset, are presented in Figure 6. While the single Nth-hour 
ahead has a reasonable linear relationship between 
performance (using MSE) and N, sequential 1-ahead 
predictions are more quadratic. 
 
 
 
 
 
Table 3: Performance of the proposed MIRNet model for 
single-hour ahead forecasting on IfeData dataset 
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Performance 

Validation Test 

MSE 
(x10-3) 

MAE 
(x10-2) 

MAPE 
(%) 

MSE 
(x10-3) 

MAE 
(x10-2) 

MAPE 
(%) 

1.00 2.11 6.86 1.1611 2.40 9.01 

 
The N sequential single-step ahead resulted in MSE that 
peaked around 8x10-3 for around 15 hours ahead prediction. 
However, the true N-ahead predicted generally stayed below 
2x10-3. Some existing results from the literature, featuring 
multi-step prediction based on the same Jena dataset, are 
presented in Table 7, for comparison. 
 
Table 4: Performance of selected existing models on single-
step ahead forecast  
 

Study Input /Other Details Performance 

Abdel-Aal, 
(2004) 

24 hours temperature for 
previous day 

 MAE: 0.93◦C 
  

Smith et al., 
(2006) 

Up to prior 24 hours of multiple 
variables 

MAE: 0.53◦C 
 

Smith et al. 
(2009) 

Current and prior 24 h of data 
for multiple variables 

MAE: 0.52◦C 
 

Chevalier et 
al., (2011) 

Up to prior 24 h for multiple 
variables 

MAE: 0.51◦C 
 

Li et al., (2019) Global Temperature MSE: 0.026 
RMSE: 0.16 

Sekertekin et 
al., (2021) 

Temperature Predictions MSE: 0.415 
RMSE: 0.644 

Hassani et al., 
(2018) 

Yearly global 1-step RMSE: 0.67 

(Hossain et al., 
2015) 

Previous 96 h values of 
temperature, barometric 
pressure, humidity, wind speed 

RMSE:  
0.0138 

Abubakar et 
al., (2016) 

Rain, Pressure Wind Speed, 
Global Temperature, Relative 
Humidity. 

RMSE:0.089 

Curceac et al., 
(2019) 

Hourly Temperature RMSE: 0.7 

Ortiz-García et 
al., (2012) 

Relative humidity, Precipitation 
Pressure, Global radiation, Air 
temperature, Wind speed and 
Wind direction 

 RMSE: 0.61 

 
 

 
Figure 5: Training curved for the Jena dataset, showing the 
variation of loss with epoch number 
 
Table 5: Performance of the proposed MIRNet model for 
single-hour ahead forecasting on Jena dataset 
 

Performance 

Validation Test 

MSE 
(x10-4) 

MAE 
(x10-3) 

MAPE 
(%) 

MSE 
(x10-4) 

MAE 
(x10-3) 

MAPE 
(%) 

1.23 7.62 1.31 1.23 7.69 1.36 

 
Table 6: Performance of existing models on single-step ahead 
temperature forecast on Jena dataset 

Study Input /Other Details Performance 

Wang et 
al (2022) 
 

72 hours of water vapour content, 
specific humidity, wind speed, and air 
pressure, and temperature 

MSE:  
2.12 x 10-5 

Ko et al 
(2020) 

Temperature MSE: 1.8 x 
10-4 

Fang & 
Yuan 
(2019) 

14 different quantities, such as air 
temperature, atmospheric pressure, 
humidity, and so on for single and 
multi-step temperature forecast 

MSE: 0.018 
MAPE: 3.56% 

 
The power consumption of the Raspberry Pi 4 device during 
different states during the test were measured, and presented 
in Table 8. For the tests, the MIRNet, running on the Raspberry 
pi, was used for N-hours ahead predictions, where N=1,2,..,24. 
Since MIRNet only makes one prediction at a time, to predict 
N hours ahead, the model carried out N different y hours ahead 
for each N, where y = 1,...,N. The cumulative time required for 
prediction for all values of N up to 24 are presented in Figure 
7. Finally, using the values in Table 8 and Figure 7, the average 
power required to run the Raspberry device such that it 
predicted H hours ahead, where H ∈{1,4,8,12,16,20,24} were 
calculated, and presented in Table 9. 
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Figure 6: Performance of MIRNet model for N sequential 1-
hour ahead, and single Nth-hour ahead prediction using the 
Jena dataset  
 
Table 7: Results from existing multi-step models tested on the 
Jena dataset 
 

Study Details Number 
of hours 

Performance 

Fang & 
Yuan (2019) 

14 different quantities, 
such as air temperature, 
humidity, atmospheric 
pressure, and so on for 
single and multistep 
temperature forecast 

10 MAE: 0.15 
RMSE: 0.192 

Dixon 
(2022) 

20 steps of 14 different 
quantities (such 
as air temperature, 
atmospheric pressure, 
humidity, wind direction 
etc) for temperature 
predictions 

10 MSE: 2.107 
MAE: 1.097 

Utku and  
Can (2022) 

pressure, temperature, 
saturation vapour 
pressure, vapour 
pressure deficit, specific 
humidity, airtight, and 
wind speed as input for 
temperature prediction 

12 MSE: 0.035 
MAE: 0.126 
RMSE: 0.189 

Zhang et al 
(2021) 

The temperature, 
pressure, and air density 
data of the 
past 24 hours as input 

24 MSE: 
0.000281 

Li et al 
(2023) 

21 meteorological 
indicators including, the 
amount of rain, humidity 
Temperature as the 
target, variable 

48 MSE: 0.3216 
MAE: 0.3433 

 
Table 8: Power consumption for different states of the 
Raspberry Pi 4 

SN State Average power consumption (W) 

1 Boot 3.24 

2 Idle 2.09 

3 Model Loading 2.87 

4 Prediction 3.33 

6 Low-power mode 0.10 

 

 
Figure 7: Time required to predict N total hours ahead on the 
Raspberry Pi device for 1≤N≤24 
 
Table 9: Average power consumption by the Raspberry Pi 
device for selected number of hours ahead 
 

H Hours Ahead  
(hours) 

Average Power consumption (W) 

1 0.152 
4 0.279 
8 0.450 
12 0.608 
16 0.816 
20 0.997 
24 1.221 

 

3.2 DISCUSSION 

 
The immediate impression from the comparison of the IfeData 
performance in Table 3 with existing results in Table 4 is that 
MIRNet performed worse than existing models. There is always 
a suspicion, however, that the performance was held back by 
the quality of the IfeData dataset itself. A review of the IfeData 
records reveals a high of 56.1◦C on 18th October, 2022. Such a 
temperature was never recorded on the ground in Ile-Ife, and 
represented the sort of noisy data that is likely caused by the 
mode of data acquisition.  
Comparison of MIRNet’s single-step prediction on the Jena 
dataset with previous studies on the same dataset reveals a 
more objective view of the performance of the model. At first 
glance, MIRNet outperforms all but one (Wang et al., 2022) 
existing single-step model. A closer look at the Wang et al. 
model however raises a number of questions. While the 
reported performance from that paper would ordinarily be 
taken at face value, “Figure 8” of the paper is inconsistent with 
the claimed MSE.  It can be seen at a glance that none of the 
three models in the figure were tracking the true temperature 
particularly well.  
In order to investigate this further, the figure from Wang et al., 
(2022) was digitised using the PlotDigitizer online application 
available at https://plotdigitizer.com, after which the MSE for 
just that segment was calculated. Since the statistical 
properties of the Jena dataset are known, we were able to 
determine that the best Wang et al. model achieved an MSE of 
4.3 x 10-4 for the segment. While it must be noted that a model 
does not necessarily have to perform equally well for all 
segments of data, a difference for any segment of over an 
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order of magnitude (2.12 x 10-5 versus 4.3 x 10-4) between the 
claimed MSE and the verified MSE must raise questions. 
 
The particular Jena dataset points used in the above-
mentioned Figure 8 of Wang et al. (2022) were determined 
using a simple algorithm. They turned out to be points in a 24-
hour segment starting from the 50,095th hour of the Jena 
dataset. MIRNet was used to predict that same segment, and 
Figure 8 shows a comparison between MIRNet and Wang et 
al.’s predictions. MIRNet’s superior performance is evident, in 
line with MIRNet’s MSE of 1.2x 10-4. Finally, it should be noted 
that while the source code for the Wang et al. study is not 
available, the MIRNet code is available in its entirety online at 
https://github.com/Adedayo19/MIRNet. Based on this, it can 
be concluded that MIRNet provides the best verifiable single-
step prediction performance for the Jena dataset in the 
literature till date. 
 

 
Figure 8: comparison of predictive performance of MIRNet 
versus those of the Wang paper for the 24-hour segment 
starting from hour 50,095 
 
In terms of its multi-hour prediction capability, while MIRNet 
compares favourably with many existing models, it is handily 
bested by the Zhang et al (2021) paper. This was not 
unexpected. MIRNet was designed originally as a single-step 
predictor. When carrying out Nth-hour ahead prediction, 
MIRNet predicts the temperature for only the Nth hour ahead. 
In contrast, true N-hours ahead predictors predict the 
temperature not just for the Nth hour ahead, but for all the 
hours between the current time, and Nth hour ahead. In order 
to do this, MIRNet currently requires N separate predictions of 
y hours ahead, where y ∈ {1,...,N}. 
This points to future improvements that need to be made on 
MIRNet. Although it has a passably good performance for 
multi-step prediction, it achieves this at the cost of excessive 
numbers of computations. The performance of MIRNet on the 
embedded device is satisfactory, as shown in Table 9. Even in 
the worst-case scenario where the prediction of the entire next 
24 hours has to be repeated every hour, the average power 
consumed is 1.22 W, making it very feasible to run inference 
on the WeatherWAN network or similar low-power use cases. 
.  
4 CONCLUSION 
 
MIRNet has been developed to be a compact framework 
mainly for the purpose of deployment on low-powered 

and computational resource-constrained embedded 
devices with limited storage/memory capacity, like 
Raspberry Pi, without sacrificing temperature forecasting 
accuracy. MIRNet was trained and verified with IfeData 
and Jena Datasets. The performance of the implemented 
framework promises improved forecasting accuracy as a 
single-step predictor with reasonable power 
consumption. A MSE of 0.000123 was achieved on the 
Jena dataset. This makes the system particularly attractive 
for deployment in low power, low cost weather station 
networks such as the WeatherWAN system.  
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