Main Article Content
Optimisation of Internal Model Control Performance Indices for Autonomous Vehicle Suspension
Abstract
Autonomous vehicles (AVs) have grown in popularity and acceptability due to their unique capacity to reduce pollution, road accidents, human error, and traffic congestion. Vehicle suspension is an important component of a car chassis since it affects the performance of vehicle dynamics. As a result, enhancing suspension performance and stability is critical in order to achieve a more pleasant and safer car. Although there are several suspension control methods, they all suffer from fixed gain characteristics that are prone to nonlinearities, disturbances, and the inability to be tuned online. This research provides a comparison of Internal Model Control (IMC) performance metrics for vehicle suspension control. The IMC approach was tuned using the Genetic Algorithm and the Particle Swarm Optimisation algorithms. The performance of each of these schemes was analysed and compared in order to determine the approach with the best performance in terms of AV suspension control. The performance of the system response was compared to that of the traditional IMC. According to the comparison analysis, the optimized IMC systems had lower IAE, ITAE, ISE, rising time, and settling time values than the traditional IMC. Furthermore, there were no overshoots in any of the controllers.