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Abstract 

This paper reports statistical goodness-of-fit evaluations of selected rainfall intensity duration data as a follow-up 

to previous studies on probabilities distribution. It is an application of Microsoft Excel Solver (MES) and the 

maximum likelihood method (MLM) to establish the performance of the Exponential distribution in predicting the 

distribution of selected rainfall intensity data. Rainfall intensity data from two locations in Nigeria (Makurdi and 

Abeokuta) was collected from the literature. The data was used to evaluate the potential of exponential probability 

distribution to predict and describe rainfall intensity. The constant in the probability distribution was determined 

using MLM and MES.  The numerically determined constant of the density of Exponential distribution was 

estimated by the MLM and MES. The calculated Exponential probabilities using the estimated parameter were 

evaluated statistically (analysis of variance (ANOVA), relative error, model of' selection criterion (MSC), 

Coefficient of Determination (CD) and Correlation coefficient (R). The study established that the Exponential 

probability distribution’s parameter (λ) is the mean of the natural logarithm of rainfall intensity using the MLM 

estimator. The parameters were 1.665 and 0.783 for Makurdi, and 1.695 and 0.754 for Abeokuta using MLM and 

MES, respectively. The relative errors were 0.659 and 1.008, and 0.743 and 1.141 for Makurdi and Abeokuta using 

MLM and MES, respectively. The correlation coefficient for Makurdi and Abeokuta using MLM and MES were 

0.826 and 0.800, and 0.470 and 0.344, respectively. It was concluded that the MLM parameter was better than MES 

based on the values of MSC, CD, relative error and R. MLM predicted Weibull probability of rainfall intensity 

better than MES. It was concluded that the results are vital ingredients for the designers and managers of urban 

infrastructures. It was recommended that there is a need to evaluate the application of MLM and other probability 

distributions in environmental science and engineering. 

Keywords: Exponential probability distribution, rainfall intensity, maximum likelihood estimate method (MLM), 

Analysis of variance (ANOVA), Intensity–Duration–Frequency (InDF) 

 

1. Introduction 

Reports of recent major floods not being successfully 

forecast worldwide are of great concern to civil and 

environmental engineers, urban and regional planners 

and hydrologists [1]. One of the significant causes 

making it hard to predict rainfall intensity is that the 

literature cannot specifically state the in-depth and the 

probabilities of rainfall intensity and duration. Plates 1.1 

to 1.6 reveal the impacts of floods on the environment as 

surface water pollution carriers of waterborne diseases, 

and solid wastes to reservoirs and dams. Rainfall 

intensities of numerous occurrences and intervals are 

significant constants for the hydrologic and hydraulic 

design of culverts, storm sewers, water resources 

structures, flood control structures, and other water and 

environmental pollution control structures. These designs 

and planning can be accomplished by the rainfall 

Intensity–Duration–Frequency (InDF) relationship, 

which is resolute through rainfall frequency analysis [2]. 

These InDF relationships are the most vital tools in 

hydraulic, water resources, hydrology and environmental 

engineering for appraising the vulnerability of water 

resources and environmental structures as well as 

planning, designing, maintaining and operating the 

structures. Under the circumstances of planning and 

designing, a numeral of empirical relationships has been 

utilized for the probability of rainfall intensities in 

hydrology, water resources areas, and civil and 

environmental engineering. Numerous probability 

distributions are in use over the past three decades for 

modelling rainfall intensity data in areas of research such 

as environment, reliability, economics, engineering, 

biological studies, demography and medical sciences [3].  

Two characteristic probability distribution expressions 

and functions used for rainfall intensity duration data 

analysis are the exponential and the Weibull probability 

density functions [4]. These probability distributions are 

alienated into two portions as follows [5 – 7]: 

a. Discrete Probability Distributions (Poisson, 

Bernoulli, and Binomial Distributions) 

b. Continuous Probability Distributions (Normal, Log-

Normal, Continuous Uniform, and Exponential 

Distributions). 
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Plate 1.1: Front view of a community in Lokoja, Nigeria 

flooded with water 

 
Plate 1.2: Aerial view of Lokoja City Covered with water 

 
Plate 1.3: Rainfall-runoff with solid waste into a Curvet 

in Ile-Ife, Nigeria 

There are several estimation methods to estimate the 

reliability of the distribution. These methods include 

MLM, least square and weighted least square estimation, 

Percentile estimation, Maximum product of estimation, 

Minimum spacing distance estimation, Crame´r-Von 

Mises estimation, Anderson-Darling and Right-tail 

Anderson-Darling estimation [8,9]. Literature provides 

information on probability distributions (Weibull, 

Normal, and log-normal), but there is little or no 

information on MLM and Exponential distribution. With 

the recent incidence of earthquakes, floods and other 

natural disasters [1] there is an urgent need to predict the 

occurrences of these natural disasters. With this 

advancement in computer applications and technologies, 

which makes it possible to collect rainfall intensity-

duration data at various stations there is a need to utilize 

MLM, MES and exponential distribution for rainfall 

intensity analysis. This study, therefore, focuses on the 

utilization and evaluation of MLM, MES and exponential 

probability distribution (EPB) for rainfall intensity-

duration data analysis, which can be a vital instrument for 

urban infrastructure designers, pollution control 

engineers and managers. 

 
Plate 1.4: Rainfall runoff with plastic waste as floating 

solids in Ile-Ife, Nigeria 

 
Plate 1.5: Storm runoff as flood along Ede Road in Ile-

Ife 

 
Plate 1.6: Storm runoff as flood along link Road in 

OAU, Ile-Ife 
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2. Materials and Method 

Rainfall intensity-duration data from two stations 

(Abeokuta (1986 to 2010) and Makurdi (1979 to 2009)) 

were collected from literature namely David et al. [10] 

and Isikwue et al. [11], respectively. The data were 

analysed statistically using analysis of variance 

(ANOVA), mean, minimum, maximum, standard 

deviation and skewness. Skewness was computed as 

follows (equation 2.1): 

𝑆𝑘𝑟 =
∑ (𝑅𝑖 − 𝑅𝐴𝑣)3𝑁

𝑖=1

𝛿3
                                        2.1 

Where; Skr is the computed skewness, Ri is the rainfall 

intensity (mm), RAV is the rainfall intensity and δ is the 

variance of the rainfall intensity. The probability of the 

rainfall intensity was computed using Weibull probability 

mathematical expression as follows [8,11] Equations 2.2, 

and 2.3):  

𝑇𝑚(𝑥) =
𝑛 + 1

𝑚
                                                     2.2 

Where; Tm is the return period, n is the sample size and m 

is the rank.  

𝑓(𝑥) = 𝑃𝑚(𝑥) =
1

𝑇𝑚

                                             2.3   

Where; pm (x) is the theoretical probability (probability 

index) and f(x) is the cumulative probability 

The Weibull distribution is the most preferred in 

modelling the rainfall intensity data. The constant of the 

EPB was calculated using the MLM and MES. The 

calculated EPB’s constant (MLM and MES methods) was 

used to establish the probability distributions, which were 

evaluated statistically using analysis of variance 

ANOVA), Relative error, Model of selection criterion 

(MSC), Coefficient of Determination (CD) and 

Correlation coefficient (R). MSC indicates higher 

precision, soundness, and a goodness fit of the methods. 

MSC was calculated using equation (2.4) as follows: 

𝑀𝑆𝐶 = ln (
∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌̅𝑜𝑏𝑠)2𝑛

𝑖=1

∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌𝑐𝑎𝑙𝑖)2𝑛
𝑖=1

) −
2𝑃

𝑛
        2.4 

Where; Yobsi is the probability value using the Weibull 

probability mathematical expression;  is the average 

probability value using the Weibull probability 

mathematical expression; p is the total number of fixed 

parameters to be estimated in the methods; n is the total 

number of rainfall intensities calculated, and Ycali is the 

probability computed using the MLM and MES 

estimators.  

The coefficient of determination (CD) can be taken as the 

percentage of expected data variation that can be clarified 

by the obtained data. Higher values of CD indicate higher 

accuracy, validity and good fitness of the device. CD, 

correlation coefficient, and relative error can be 

expressed as follows (Equations 2.5, 2.6 and 2.7): 

𝐶𝐷 =
∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌̅𝑜𝑏𝑠)2𝑛

𝑖=1 − ∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌𝑐𝑎𝑙𝑖)2𝑛
𝑖=1

∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌̅𝑐𝑎𝑙𝑖)2𝑛
𝑖=1

      2.5 

Where;  is the average probability value calculated 

using the MLM estimator.  

𝑅 = √
∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌̅𝑜𝑏𝑠)2𝑛

𝑖=1 − ∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌𝑐𝑎𝑙𝑖)2𝑛
𝑖=1

∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌̅𝑐𝑎𝑙𝑖)2𝑛
𝑖=1

       2.6 

𝑅𝑒𝑙(%) = (
1

𝑁
) ∑ (

𝑌𝑜𝑏𝑠𝑖 − 𝑌𝑐𝑎𝑙𝑖

𝑌𝑜𝑏𝑠𝑖

)

𝑁

𝑖=1

                                  2.7 

 
Figure 2.1: Summary of the Microsoft excel solver 

procedures 

Figure 2.1 above, presents the summary of the Microsoft 

Excel Solver procedures as a flowchart. MES was used 

for the estimation of these empirically derived parameters 

based on availability at no additional cost. The procedure 

used for the Microsoft Excel solver can be summarized 

as follows: 

i. Excel solver was added in Microsoft Excel, 
ii. Target of the numerical solution ∑ (𝐾𝑝𝑖 −𝑁

𝑖=1

𝐾𝑡𝑖)
2

= 0, operation, and changing cells were set, 

where; Kp is the probability value using the 

Weibull mathematical expression (𝑓(𝑥) =

𝑃𝑚(𝑥) =
1

𝑇𝑚
) and Kt is the Exponential 

distribution probability calculated using MLM 

𝑓(𝑥) = 𝜆𝑒𝑥𝑝−𝜆𝑥𝑖; and  
iii. Microsoft Excel Solver was allowed to iterate at 

200 iterations with 0.005 tolerance 

3. Results and discussion 

Figures 3.1 and 3.2 present the rainfall intensity data from 

David et al. [10], while Figure 3.3 shows the rainfall 

intensity data from Isikwue et al. [12]. These Figures 

established that the highest rainfall-duration-intensity 

frequency arose when the duration time was 5 min in the 

year 1 (1979, [11] and 1986, [10] and the lowest rainfall-

obsY
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duration intensity frequency happened when the duration 

was 1440 min in the 30th year (2009, [11] and 2010, [10]). 

Table 3.1 presents the statistical properties (average, 

maximum, minimum, standard deviation and Skewness) 

of the rainfall intensity data in respect of Abeokuta. Table 

3.2 reveals the statistical summary (average, maximum, 

minimum, and standard deviation) of the rainfall intensity 

data for Makurdi. From Table 3.1, the averages of rainfall 

intensity for Abeokuta were 206.40, 164.54, 135.14, 

117.83, 85.64, 69.06, 55.33, 41.23, 31.72, 22.81, 19.02, 

15.78 and 11.59 mm/h for a duration time of 5, 10, 15, 

20, 30, 45, 60, 90, 120, 180, 240, 300 and 420 min, 

respectively.  These results established that heavy 

rainfalls had the lowest duration and the lowest rainfall 

intensities had the highest duration. The other statistical 

properties (maximum, minimum and standard deviation) 

followed the same trend as the averages. From Table 3.1, 

the Skewness of the rainfall intensities was between 0.16 

and 1.32; all these durations had positive Skewness, 

which indicated that most of the values of these rainfall 

intensities concentrated on the right of the mean, with 

extreme values to the left.  

 

Figure 3.1: Rainfall intensity of Abeokuta (duration of 

between 5 and 45 min) 

 
Figure 3.2: Rainfall intensity of Abeokuta (duration of 

between 60 and 420 min) 

 

Table 3.2 presents the average, maximum, minimum, 

skewness and standard deviation of the rainfall intensities 

for Makurdi at different return periods. The averages of 

the rainfall intensities were 12.119, 22.815, 36.819, 

69.320, 11.870, and 180.541 mm/ h for the return period 

of 100, 50, 25, 10, 5, and 2 years respectively. These 

statistical trends (average, maximum, minimum, and 

standard deviation) of rainfall for Tables 3.1 and 3.2 

agreed with literature such as Abouammoh [13]; Gupta 

and Huang [14]; Hassan et al. [15]; Lidiya et al. [16]; 

Lihou and Spence [17]; Yoon-Su, et al. [18]; Madsen et 

al. [19]; Mahmoudi and Sepahdar [20]; Tramblay et al. 

[21]; Wagh and Kamalja [22]; De Paola et al. [23] and 

Morales and Vicini [24]. Skewness is a measure of the 

asymmetry of a distribution. A distribution is 

asymmetrical when its left and right sides are not mirror 

images. A distribution can have the right (or positive), left 

(or negative), or zero skewness. A right-skewed 

distribution is longer on the right side of its peak, and a 

left-skewed distribution is longer on the left side of its 

peak. It has been reported that when the bulk of the data 

is at the left and the right tail is longer, the distribution 

is skewed right or positively skewed; if the peak is toward 

the right and the left tail is longer, the distribution 

is skewed left or negatively skewed. This indicates that 

the data was non-zero skewness. 

In summary, classifications of skewness from the tables 

can be grouped as follows: 

a) skewness of between −1.000 and -0.500 or between 

0.500 and 1.000, the distribution can be 

called moderately skewed.  

b) skewness of between −0.500 and 0.500, the 

distribution can be called approximately symmetric. 

c) skewness of less than −1.000 or greater than 1.000, 

the distribution can be called highly skewed.  

These values of skewness for the rainfall can be said to 

be right-skewed distribution and none was zero-skewed 

distribution for both Abeokuta and Makurdi. This 

indicated that in the selection of rainfall intensity for the 

engineering infrastructure care must be taken in the 

selection of appropriate skewness. 

Table 3.3 reveals the result of an ANOVA of the rainfall-

duration intensity frequency (Abeokuta) reverence to the 

years. From the Table, the F24, 300 = 1.652 and p = 3.02 x 

10 -2 for analysis of the rainfall-duration intensity 

frequency among the years. This result discovered that 

there were substantial differences between these values 

within the years at a 95 % confidence level (p < 0.05). 

Table 3.4 presents the outputs from an ANOVA of these 

frequencies within the duration of the rainfall. The Table 

reveals that the F12, 312 = 84.32 and p = 2.47 x 10 -90 for 

analysis of the frequencies amid the duration of the 

rainfall. This result established that there was a 

momentous difference between frequency values within 

these durations at a 95 % confidence level (p < 0.05).
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Table 3.1: The statistical properties (average, maximum, minimum, standard deviation and Skewness) of the rainfall intensity data in respect of Abeokuta 

Duration 5 10 15 20 30 45 60 90 120 180 240 300 420 

Average 206.40 164.54 135.14 117.83 85.64 69.01 55.33 41.23 31.72 22.81 19.02 15.78 11.59 

Maximum 421.20 271.20 217.20 186.30 140.60 112.40 88.60 59.80 54.20 40.90 32.10 25.70 18.30 

Minimum 115.80 98.40 77.40 66.50 49.10 41.30 35.50 27.30 21.50 15.50 13.50 11.70 8.50 

Standard deviation 86.80 57.50 40.66 33.57 27.28 19.67 16.08 10.94 8.68 6.46 5.28 4.12 2.77 

Skewness 1.14 0.63 0.16 0.25 0.64 0.26 0.50 0.53 0.95 1.32 1.20 1.07 1.00 

Table 3.2: The statistical summary (average, maximum, minimum, and standard deviation) of the rainfall intensity data for Makurdi 

Return Period 2 5 10 25 50 100 

Average 12.119 22.815 36.819 69.320 111.870 180.541 

Maximum 24.550 46.220 74.590 140.430 226.640 365.760 

Minimum 7.350 13.840 22.340 42.060 67.880 109.540 

Standard deviation 4.506 8.484 13.692 25.777 41.599 67.135 

Skewness 0.928 0.928 0.928 0.928 0.928 0.928 

 

Table 3.3: The result of an ANOVA of the rainfall-duration intensity frequency (Abeokuta) with respect to the years 

 

Table 3.4: The outputs from an ANOVA of rainfall-duration-intensity frequency within the duration of the rainfall 

Source of Variation Sum of Square Degree of freedom Mean Sum of Square F-Value P-value 

Between Rainfall intensity 

duration 
1191745 12 99312.08 84.38 2.47 x 10-90 

Within Rainfall intensity 

duration 
367205.6 312 1176.941   

Total 1558951 324    

 

Table 3.5: The result of an ANOVA of the rainfall-duration intensity frequency (Makurdi) with respect to the return period 

Source of Variation Sum of Square Degree of freedom Mean Sum of Square F-Value P-value 

Between Return periods 721710.3 5 144342.1 120.5911 6.21 x 10 -59 

Within Return periods 244178.7 204 1196.954   

Total 965889 209    

 

 

 

Source of Variation Sum of Square Degree of freedom Mean Sum of Square F-Value P-value 

Between Years 181955 24 7581.458 1.651739 0.030253 

Within Years 1376996 300 4589.985   

Total 1558951 324    



Asani and Oke: Exponential probability distribution of short-term rainfall intensity 

23 
 

Table 3.6: The outputs from an ANOVA of rainfall-duration-intensity frequency within the duration of the rainfall 

Source of Variation Sum of Square Degree of freedom Mean Sum of Square F-Value P-value 

Between durations 147235.3 34 4330.449 0.925701 0.590208 

Within durations 818653.7 175 4678.021   

Total 965889 209    
 

Table 3.5 reveals the result of an ANOVA of the 

intensities (Makurdi) with reverence to the return period. 

From the Table, the F5, 204 = 120.59 and p = 6.21 x 10 -

59for analysis of the intensities within the return periods 

(years). This result exposed that there were noteworthy 

differences between the intensities values within the 

years at a 95 % confidence level (p < 0.05). Table 3.6 

reveals the outputs from an ANOVA of the intensities 

within the duration of the rainfall. The Table shows that 

the F34, 175 = 0.926, and p = 5.90 x 10 -1 for analysis of the 

intensities between the duration of the rainfall. This result 

revealed that there was no significant difference between 

the intensity values within these durations at a 95 % 

confidence level (p >0.05). The results of ANOVA 

indicated that agreed with previous studies such as Madi 

et al.[44] on Bayesian prediction of rainfall records using 

the generalized exponential distribution, Pisarenko et 

al.[43]  on the application of the theory of extreme events 

to problems of approximating Probability distributions of 

water flow peaks, Parisa et al.[34] on the climate change 

impact on short-duration extreme precipitation and 

intensity–duration–frequency curves, Vivekanandan [2] 

on the analysis of hourly rainfall data for the development 

of IDF relationships using the order statistics approach of 

probability distributions, Tramblay et al.[21]   on the non-

stationary frequency analysis of heavy rainfall events and 

De Paola et al.[23] on the  Intensity-Duration-Frequency 

(IDF) rainfall curves, for data series and climate 

projection. 

3.1 Establishment of exponential parameter using 

maximum likelihood method 

The log-likelihood expression of this random sample is 

specified as follows [24 - 26], as Equation 2.8): 

𝐿(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, … … … … … … 𝑥𝑛)

= ∑ ln 𝑓(𝑥𝑖 , 𝜃)

𝑛

𝑖=1

               2.8 

X1, X2……. Xn are randomly selected samples of the size 

of n from a given distribution with the probability density 

expression f(x, θ), where θ (θ1, θ2 ,..., θk ), θ is subset θ, is 

the unknown parameter. θ is in general vector parameter 

and assumes X1, X2, --- Xn be a comprehension of the 

random sample. The maximum likelihood estimates 

(MLE) θ of the parameter θ are the values of θ that 

maximize (1) with respect to θ. MLE is a systematic 

practice for estimating values in a probability model from 

a set of data samples. Suppose the sample size X1, ..., Xn 

has been attained from a probability model specified by 

mass or density function f (x; θ) dependent on values θ 

lying in parameter space θ. 

 
Figure 3.3: Rainfall intensity of Makurdi (return period 

of between 2 and 100 years) 

The MLE is produced as follows [27, 28]: 

a. Express the likelihood function (that is, the product 

of the n mass or density function terms; where the 

ith term is the mass or density expression evaluated 

at xi) observed as an expression of θ., L(θ), as 

follows (as Equations 3.9 and 3.10): 

𝐿(𝜃) = ∏ 𝑓𝑥(𝑥𝑖 , 𝜃)

𝑛

𝑖=1

               3.9 

 

Take the natural log of the likelihood, collect terms 

involving θ 

ln(𝐿(𝜃)) = ln [∏ 𝑓𝑥(𝑥𝑖 , 𝜃)

𝑛

𝑖=1

]       3.10 

Find the value of θ subset of θ, θ, for which log L(θ) is 

maximized by differentiation. If θ is a single value, find θ 

by solving numerical equations (3.11 and 3.12), 

respectively 

𝑑

𝑑𝜃
[ln(𝐿(𝜃))] =

𝑑

𝑑𝜃
{ln [∏ 𝑓𝑥(𝑥𝑖 , 𝜃)

𝑛

𝑖=1

]}              3.11 

In the parameter space θ. If θ is vector-valued, say θ = (θi, 

..., θn), then find θ = (θi, ..., θn) by simultaneously solving 

the n equations given by 

𝜕

𝜕𝜃𝑗

[ln(𝐿(𝜃))] =
𝜕

𝜕𝜃𝑗

{ln [∏ 𝑓𝑥(𝑥𝑖 , 𝜃)

𝑛

𝑖=1

]} = 0; 𝑗

= 1 … . 𝑘    3.12 
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In parameter space θ. The EPB can be articulated as 

follows [29 -35], as expressed in equations 3.13- 18, 

respectively): 

𝑓(𝑥) = 𝜆𝑒𝑥𝑝−𝜆𝑥𝑖                              3.13 

𝐿(𝑥) = ∏ 𝑓𝑥(𝑥𝑖 , 𝜆)

𝑛

𝑖=1

=  𝜆𝑛𝑒𝑥𝑝−𝑛𝜆𝑥𝑖        3.14  

ln[𝐿(𝑥)] = ln [∏ 𝑓𝑥(𝑥𝑖 , 𝜆)

𝑛

𝑖=1

]

= 𝑛 ln(𝜆) − 𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

       3.15  

𝑑

𝑑𝜆
[ln(𝐿(𝑥))] =

𝑑

𝑑𝜆
{ln [∏ 𝑓𝑥(𝑥𝑖 , 𝜆)

𝑛

𝑖=1

]}

=
𝑑

𝑑𝜆
[𝑛 ln(𝜆) − 𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

]     3.16𝑎 

𝑑

𝑑𝜆
[𝑛 ln(𝜆) − 𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

] =
𝑛

𝜆
− ∑ 𝑥𝑖

𝑛

𝑖=1

                3.16𝑏 

𝑛

𝜆
− ∑ 𝑥𝑖

𝑛

𝑖=1

= 0                               3.17 

𝜆 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

                3.18 

Equation (3.18) shows that the EPB’s parameter (λ) is the 

mean of the natural logarithm of rainfall intensity. Table 

3.7 presents the values of the EPB’s parameter (λ) and 

statistical evaluation of the performance of the obtained 

parameter compared with Weibull’s probability theory of 

extreme rainfall events. The values of the EPB’s 

parameter (λ) are between 1.665 and 1.695, 0.783 and 

0.754 for MLM and MES methods, respectively. On the 

statistical evaluation of the performance MSC, error, CD 

and R for MLM and MES methods are between 1.044 and 

1.339, -0.028 and 0.303, 0.659 and 0.743, 1.008 and 

1.141, 0.640 and 0.682, 0.118 and 0.221, and 0.800 and 

0.826, and 0.344 and 0.470 for Makurdi and Abeokuta, 

respectively. These results revealed that MLM performed 

better than MES in predicting the probability distribution 

of rainfall intensity. These lower performances of this 

parameter by MES are similar to the performance of 

negative binomial distribution which agreed with the 

literature such as Telles [36] on measuring nonlinearity by 

means of static parameters in Bernoulli binary sequences 

distribution, Jemilohun  and  Ipinyomi [37]on the  

Weibull Poisson Distribution: Properties, Inference, and 

Applications to lifetime data, Rinne [38] on the Weibull 

Distribution and Barnett et al.[39] with information on 

Combining Negative Binomial and Weibull Distributions 

for Yield and Reliability Prediction. In addition, the lower 

performance of the MES method can be attributed to the 

weak relationship between Weibull probability and 

Exponential distribution as agreed with the literature [39 – 

44]. Figures 3.4 and 3.5 present the values of EPB’s 

parameters obtained using MLM and MES, and the 

performance of these methods compared with the 

standard Weibull method. Figures 3.4 and 3.5 established 

that the Exponential distribution is a continuous 

distribution as the probability did not discontinue between 

certain rainfall intensities for both Abeokuta and Makurdi 

data. Unlike the Bernoulli distribution in which the 

probability of the rainfall intensity discontinued for the 

estimator using the MES method between 104.54 mm/h 

and 124.82 mm/h. Tables 3.8 and 3.9 provide information 

on the statistical analysis (ANOVA) of the parameters 

and statistical evaluations of the effects of the two 

methods. 

 
Figure 3.4: Relationship between probabilities obtained 

using the methods (Abeokuta data) 

 

 
Figure 3.5: Relationship between probabilities obtained 

using the methods (Makurdi data) 
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Table 3.7: the values of Exponential probability distribution’s parameter and performance of these methods compared 

with standard Weibull method 

Summary  Parameter Error MSC CD R 

 MLM MES MLM MES MLM MES MLM MES MLM MES 

Makurdi 1.665 0.783 0.659 1.008 1.044 -0.028 0.682 0.221 0.826 0.470 

Abeokuta 1.695 0.754 0.743 1.141 1.339 0.303 0.640 0.118 0.800 0.344 

 

Tables 3.8 and 3.9 revealed that the values of the parameter 

were between 0.754 and 1.695 for both MES and MLM 

estimator methods. These parameter values were similar to 

those obtained in literature such as Chacko and Mohan [8] 

and Jemilohun and Ipinyomi. [37]. Results of the ANOVA 

for these parameters (Table 3.8) established that there was 

a significant difference between these parameters obtained 

using the two estimators and methods at a 95 % confidence 

level ( F1,2 = 564.098 and p = 0.00177, which is less than 

0.05). Tables 3.8, 3.9, 3.10 and 3.11 present the outputs 

from ANOVA conducted on the statistical evaluation of 

the effects of selected factors on Exponential distribution. 

The Table (Table 9) established that locations had no 

significant effects on these parameters obtained using the 

two methods at a 95 % confidence level (F1,2 = 0.0070 and 

p = 0.941, which is greater than 0.05). Table 10 established 

that the method had significant effects on the exponential 

distribution of rainfall intensities data at a 95% confidence 

level (F7,8 = 19.306 and p = 2.04 x 10 -4, which is less than 

0.05). Table 11 established that locations had no significant 

effects on the exponential probabilities obtained using the 

two methods at a 95 % confidence level (F1,4 = 0117 and p 

= 0.737, which is greater than 0.05) 

Table 3.8: Effects of the methods on the Exponential distribution parameters 

Source of Variation Sum of Square Degree of freedom Mean Sum of Square F-Value P-value 

Between Methods 2.111383 7 0.30162608 19.30639 0.000204 

Within Methods 0.124985 8 0.01562312   

Total 2.236368 15    

Table 3.9: Effects of the Locations on the Exponential distribution parameters 

Source of Variation Sum of square Degree of freedom Mean Sum of Square F- Value P-Value 

Between Locations 2.111383 1 0.01859451 0.11738 0.736983 

Within Groups 2.217773 14 0.158412358   

Total 2.236368 15    

Table 3.10: Effects of the parameters on the Exponential distribution 

Source of Variation Sum of Square Degree of freedom Mean Sum of Square F-Value P-value 

Between Parameters 0.303076 1 0.303076 564.0981 0.001768 

Within Parameters 0.001075 2 0.000537   

Total 0.304151 3    

Table 3.11: Effects of the locations on the Exponential distribution 

Source of Variation Sum of Square Degree of Freedom Mean Sum of Square F-Value P-Value 

Between locations 0.001064 1 0.001064 0.007024 0.940841 

Within Locations 0.303086 2 0.151543   

Total 3     

4. Conclusions 

This study was conducted on the statistical goodness-of-

fit evaluations of selected rainfall intensity duration data 

as a follow-up to previous studies on probabilities 

distribution. It is an application of MES, MLM and 

Exponential distribution of selected rainfall intensity 

data. Rainfall intensity data from two locations in Nigeria 

(Makurdi and Abeokuta) was collected from the 

literature. The data was used to evaluate the potential of 

exponential probability distribution to predict and 

describe rainfall intensity. The constant in the probability 

distribution was determined using MLM and MES.  The 

numerically determined constant of the density of 

Exponential distribution was estimated by the MLM and 

MES. The calculated Exponential probabilities using the 

estimated parameter were evaluated statistically (analysis 

of variance relative error, model of' selection criterion, 

Coefficient of Determination and Correlation 

coefficient). It was concluded based on the findings that 

Exponential distribution performance was better than 

Bernoulli distribution in describing the rainfall intensities 

for both Abeokuta and Makurdi; the MLM estimator was 
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better than MES based on the values of MSC, CD, 

relative error, and R.  MLM estimator predicted Weibull 

probability of rainfall intensity better than MES.  It was 

recommended that there is a need to evaluate the MLM 

estimator and other probability distributions (such as log 

Normal, Gamma, and Poisson distributions), and 

information like this should be available to the designers 

of urban infrastructures (especially drainage and sewers 

design) and urban settlement managers for effective 

integration developments. 
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