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ABSTRACT  

 

In this study, a mathematical model for the HIV/AIDS epidemic is developed and analyzed to gain insight into 
the current and past states of HIV/AIDS and other epidemiological features that cause the progression from HIV 

to full-blown AIDS. The existence and uniqueness of the model show that the solutions exist and are unique. 

The basic reproduction number is the average number of new secondary infections generated by a single 
infected individual during the infectious period, which is established using the next-generation matrix method. 

The analysis shows that the disease-free equilibrium is locally asymptotically stable whenever the threshold 

quantity is less than unity, i.e., R₀ < 1, and is otherwise epidemic. The sensitivity of parameters with respect 
to the basic reproduction number shows that parameters with a positive index will increase the basic 

reproduction number; for example, the effective contact rate must not exceed 0.39 to avoid an endemic stage. 

Numerical analysis of the work shows the importance of the memory term; it also indicates that control 
measures targeted at the history of any disease and immunity boosts should be adopted to prevent HIV from 

leading to full-blown AIDS. 

 

Keywords: HIV/AIDS; Treatment; Effective reproduction number; Equilibrium points and stability; 

Sensitivity; Numerical simulation. 
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INTRODUCTION 

 

Human immunodeficiency Virus (HIV) is a virus that targets the body's immune system, 

particularly the CD4-positive cells, which are vital for fighting diseases and infections 

(Huo et al., 2016; Global Fact Sheet, 2020). Acquired Immunodeficiency Syndrome 

(AIDS) poses a significant risk to a substantial portion of the global population, 

impacting not only individuals infected with the virus but also their families and friends 

(Gelaw et al., 2019). Global HIV estimates have been compiled by the Joint World 

Health Organization (WHO) and the United Nations Program on HIV/AIDS 

(UNAIDS) since the late 1980s. The identification of the first AIDS patient occurred in 

1981, marking the beginning of the classification of AIDS as a global pandemic (Udoy et 

al., 2015). The initial stages of HIV infection are characterized by symptoms such as flu-

like signs, night sweats, cough, weight loss, headaches, diarrhea, sunburn-like rash, body 
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aches, joint pain, and tonsillitis. In these early phases, the virus has a higher viral load in 

the bloodstream, making the spread of HIV infections more efficient throughout the 

body. HIV is transmitted through various body fluids (blood, tears, urine, saliva, etc.) and 

can infect uninfected individuals (Endalamaw et al., 2019). CD4-positive cells are crucial 

for fighting infections and play a significant role in modifying the immune system. Any 

disruption or reduction in the functionality of these CD4-positive cells can have wide-

ranging consequences, leading to the impairment of the immune system's functioning. 

The retention time of these lymphocytes is critical for maintaining a healthy immune 

response (Endalamaw et al., 2019). Many researchers have worked on the dynamic 

spread of HIV/AIDS using various assumptions. 

 

Adewale et al. (2016) presented and analyzed five nonlinear differential compartmental 

models to gain a deeper understanding of the parameters influencing the dynamic spread 

of HIV in society. The study involved numerical simulations to assess the effects of 

various parameters on the dynamic spread of the disease. The effective contact rate and 

the presence of fast progressors emerged as the primary key parameters that significantly 

influenced the dynamic spread of HIV in the community. 

 

Bushnaq et al. (2018) conducted a study focused on the existence theory of an HIV-1 

infection model. They employed arbitrary fractional order derivatives without a singular 

kernel type. Their research delved into the stability and persistence of HIV/AIDS within 

the framework of biomechanics, considering the impact of memory and fractional 

differentiation. 

 

Toro et al. (2020) developed a mathematical model consisting of equations that depict the 

population dynamics of CD4-positive T-cell immunological activation. This model 

resulted in a two-dimensional integro-differential system, which was subsequently 

transformed into a system comprising three ordinary differential equations. 

 

The study by Tigabu et al. (2021) focuses on a deterministic HIV/AIDS model tailored to 

the challenges faced in Ethiopia, particularly concerning undiagnosed infectious 

individuals. Qualitative aspects of the model, such as equilibrium points and stability, 

were examined, highlighting the significance of the effective reproductive number (Rₑ). 

Additionally, an optimal control problem was formulated, integrating prevention, 

screening, and treatment as control variables. Numerical investigations revealed the 

efficacy of combined optimal control strategies in reducing the prevalence of HIV/AIDS 

and alleviating associated costs. 

 

A mathematical model for the transmission of HIV/AIDS with early treatment was 

developed and analyzed by Akinwumi et al. (2021). They determined the basic 

reproduction number, which represents the average number of new secondary infections 

generated by a single infected individual during the infectious period. The analysis 

indicated that the disease-free equilibrium is both locally and globally asymptotically 

stable when the threshold quantity is less than one. Numerical analysis demonstrated that 
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 early treatment of latently infected individuals reduces the dynamic progression to full-

blown AIDS. The results also revealed that substances boosting immunity increase red 

blood cells, and sensitivity analysis of the basic reproduction number concerning 

parameters indicated that the effective contact rate should not exceed 0.3 to prevent the 

endemic stage. 

 

Ajao et al. (2023) introduced a mathematical model to investigate the transmission 

dynamics of HIV in Nigeria, addressing a unique aspect by partitioning detected 

individuals into those receiving treatment and those not accessing treatment. This 

consideration, which has been absent in recent literature, adds depth to the understanding 

of HIV dynamics. The study's findings emphasize the pivotal role played by the fraction 

of detected individuals receiving treatment, affecting the population of latently infected 

individuals and the AIDS class. The treatment's impact is highlighted as it hinders the 

progression of individuals into the AIDS class. Researchers have developed various 

variations of the HIV/AIDS model, and some of these are outlined in other reports 

(Adewale et al., 2015a; Olopade et al., 2016; Sanna, 2021, 2022; Hamou et al., 2023). 

 

In contemporary literature, a considerable portion has tended to overlook the historical 

aspect when utilizing mathematical epidemic models for HIV/AIDS. What sets this study 

apart is its focus on the "memory term," integrating information on both the current and 

past states of the disease. This addition enhances the model's capability to consider the 

historical context, thereby offering a more thorough and insightful approach to the 

analysis of epidemics. In this study, we modified the work done by Akinwumi et al. 

(2021) by incorporating the non-linear saturated function βSI/(1+αI), where I is the 

information term that reflects the past and present state of the disease, i.e., HIV/AIDS. 

Therefore, a five-compartmental mathematical model for the study of the HIV/AIDS 

epidemic with a memory term is presented and analyzed to gain insight into the current 

and past states of HIV/AIDS and other epidemiological features that cause the 

progression from HIV to full-blown AIDS. 

 

The paper follows the following structure: Section 2 outlines the methodology, 

encompassing the design and formulation of the model, along with its analysis. Section 3 

is devoted to presenting the results and engaging in a subsequent discussion of those 

findings. The paper is wrapped up with Section 4, which serves as the conclusion. 

 

MODEL FORMULATIONS 

 

The population size )(tN  of humans is sub–divided into five (5) classes of individuals 

who are Susceptible )(tS , Latently infected )(tL , Infected )(tI , Treated )(tT  and Aids 

)(tA , So that; 

 )()()()()()( tAtTtItLtStN   (1) 

The susceptible population is increased by the recruitment of individuals into the 

population (either by birth or immigration) at the rate )( . The population decreases by 
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the ratio of the newly infected individuals that move to the latently infected class with 

information term at the rate 









 I1

1 .The population also decreases by natural death at the 

rate  . Thus; 

S
I

SI

dt

dS










1

 (2) 

 

The ratio of the population of the latently infected class consists of newly infected 

individuals with the memory term at the rate









 I1

1 , following a contact with the infected 

human/object at the rate  . The population decreases due to progression to infectious 

class at the rate , natural and disease-induced death at the rate (and), respectively, 

also decreases due to early treatment at the rate )( 1 .The population is assumed to be 

later increased by the help of an immunity boost from the treated compartment whenever 

the CD4 counts rise above 50%. Thus; 

  TL
I

SI

dt

dL








 1

1

 (3) 

 

The population of infected individual increases by progression from latently infected 

individual due to lack of treatment or treatment failure at the rate ( ) the population 

decreases due to treatment (at the rate
2 ), natural death at the rate   and disease-

induced death at the rate . Thus; 

 

 IL
dt

dI
  2

 (4) 

 

The population of the treated individuals increases by the treatments of those that are 

latently and fully infected by HIV at the rate (
1 and

2 ). The population decreases due to 

natural death at the rate  , death due to the disease at the rate , treatment failure due to 

drug resistance or inadequate dosing at the rate and the immunity boosted after 

treatment and CD4 count rises above 50% at the rate . Then, 

TIL
dt

dT
)(21  

 (5) 

 

Full-blown AIDS compartment increases by treated individuals that failed treatment due 

to one medical reason or the other at the rate  The acquire immuno-deficiency syndrome 

individuals suffer natural death and death due to the disease at the rate(  and   ) 

respectively. Hence; 

AT
dt

dA
)(  

 (6) 
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In summary, the system of the model as follows:

  

S
I

SI

dt

dS










1  
 

  TL
I

SI

dt

dL








 1

1  
 

 IL
dt

dI
  2

 

(7) 

 

TIL
dt

dT
)(21  

 
 

AT
dt

dA
)(  

 
 

 
Table1. Description of parameters with values 
 

Parameter Descriptions Values Source 

  Recruitment Rate 25 Varied 
  Contact Rate 0.35 Sanna (2021). 
  Natural Death 

Rate 

0.07 https://www.worldometers.info./aids/ 


 

Disease Death 

Rate 

0.016 https://www.unaids.org./en 


 

Treatment Failure 0.01 Varied 

  Immunity Boost  0.10 Varied 

  Progression Rate 0.07 Saha (2019) 

1  Latently Treatment 0.20 Varied 

2  Infected Treatment 0.25 Varied 

  Information Term

  

1 Varied 

 

 

 

    
                                       

   

                                         
)1( I




 

                      1     
  

  
                            2

                              
   

 

                                              

                                                                             
   

 
Figure 1. Flow chat of the SLITA model 

 

S(t) L(t) 

T(t) I(t) 

A(t) 

https://www.worldometers.info./aids/
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For the simplicity, we rewrite equation (7) as follows: 

S
I

SI

dt

dS










1

 

TLK
I

SI

dt

dL








 1

1

 

IKL
dt

dI
2         (8) 

TKIL
dt

dT
321    

AKT
dt

dA
4

 
where;

1K =  1  , 
2K =    2

, 
3K = )(    and

4K = )(    

 

Model analysis 

 

The analysis of the model is conducted here, aiming to establish and investigate the 

threshold necessary for the persistence of HIV/AIDS. 

 

The invariant region 

Theorem 1:  The closed set  






 

 


NRATILSD :,,,, 5  is positively- invariant with 

non-negative initial values in 5

R  

Proof: Consider the feasible region D as defined above, then the rate of change of the 

total population with 0  is given by; 

N
dt

dN


        (9) 

It follows that
N

dt

dN


.  

Hence, if

1

)0(



N

, then

1

)(



tN

. Therefore, all solutions of the model with initial values 

in D  remain in D  for all time t > 0 and this implies that D  is positively invariant and the 

model is deemed both epidemiologically meaningful and mathematically well-posed. 

 

Disease-free equilibrium point 

 

The disease-free equilibrium point of equation (7) is obtained by setting 

0
dt

dA

dt

dT

dt

dI

dt

dL

dt

dS  

Since there is no infection, i.e., 0 ATIL  

Hence, the disease free-equilibrium point of equation (7) is given by

 







 
 0,0,0,0,),,,,(0


 ATILS  
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Existence of endemic equilibrium 

 

Here we analyze the condition for the existence of equilibrium for which the HIV/AIDS 

disease is endemic in the population. We consider the model equation (8) 

where )*,*,*.*,*(
*

0 ATILS are the endemic equilibrium points. 

Hence, 



A
S


        (10) 






 02 RAK

L        (11) 



 0RA
I          (12) 

3

0212 )(

K

RKA
T








        (13) 

3

0212 )(

K

RKA
A








        (14) 

 

Effective reproduction number 

 

The effective reproduction number is the number of secondary cases of infection 

generated from a single infection (Adewale et al. 2015b, 2015c; Olopade et al., 2017, 

2021a, 2021b, 2022; Musibau et al., 2022). We obtained this using next-generation 

matrix method. The matrices F (new infection terms) and V  (other transferring terms) are 

given as:  

Given the matrices F and V below, 

F=



















 

0000

0000

0000

000



       (15) 

V=



























4

321

2

1

00

0

00

00

K

K

K

K








      (16) 
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














































































4

1

4
)

321122
(

12

4
)

321122
(

21

4
)

321122
(

)
122

(

0

321122321122

12

321122

122

0

321122321122

311

321122

122

0

321122

2

321122

2

321122

32

1

KKKKKK

KK

KKKKK

K

KKKKK

K

KKKKKKKK

K

KKKK

K

KKKKKKKK

KK

KKKK

K

KKKK

K

KKKKKKKK

KK

V



















































































0000

0000

0000

0
)()(

(

)(

.

321122321122

311

321122

3

KKKKKKKK

KK

KKKK

K

VF I













 

 




























)(

0

0

0

.

321122

3

1

KKKK

K

VF







 

)( 321122

3
0

KKKK

K
R








  

The threshold quantity R0 is the effective reproduction number of the model equation 

above, which is the average number of new case of an infection caused by one typical 

infected HIV/AIDS in a population of susceptible. 

 

Local stability of disease-free equilibrium 

 

Theorem 2: The disease-free equilibrium is locally asymptotically stable (LAS) if R0< 1 

and unstable if R0>1. 

Proof: To determine the local stability of E0, the Jacobian matrix below is computed 

corresponding to disease-free equilibrium 0 . Considering the stability of the disease-free 

equilibrium at







 
0,0,0,0,



equation (8) 

)( 01 J =







































4

321

2

1

000

00

000

00

000

K

K

K

K
















    (17) 
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 Since the first and the fifth column of the equation (17) have only the diagonal term that 

forms the first two negative eigen values, i.e.,  and 
4K , hence, the remaining sub-

matrix is given  

by
00)(

321

2

1

02 










































K

K

K

J

    (18) 

 

The  characteristics equation of the matrix (18) is given below; 

001

2

2

3

3  AAAA     (19)
 

Where 









3321212

0

3231211

1

1232

3 1

KKKKK
A

KKKKKK
A

KKKA

A











 

From
0A ; 

0)( 321212

3 


KKKK
K






     )( 321212

3 KKKK
K







      (20)

1
)( 321212

3 




KKKK

K





 

Therefore,  
.10R  

According to Routh Hurwitz criterion, which states that all the roots of the polynomial 

will have negative real parts if and only if all the coefficients )3,2,1,0( iAi
are positive 

and the matrices )3,2,1,0( iTi
are all positive. Clearly 0,0,0 123  AAA and 00 A  if 10 R  

Also, the Hurwitz matrix
iT is all positive which are given below;

 

021  AT , 
0

10

32

2 









AA

AA
T

,
0

00

0

0

210

32

3 



















A

AAA

AA

T
 

Therefore, all the eigen-values of the matrix (17) are negative which shows that the 

disease-free equilibrium is locally asymptotically stable. 

 

Global stability of the disease-free equilibrium 

 

Theorem 2: The disease-free equilibrium of model (8) is globally asymptotically stable if 

Ro<1. 
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Proof: We use comparison theorem to prove the global stability (Lakshmikantham et al., 

1989). The rate of change of variables representing the infected components of equation 

(8) can be re-written as; 
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Where; 
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Then,
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The matrix F – Vhas eigenvalues with negative real parts, indicating stability for the 

linearized differential inequality system described above. Therefore, according to the 

comparison theorem, it can be inferred that  0,0,0,0,0,0  Rhhh IJIE  as t . 

Substituting 0 Rhhh IJIE  into (8) we have that )0()( StS   as t .  Therefore, a 

positive invariant region exists, leading to the global asymptotic stability of the disease-

free equilibrium whenever 10 R  (Adewale et al., 2015a). 

 

Theorem 4: Let *  be the unique positive equilibrium point of the system (7), If 10 R , 

then endemic equilibrium *  of the system (7) is globally asymptotically stable.  

 

Proof: Using theorem 5 and 6, consider; 

 

Theorem 5: (Dulac’s Criterion)  

Consider the following general nonlinear autonomous system  

Exxftx  ),()(  (24) 

Let )(ECf I where E is a simple connected region in nR . If there exists a function )(ECH I

such that )..( fH is not identically zero and does not change sign in E, the system (7) has 

no close orbit lying entirely in E. if A is an annular region contained in E on which 

)..( fH   does not change sign, then there is at most one limit cycle of the system (7) in A.  
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 Theorem 6: (The Poincare-Bendixson Theorem) 

Suppose that )(ECf I  

  Where E is an open subset of nR and that the system (7) has a trajectory   contained in a 

compact subset f of E. Assume that the system (7) has only one unique equilibrium point 

0x in f , then one of the following possibilities holds. 

(1) )(w  is the equilibrium point x 

(2) )(w  is a periodic orbit 

(3) )(w is a graphic  
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Consequently, as per Dulac's criterion, a closed orbit exists in the first quadrant, implying 

that the endemic equilibrium is globally asymptotically stable. 

 

Sensitivity analysis 

 

Sensitivity analysis investigates the relations between the parameters of a model and its 

threshold quantity basic reproduction number Ro, which determines the spread/eradication 

of a disease in a community at a particular time (Adesola et al., 2024; Olopade et al., 

2024). Sensitivity Analysis has been used for different parameterization tasks of models 

of biological systems, such as finding necessary parameters for research prioritization, 

identifying less influenced parameters or parameters clustering. 

 

Sensitivity analysis of the model is determined by the partial derivatives of the basic 

reproduction number to its parameters; 
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         (28) 

The sensitivity expressions for the parameters in the basic reproduction number are 

displayed below: 

For  , 
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We apply the same methodology to analyze other parameters in a similar manner. Using 

the data in Table 1, we obtained the following sensitivity values. The results of the 

sensitivity indices of R0 are as shown in the Table 2 below: 
 

Table 2.Values and signs of sensitivity index (S. I) for
0R  

Parameter
 

S. I.
 

Sensitivity values 

0R  Positive 0.9162098083 


 

Positive 1.00000000 
  Positive

 
1.00000000 

  Negative -0.742533291 


 

Negative
 

-0.1697218951 


 
Positive

 
0.0288512858 

  
Positive

 
0.2770380345 


 

Positive
 

0.8090170006 

1  Negative
 

-0.4308055914 

2  Negative
 

-0.7141361289 
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Figure 2. The graph of sensitivity analysis 

 

Numerical simulations 

 

To authenticate the theoretical calculations of the model, the numerical simulations of the 

model (8) are carried out by differential transformation method, using a set of parameter 

values given in Table 1. 

 

Figure 3. Total population of SEITA with 0  

 

Figure. 4. Total population of SEITA with 

3.0  
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Figure 5. Total population of SEITA with 

6.0  
Figure 6. Total population of SEITA with 0.1  

 

 

 

Figure 7. Total population of susceptible 

individuals with 1&6.0,3.0,0.0  
Figure 8. Total population of infected 

individuals with 1&6.0,3.0,0.0  

 

  
Figure 9. Total population of treated individuals 

with 1&7.0,4.0,1.0  
Figure 10. Total population of latently infected 

individuals with 1&7.0,4.0,1.01   
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Figure 11. Total population of aids individuals 

with 1&8.0,5.0,25.02   
 

Figure 12. Total population of AIDS individuals 

with 1&8.0,5.0,2.0  

 

 

 

RESULTS AND DISCUSSION 

 

We present and analyze five (5) compartmental mathematical models that incorporate 

memory terms to better understand the dynamics of the HIV/AIDS epidemic. These 

models offer insights into both current and past states of HIV/AIDS, as well as other 

epidemiological features contributing to the progression from HIV to full-blown AIDS. 

This aspect, which has not been explored in existing literature, provides a comprehensive 

framework for studying the complexities of the disease transmission and progression. We 

analyzed the effective reproduction number R0 which determines whether the disease dies 

off or spread, the result shows that the disease dies off  whenever R0 is less than unity i.e. 

R0<1 but spreads when R0>1. Sensitivity analysis of basic reproduction number 

R0concerning parameters shows the parameters that need to be checked by medical 

practitioners/health policy makers, parameters with positive index such as effective 

contact rate increases the basic reproduction number and must not exceed 0.39 to avoid 

endemic stage. The numerical analysis of the model shows the dynamical behavior of the 

epidemiological parameters used in the formulation of the model (8).This paper conducts 

sensitivity analysis to demonstrate the effects of the memory term, treatment rate, and 

other epidemiological parameters associated with the basic reproduction number. 

 

Table 2 discloses the sensitivity index rate of the effective reproduction number (R₀), 
which gauges the average number of new secondary infected individuals generated by a 

single infected individual during the infectious period. The table critically indicates that 

R₀ is less than one (R₀< 1), i.e., , signifying that the disease is locally 

asymptotically stable and can be controlled. Furthermore, the recruitment rate into the 

population is deemed satisfactory, given its positive value . The negative value of 

the death rate ( ) suggests that HIV/AIDS can be controlled in society, 

830.916209800 R

)1( 

11.74253329- 
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leading to a significant reduction in the rate of individuals infected by HIV. The 

HIV/AIDS-induced death rate, also negative ( ), implies that the 

mortality of those infected by HIV in society would contribute to the reduction of the 

dynamic spread of HIV. Examining both treatment rates for latent and infected individual 

classes ( =-0.4308055914 and , it becomes evident that the 

treatments can effectively reduce the viral load in HIV patients, thereby mitigating the 

progression to full-blown AIDS. Additionally, the positive index of the progression rate 

(σ) suggests that the progression from latent HIV to active HIV can lead to full-blown 

AIDS if proper measures are not taken. Figure 2 represents the bar chart of Table 

2.Figures 3 to 6 illustrate the impact of increasing the memory term 

on each compartmental class in the total population of the model (Susceptible S, Latent 

L, Infected I, Treated T, and AIDS A). Each graph was generated using MAPLE 18 

through Runge-Kutta's fourth-order method. The total population was plotted against 

time (t) in months, with variations in the memory term. The memory term provides 

information about any disease. 

 

In Figure 3, where  means there is no information or awareness of HIV in society, 

the graph reveals that the population of the latent class was very high, while the 

susceptible class was low to the point of insignificance. As   increases in Figures 4 and 

5, i.e. 3.0 , 0.6 respectively, there is little awareness of the disease in the society, 

resulting in a gradual reduction in the population of the latent class and a small increment 

in the susceptible class within a short period. In Figure 6, where   is greater, i.e., 1 , 

indicating awareness of the disease, there is an increase in the susceptible class while the 

latent population decreases within a relatively short period. Furthermore, Figures 7 and 8 

indicate that the memory term is directly proportional to the susceptible class and 

inversely proportional to the infected class. Consequently, when society is informed 

about the HIV/AIDS disease, its transmission rate is significantly reduced. 

 

Figure 9 visually illustrates a notable trend: an augmentation in immunity boost 

corresponds to a decrease in the number of viral load in the HIV host. This suggests that a 

strengthened immune system serves as a preventive force within the individual's body, 

acting to reduce the likelihood of HIV infection. The figure provides a clear 

representation of the positive impact of enhanced immunity in mitigating the HIV leading 

to full blown-AIDS, emphasizing the critical role of immune strength in individual 

resistance to HIV. 

 

Figures 10 and 11 offer additional confirmation that prompt initiation of treatment is 

imperative in the event of an HIV outbreak in society. These graphs underscore the 

importance of timely intervention, showing that the treatment rate exhibits an inverse 

relationship with both the latent and infected classes, respectively. The findings 

emphasize that a higher treatment rate corresponds to a reduction in the populations of 

latent and infected individuals. This highlights the critical role of swift treatment 

510.16972189- =

1 289)-0.71413612 

)0.1,6.0,3.0,0..( ei

)0( 
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 initiation in mitigating the impact of an HIV outbreak and curbing the progression of the 

disease within the affected population. 

 

Figure 12 visually depicts the consequences of treatment failure, showcasing a notable 

rise in the full-blown AIDS compartment. This illustration provides a visual 

representation of how the failure of treatment contributes to an escalation in the 

population affected by advanced stages of AIDS. The figure serves as a valuable tool for 

understanding the dynamics and implications of treatment shortcomings in the context of 

disease progression within the model or study. 
 
 

CONCLUSION 

 

In conclusion, this study has illuminated the transmission dynamics of HIV/AIDS with a 

saturated incidence rate and underscored specific epidemiological features. However, it is 

crucial to acknowledge the limitations of the research. Firstly, the model employed in this 

study may oversimplify the intricate dynamics of real-world HIV/AIDS transmission, 

failing to consider factors such as varying transmission rates, population mobility, and 

socio-economic factors. Additionally, the findings may be constrained by the 

assumptions and parameters utilized in the model, which might not accurately capture the 

complexity of HIV/AIDS dynamics across all populations. Moreover, while the study 

highlights the significant impact of information terms and treatment rates on susceptible, 

infected, and latent infected populations, it is essential to recognize that additional 

factors, including access to healthcare, stigma, and cultural beliefs, also exert 

considerable influence on the spread and management of HIV/AIDS. Therefore, while 

the study implies that HIV/AIDS transmission can be mitigated by considering memory 

terms and treatment rates, policymakers and stakeholders must adopt a holistic approach 

to HIV/AIDS prevention and control. This approach should encompass not only medical 

interventions but also address socio-economic disparities, promote education and 

awareness, and combat stigma and discrimination. In light of these considerations, it is 

incumbent upon government officials and lawmakers to adopt proactive measures to 

control the spread of HIV/AIDS. This entails implementing evidence-based policies and 

interventions that address the multifaceted nature of the epidemic and prioritize the needs 

of affected communities. 
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