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ABSTRACT
Interpretation of gravity anomalies (determined on the earth’s surface) reveals 
information on mineral resources beneath the earth. The density of gravity stations 
(where gravity anomalies are determined) is critical to the successful interpretation 
of these anomalies. Where the density of the available gravity anomalies is not 
enough, for a particular purpose of geophysical exploration, more gravity stations 
can be established within the surveyed area and the gravity anomalies observed for 
these stations. In some cases, where observations of gravity anomalies are not 
possible due, probably, to inaccessibility of the newly chosen gravity stations, the 
required gravity anomalies for such stations can be estimated (predicted). 
Currently, classical least squares technique is used to accomplish such task. 
However, the technique does not produce optimum results because its formulation 
assumes that the observed gravity anomalies, used for the prediction, are error 
free, whereas, all observed quantities are affected by random errors. Therefore, in 
this study, an attempt is made to carry out prediction of gravity anomalies for 
geophysical exploration using least squares collocation technique. This is 
considered to be a better alternative because its formulation takes the presence of 
random errors of observations in the observed quantities into consideration and 
makes provision for filtering out these errors while predicting the signals of interest 
at the required number of stations.

INTRODUCTION
The search for mineral resources represents the major geophysical exploration 
activity in the world today. This is because mineral resources are the concealed sub-
surface geological features of most economic interest to many countries of the world.  

Mineral resources can be described as beneficial subsurface features whose natural 
habitat is the earth. They include solid metallic minerals such as, iron ore, zinc etc, 
solid non-metallic minerals like limestone, marble etc., liquid minerals such as oil, 
water etc., and gaseous minerals like gasses in buried cavity. Mineral exploration has 
been in existence for a long time. Its method, however, had been only drilling using 
percussion bits. This had posed a lot of risk as explorer could easily and ignorantly 
get exposed to dangerous materials underground. Also, it was uneconomical since 
decision as to where to drill was taken like a gamble because there was no prior 
information about the actual location of the concealed mineral before drilling. Later,
in the early years of twentieth century, the continued efforts by explorers to look for 
more effective, less risky and more economical technique of sub-surface exploration 
led to the advent of geophysical exploration. 

Geophysical exploration, defined by Reynolds (1998) as “making and interpreting 
measurements of physical properties of the earth to determine sub-surface 
conditions, usually with economic objectives such as discovery of mineral 
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depositions”, does not dispense with the need for drilling, but if properly applied, it 
can optimise exploration program by maximizing the rate of ground coverage and 
minimizing the drilling request. It is broadly divided into two methods: natural-
source and artificial-source methods. The natural-source methods are those making 
use of gravity and magnetic fields of the earth to search for local perturbation, in the 
natural fields, caused by the concealed geological features while the artificial-source 
methods involve propagation of artificial waves (e. g. seismic waves) through the 
earth interior which may be used analogously to natural-source method. Comparing 
the two methods, it was observed in Kearey and Brooks (1988) that the natural-
source method is logistically simpler to carryout than the artificial-source method. 
Also, in Senti (1988), the unit cost figures of different geophysical surveys carried out 
by the society of exploration geophysicists in 1987 were compiled to compare the two 
methods. The results showed that the natural-source method is more cost effective 
than the artificial-source method. Furthermore, it was reported in Gumert (1992) 
that the high speed of operation and current level of accuracy of gravity method led 
to better understanding of regional geology and economically limited the use of more 
expensive seismic survey for mineral exploration.      

Generally, both natural-source and artificial-source methods are used for mineral 
exploration. However, in some countries such as Nigeria, only the seismic method is 
being used while the use of gravity method is rarely noticed. One of the reasons for 
this might not be unconnected with the inadequate gravity data in these countries. 
This necessitated the plan of Federal Government of Nigeria to set up Nigeria gravity 
network project committee (NGNPC) to establish various gravity networks of points 
in Nigeria for geodetic and geophysical studies. Unfortunately, due to inexplicable 
reasons, the aims of this committee have not been achieved to date (Osazuwa, 1995). 
Therefore, gravity values and hence gravity anomalies (obtained from gravity values) 
remain inadequate for geophysical exploration in Nigeria. Acquisition of gravity 
values for adequate gravity anomalies in these countries can be achieved by direct 
observation and/or mathematical estimation. Therefore, it is the objective of this 
paper to apply mathematical estimation technique, that is, least squares collocation 
technique for the prediction of gravity anomalies for geophysical exploration.    

METHODOLOGY 
The method used includes the application of least squares collocation technique for 
the prediction of gravity anomalies at the observation stations. The classical least 
squares technique, as discussed in Abdelrahman et al (1991), is also used to predict 
gravity anomalies at the same stations. This is for the purpose of comparison of the 
two techniques. Thereafter, the least squares collocation technique is used to predict 
gravity anomalies of other stations using the observed gravity anomalies of the 
observation stations. 

Data Acquisition 
The data used for the study, as abstracted from SNEPCO (1995), are shown in tables 1 
and 2. Columns 1, 2, 3, 4 and 5 of table 1 give the station numbers, gravity anomalies 
(gi), x-coordinates, y-coordinates and gravity values (g) of thirty gravity observation
stations respectively. Columns 1, 2, 3 and 4 of table 2 respectively show the station 
numbers, gravity anomalies, x-coordinates and y-coordinates of another fifteen 
gravity stations outside the observation stations whose gravity anomalies are 
predicted based on the observed gravity anomalies of table 1.
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Table 1: Data used for predicting gravity anomalies at observation stations

            Station number   gi(mGal)       x (m)                  y (m)          g (mGal)

95D0301040   -31.928500    692415.900   1189739.600   978061.4520
95D0301060   -31.772200    692604.800   1190200.600   978061.9706
95D0301100   -31.178600    692487.400   1191183.300   978066.1179
95D0301120   -30.773000    692408.200   1191676.600   978068.5372
95D0301160   -30.350500    692250.300   1192664.300   978071.3239
95D0301200   -29.833000    692092.800   1193652.000   978070.7214
95D0301220   -29.736200    692014.100   1194145.600   978070.3145
95D0301260   -29.421700    691855.600   1195133.000   978074.9719
95D0301300   -29.262800    691698.400   1196120.300   978079.2266
95D0301318   -29.038700    691627.000   1196564.400   978081.4502
95D0301346   -29.010000    691516.500   1197256.300   978084.2498
95D0301381   -28.987000    691378.700   1198120.300  978087.7926
95D0301420   -29.231300    691224.900   1199082.900   978087.7034
95D0301460   -29.609300    691066.600   1200069.900   978088.7919
95D0301480   -29.665300    690987.400   1200564.300   978090.4587
95D0301500   -29.897100    690908.300   1201058.100   978092.1069
95D0301540   -30.442700    690750.600   1202045.100   978092.7586
95D0301580   -30.579400    690593.200   1203032.800   978094.1567
95D0301620   -31.330000    690435.100   1204020.000   978092.1786
95D0301638   -31.223900    690364.100   1204463.600   978093.3157
95D0301660   -31.096500    690276.300   1205008.300   978096.8901
95D0301700   -30.958100    690119.500   1205994.800   978101.5534
95D0301720   -30.586200    690040.200   1206488.800   978103.2666
95D0301740   -30.112100    689961.600   1206982.400   978105.8462
95D0301780   -29.173300    689803.600   1207970.000   978109.4676
95D0301800   -28.809800    689724.300   1208464.300   978110.0709
95D0301840   -27.492100    689566.600   1209451.400   978113.7791
95D0301860   -26.900200    689488.000   1209945.000   978116.5442
95D0301880   -26.256800    689408.700   1210438.500   978118.1695
95D0301920   -25.579700    689251.400   1211426.300   978122.1145
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Table 2:  Data for other gravity stations where gravity anomalies are predicted

                        Station number   gi(mGal)      x (m)            y (m)

                                95D0301080   -31.482100    692566.400   1190689.600
95D0301140   -30.585700    692329.100   1192170.900
95D0301180   -29.958800    692171.700   1193158.300
95D0301240   -29.578400    691934.100   1194638.800
95D0301280   -29.177600    691777.100   1195626.900
95D0301334   -29.024300    691563.900   1196959.900
95D0301360   -29.070900    691461.000   1197601.900
95D0301400   -29.197900    691303.800   1198588.800
95D0301440   -29.462800    691145.300   1199576.600
95D0301520   -30.141500    690829.600   1201551.600
95D0301560   -30.588100    690672.000   1202538.800
95D0301600   -30.817100    690514.000   1203526.600
95D0301680   -31.218200    690199.000   1205500.900
95D0301760   -29.729900    689882.800   1207475.900
95D0301820   -28.225200    689645.300   1208957.800

Least Squares Collocation Technique 
Least squares collocation is an advanced least squares method. Schwarz (1976a) used 
it for the adjustment of a large geodetic network. Rapp (1986) applied it in the 
prediction of geoidal undulations and components of deflection of verticals. In 
Ezeigbo (1988), it was described as an appropriate method and a better alternative 
than other methods in handling gravity depended observations. Its concept combines 
least squares adjustment to obtain parameters (X), least squares filtering of error (V) 
and least squares prediction of signals (S) using observed quantities (l). As in Rapp 
(1986), the ultimate generalization and the minimum principle of the linear least 
squares collocation model are respectively given as (1) and (2).
                                               l AX S V                                                                     (1)

                                       imumVCVSCS VV
T

sl
T min1                                          (2)

Where:  slC = Covariance function between observations and signals 
              Cvv = Covariance matrix of the observations                                                                                                 
                  /A l X      

The superscript T indicates the transpose of a vector and/or matrix.

Its theory and detailed proof of equations are fully discussed in Moritz (1972), Moritz 
(1978), Krakiwsky (1975), Rapp (1986) and Ayeni (2001). However, for easy reference, 
the step by step applications of the equations are stated here.

                                            1( )sl llS C C l AX                                                           (3) 

                                           1 1 1( )T T
ll llX A C A A C l                                                      (4)

                                            1( )VV llV C C l AX                                                          (5)

Where: VVslll CCC  (Covariance function between observations).
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Other notations used are:

             12
0    (a-priori variance of unit weight)  

     1 1 1( )( ) /( )T T
XX ll llC V C V A C A n m        (error covariance matrix of parameters)                                   

            TT
XX

T
slllslss

ss
HAHACCCCCC  



1    (error covariance matrix of signals)

              1 llslCCH    

For 0A , (1) reduces to (6), which is the least squares collocation model for the 
prediction of signals and filtering of errors without determination of parameters.  

                                        l S V                                                                            (6)

Consequently, (3) and (5) reduce to (7) and (8) respectively. 

                                      1
sl llS C C l                                                                          (7) 

                                      1
VV llV C C l                                                                       (8)

                      While   T
slllslss

ss
CCCCC 1


     (error covariance matrix of signals)

From the above, it can be seen that the covariance function plays a significant role in 
the concept of least squares collocation technique. Basically, covariance function 
supplies information on the structure of the gravity field. Therefore, it should be 
appropriately designed to achieve the objective of least squares collocation technique. 
Schwarz (1976a) and Moritz (1978) suggested that it should be simple, analytical, 
isotropic and homogeneous. Isotropic and homogeneous requirements imply that it 
should be invariant with respect to rotation and translation. Also, it was stated that 
the matrix formed from such covariance functions must be positive definite. Positive 
definiteness of a non-singular symmetric matrix is achieved if the eigen values of the 
matrix are positive. Such matrix has dominant diagonal elements. 

There are various mathematical expressions for a covariance function that represent 
global features of the earth. Detailed discussions on these can be found in Schwarz 
(1976a), Moritz (1978), Rapp (1986) and Ezeigbo (1988). However, for some limited 
purposes such as prediction of gravity anomalies, one may approximate the curved 
surface of the earth locally by a plane surface to find expressions for covariance 
functions that represent local features. This can functionally be given by (9) as in 
Moritz (1978):
   
                             2/12 ))/(1/()()( aroCrC                                                               (9)

Where:                       r = distance between two points. 
                             )(oC = covariance function when r = 0 
                                  a = correlation length

Three parameters ( )(oC , ‘ a ’ and r ) are needed, in (9) to evaluate )(rC . The value of r
is considered known, since it can be measured or computed from the given 
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coordinates of gravity stations. However, the values of )(oC and ‘a’ are unknown 
hence they have to be estimated. This can be achieved using an optimization technique 
which is a process of obtaining the optimal values of some parameters. The process is 
regarded successful if the estimated parameters satisfy as close as possible the 
objective function designed for such process. In other words, given the objective 
function, an optimization procedure systematically searches, among the range of 
possible values of parameters, and selects the best-fit values, which satisfy the given 
objective function. In this study, an optimisation technique is used to determine the 
optimal values of )(oC and ‘ a ’ for the evaluation of )(rC using (10) as the objective 
function used in Fajemirokun and Orupabo (1987). 

                                             2
0

22
0

2 /)( FFFR                                                       (10)

Where:  2
1

2
0 )( ggF i

n
i                        

              2
1

2 )( pi
n
i ggF                

            ig =  observed gravity anomaly at point i .

           pg =  predicted gravity anomaly at observation point i.

           g   =  mean gravity anomaly                 

The optimisation process starts by using least squares technique to solve (11) to 
obtain the values of residual observations (vi).  

                                        ig = pg + vi                                                                     (11)

Thereafter, the initial estimates of )(oC and ‘ a ’ are determined by solving (12) given 
by Moritz (1978).   

                  2/12
1 ))/(1/()(/)( aroCdfvv kii
kn

i  

                                                   (12)

Where: df = degree of freedom = n - m 

               m = number of parameters needed to represent pg in (11)  

                n = number of observations
                k = 0, 1, 2, ………, n-1

The results are given as:
                                  dfvvoC ii

n
i /)( 1                                                                  (13)

                                     2/12
1

2 ))1)/)(/(((  

 kii

kn
ii vvoCra                                  (14)

                                       naa i
n
i /1                                                                          (15)

The final values of )(oC and ‘ a ’ are obtained by systematically varying their initial 
values until (10)) is satisfied. The use of (10), as the condition to be satisfied, for the 
determination of optimum covariance parameters during the prediction of gravity 
anomalies at the observation stations, is logical. This is because observed gravity 
anomalies of the observation stations are available. However, where gravity anomalies 
are being predicted outside the observation stations, the initial values of the 
covariance parameters can be computed using the above procedure while the final 
values of the parameters may be obtained by systematically varying their initial values 
until the trace of the error covariance matrix of the predicted gravity anomalies is 
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minimum. The trace of a square matrix is the sum of the diagonal elements of such 
matrix. 

NUMERICAL INVESTIGATIONS
The mathematical formulations for the prediction of gravity anomalies have been 
discussed. Here, numerical investigations are carried out to determine the adequacy 
or otherwise of these formulations. The investigations include the determination of 
optimum covariance parameters and prediction of gravity anomalies at the 
observation stations. This is in addition to the separate determination of optimum 
covariance parameters and prediction of gravity anomalies at other stations using 
observed gravity anomalies of observation stations.

Determination of optimum covariance parameters and prediction of 
gravity anomalies at the observation stations 
The process involves two stages:  
(i)    The values of pg are represented by a third order polynomial function (16).       

                                    pg = b0 + b1gi + b2gi2 + b3gi3                                             (16)

Where:       gi = gravity values at point i                         
b0 , b1, b2, b3 =  constant coefficients 

Putting these values of pg in (11), the values of vi are solved for.

The values of vi are then used in (12), (13), (14) and (15) to obtain the initial values of 
covariance parameters )(oC and ‘ a ’. 

(ii)    The parameters obtained are used in (9) to evaluate the covariance function 
needed

for the least squares collocation prediction of pg at the observation stations. 

The predicted gravity anomalies are functionally given as:           

                                            1
p sl llg C C g                                                              (17)

The predicted gravity anomalies are then used in (10) to compute the value of 2
iF .

Thereafter, the values of the covariance parameters are allowed to vary and then used 
in (10) to compute the value of 2

1iF . For a successful process, 2
1iF must be less than 

2
iF . This is an iterative process, which continues until 2

1iF is minimum. (10) is 

satisfied when 2
1iF is minimum and 2R is approximately equal to 1. 

Determination of optimum covariance parameters and prediction of 
gravity anomalies at other stations
The covariance parameters obtained, in 3.1(i) above, are used in (9) to evaluate the 
covariance function required for the least squares collocation prediction of gravity 
anomalies of other stations using observed gravity anomalies of observation stations. 
Using (17), the predicted gravity anomalies ( pg ) are next calculated. Then, the trace 

(Tri) of the error covariance matrix of the predicted gravity anomalies is computed. 
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Thereafter, the values of the covariance parameters are allowed to vary and then used 
to compute another trace (Tri+1). For a successful process, Tri+1 must be less than Tri. 
This is an iterative process, which continues until Tri+1 is minimum. 

Computer programs written in Fortran 77 language are used for all the computations. 
The results obtained are presented below:

PRESENTATION OF RESULTS
Extract of the searched covariance parameters used for the prediction of gravity 
anomalies at observation stations are shown in Table 3. Row 5 of this table shows the 
optimum values of the parameters. The results of gravity anomaly prediction at the 
observation stations using classical least squares and least squares collocation 
techniques are shown in table 4. These include gravity station numbers, observed 
gravity anomalies (g), predicted gravity anomalies using classical least squares 
technique (gls), predicted gravity anomalies using least squares collocation 
technique (gcol), difference between the observed gravity anomalies and predicted 
gravity anomalies of classical least squares technique (vls) and difference between 
observed gravity anomalies and the predicted gravity anomalies by least squares 
collocation technique (vcol).

Extract of the searched covariance parameters and traces used for the prediction of 
gravity anomalies outside the observation stations are shown in Table 5. Row 7 of 
this table shows the optimum values of the parameters with the minimum value of 
the trace. The error covariance matrix, which produced the minimum trace, is shown 
in table 6. The results of gravity anomaly prediction for these stations using least 
squares collocation technique are shown in table 7. These include gravity station 
numbers, observed gravity anomalies (g), predicted gravity anomalies (gp) using 
least squares collocation technique and the differences between the observed gravity 
anomalies and predicted gravity anomalies (E). The parameters used for the 
statistical analysis of the results are shown in table 8. These are degree of freedom, 
upper limit of table statistic, computed statistic, lower limit of table statistic and 
trace of error covariance matrix respectively.

Table 3:     Covariance parameters for prediction at observation stations
                    C(o) (mGal2)       a (m)                 F2(mGal2)                    R2            

                  2356.343089    1012.081477    0.000000000008403    1.000000000000
2359.343089    1016.081477    0.000000000008400    1.000000000000
2362.343089    1020.081477    0.000000000008398    1.000000000000
2365.343089    1024.081477    0.000000000008397    1.000000000000
2368.343089    1028.081477    0.000000000008396    1.000000000000
2371.343089    1032.081477    0.000000000008397    1.000000000000
2374.343089    1036.081477    0.000000000008398    1.000000000000
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Table 4:   Comparison of predicted gravity anomalies by classical least squares and
least squares collocation techniques at observation stations

            Station no.   g (mGal)    gls (mGal)  gcol (mGal)   vls (mGal)   vcol (mGal)

D0301040    -31.928500    -32.162973    -31.928498    -0.234473    -0.000002
D0301060    -31.772200    -31.970325    -31.772200    -0.198125     0.000000
D0301100    -31.178600    -30.727544    -31.178599     0.451056    -0.000001
D0301120    -30.773000    -30.224369    -30.773000     0.548631    -0.000000
D0301160    -30.350500    -29.819916    -30.350499     0.530585    -0.000001
D0301200    -29.833000    -29.892698    -29.833000    -0.059698    -0.000000
D0301220    -29.736200    -29.946280    -29.736200    -0.210080    -0.000000
D0301260    -29.421700    -29.531857    -29.421700    -0.110157   -0.000000
D0301300    -29.262800    -29.469082    -29.262800    -0.206282    -0.000001
D0301318    -29.038700    -29.523856    -29.038700    -0.485156     0.000000
D0301346    -29.010000    -29.651968    -29.010000    -0.641969    -0.000000
D0301381    -28.987000    -29.869728    -28.987000    -0.882728    -0.000000
D0301420    -29.231300    -29.863871    -29.231300    -0.632571    -0.000000
D0301460    -29.609300    -29.935659    -29.609300    -0.326359    -0.000001
D0301480    -29.665300    -30.044471   -29.665300    -0.379171     0.000000
D0301500    -29.897100    -30.145885    -29.897100    -0.248785    -0.000001
D0301540    -30.442700    -30.183086    -30.442699     0.259614    -0.000001
D0301580    -30.579400    -30.255215    -30.579400     0.324185    -0.000000
D0301620    -31.330000    -30.150072    -31.329999     1.179928    -0.000001
D0301638    -31.223900    -30.213197    -31.223900     1.010703     0.000000
D0301660    -31.096500    -30.355059    -31.096500     0.741441    -0.000000
D0301700    -30.958100    -30.338371    -30.958099     0.619729    -0.000001
D0301720    -30.586200    -30.252909    -30.586200     0.333291     0.000000
D0301740    -30.112100    -30.023778    -30.112100     0.088322    -0.000001
D0301780    -29.173300    -29.462521    -29.173300    -0.289221    -0.000000
D0301800    -28.809800    -29.338324    -28.809800    -0.528524    -0.000001
D0301840    -27.492100    -28.356779    -27.492100    -0.864679    -0.000000
D0301860    -26.900200    -27.355042    -26.900200    -0.454842    -0.000000
D0301880    -26.256800    -26.646990    -26.256800    -0.390190     0.000000
D0301920    -25.579700    -24.524175    -25.579699     1.055526    -0.000001

Table 5:  Covariance parameters and trace for prediction outside the observation stations

                                       C(o) (mGal2)          a (m)            Tr (mGal2)

32.3430862       1565.0814209       1.7523
27.3430862       1570.0814209       1.4520
22.3430862       1575.0814209       1.1633
17.3430862       1580.0814209       0.8858
12.3430862       1585.0814209       0.6192
7.3430862        1590.0814209       0.3630
2.3430862        1595.0814209       0.1171

                                        -2.6569138        1600.0814209   145.8184
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Table 6:  Error covariance matrix of predicted gravity anomalies 
                                                                  (mGal2)

  0.0087  0.0040 -0.0017 -0.0004  0.0002   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
0.0040  0.0095 -0.0063 -0.0018  0.0007  0.0001 -0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

-0.0017 -0.0063  0.0095  0.0041 -0.0016 -0.0002  0.0002 -0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
-0.0004 -0.0018  0.0041  0.0093 -0.0058 -0.0008  0.0008 -0.0005  0.0002  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

  0.0002  0.0007 -0.0016 -0.0058  0.0081  0.0017 -0.0018  0.0011 -0.0004  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000
0.0000  0.0001 -0.0002 -0.0008  0.0017  0.0018 -0.0023  0.0017 -0.0006  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000
0.0000 -0.0001  0.0002  0.0008 -0.0018 -0.0023  0.0052 -0.0051  0.0020 -0.0003  0.0002  0.0000  0.0000  0.0000  0.0000
0.0000  0.0000 -0.0001 -0.0005  0.0011  0.0017 -0.0051  0.0112 -0.0065  0.0011 -0.0006  0.0002  0.0000  0.0000  0.0000
0.0000  0.0000  0.0000  0.0002 -0.0004 -0.0006  0.0020 -0.0065  0.0084 -0.0023  0.0012 -0.0004  0.0000  0.0000  0.0000
0.0000  0.0000  0.0000  0.0000  0.0001  0.0001 -0.0003  0.0011 -0.0023  0.0086 -0.0071  0.0025 -0.0003  0.0000  0.0000
0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0002 -0.0006  0.0012 -0.0071  0.0130 -0.0068  0.0009 -0.0001  0.0000
0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0002 -0.0004  0.0025 -0.0068  0.0080 -0.0016  0.0003  0.0001
0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 -0.0003  0.0009 -0.0016  0.0050 -0.0013 -0.0003
0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 -0.0001  0.0003 -0.0013  0.0054  0.0023
0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0001 -0.0003  0.0023  0.0055

Table 7:  Predicted gravity anomalies outside the observation stations by least 
squares collocation

Station no.    g (mGal)   gp (mGal)     E (mGal)

D0301080   -31.482100   -31.495761     0.013661
D0301140   -30.585700   -30.515984    -0.069716
D0301180   -29.958800   -30.064126     0.105326
D0301240   -29.578400   -29.571339    -0.007061
D0301280   -29.177600   -29.395232     0.217632
D0301334   -29.024300   -28.977007    -0.047293
D0301360   -29.070900   -29.029677    -0.041223
D0301400   -29.197900   -29.027411    -0.170489
D0301440   -29.462800   -29.480838     0.018038
D0301520   -30.141500   -30.250076     0.108576
D0301560   -30.588100   -30.428336    -0.159764
D0301600   -30.817100   -31.041928     0.224828
D0301680   -31.218200   -31.102384    -0.115816
D0301760   -29.729900   -29.579175    -0.150725
D0301820   -28.225200   -28.166052    -0.059148

Table 8: Trace, computed and table statistics at =0.05
Degree of freedom                              15
Table statistic (Upper limit)             27.49
Computed statistic                             10.0281
Table statistic (Lower limit)               6.26
Trace                                                       0.1171
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ANALYSIS OF RESULTS
As shown in table 4, it can be seen that the predicted gravity anomalies of least 
squares collocation are better than those of classical least squares. This appears to 
confirm the supremacy of the least squares collocation technique over the classical 
least squares technique. In table 7, the predicted gravity anomalies of other stations 
compare favourably well with the “true” gravity anomalies for these stations. This 
tends to indicate a satisfactory level of reliability of the predicted anomalies outside 
the observation stations.

Statistical investigation is carried out to test the reliability of the predicted gravity 
anomalies obtained for the other stations (outside the observation stations). This is 
to show that the procedure used for the prediction has (or has not) introduced 
distortions in the predicted values. In order words, ETCss-1E is statistically examined 
to know whether it falls within the specified confidence limits or not. This is achieved 
by means of Chi-Squares (2) test. That is, we test the hypothesis: 

Null hypothesis:             Ho : ETCss-1E = 02    (ETCss-1E is within the confidence limits)
Alternative hypothesis:  H1 : ETCss-1E  02     (ETCss-1E is outside the confidence 
limits)

Where ETCss-1E/02 is the computed statistic (2). 

This is a two-tail test where the Null Hypothesis is rejected if the computed statistic 
is outside the confidence limits. The confidence limits are the upper limit and the 
lower limit of the table statistic. They are obtained in the statistical table as 21-/2,df

for upper limit and 2/2,df for lower limit, where  is the level of significance and df is 
the degree of freedom (number of observations (n) minus number of predicted 
gravity anomalies outside the observation stations (u)). From table 8, it can be seen 
that the value of computed statistic falls within the confidence limits. This suggests 
that the null hypothesis, that ETCss-1E is within the confidence limit, should not be 
rejected. Therefore, it can be inferred that the technique used for the prediction has 
not introduced distortion in the values of the predicted gravity anomalies.

Also, the values of E are examined, using statistical t-distribution, to know whether 
or not they fall within the tolerant error limit (e) for the predicted quantities. The 
tolerance error limit (e) is defined by (18) and (19) as in Ayeni (2001).
                                                e =    tu-1,1-/2 /u1/2                                                    (18)
                                                = (ETCss-1E /(u-1))1/2                                                 (19)
From the statistical table, also in Ayeni (2001), tu-1,1-/2 = 2.145. The computed value 
of  = 0.846. Hence, the value of e =  0.4687. It can be seen, from table 7, that all 
the values of E fall within the tolerant error limit (e) thereby confirming the high 
level of reliability of the predicted gravity anomalies for geophysical exploration. 

CONCLUSIONS AND RECOMMENDATIONS
An attempt has been made to predict gravity anomalies, using least squares 
collocation technique, for geophysical exploration. When compared with the classical 
least squares method in the prediction of gravity anomalies, the least squares 
collocation technique gave the better results. The accurate choice of covariance 
parameters for the design of covariance functions has helped to ensure the high level 
of reliability of the predicted gravity anomalies. The predicted gravity anomalies have 
been found to be reliable at the significance level of 0.05. Therefore, prediction of 
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gravity anomalies is recommended to improve the density distribution of the 
observed gravity anomalies of points in a survey area for geophysical exploration. 
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