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ABSTRACT

The aerosol-cloud-precipitation interactions — ACPIs - are uncertain that show a large spatiotemporal
variability in their magnitude. These things happen because of the effects of aerosol particles on
precipitation and cloud parameters, environmental and meteorological conditions, industrial and
agricultural influences, and other human influences and natural factors in each ecological functional area.
For this study, aerosol and cloud data were retrieved from the Moderate Resolution Imaging
Spectroradiometer MODIS sensors. These comprised of the aerosol optical depth AOD, Angstrém exponent
AET, atmospheric water vapor AWV, mean cloud fraction CFM, cloud top pressure CTP, and cloud top
temperature CTT. Precipitation data is comprised of 3B43 products sourced from Tropical Rainfall
Measuring Mission TRMM and the outgoing long-wave radiation OLR flux is comprised of Clouds and
Earth‘s Radiant Energy System CERES satellite instruments. The study covers sixteen sites in East Africa-
Ethiopia with neighboring countries - Eritrea, Djibouti, and South Sudan clustered into four regions for the
periods of 2001-2022 to provide detailed information on the aerosol particles spatiotemporal effects on
clouds and precipitation. The increase-decrease AWV, CFM and PPT fluctuations are with AOD opposing
OLR, CTP and CTT. The parameters are oriented towards western part mostly in the southwest region of
the study area. The minima values were found at the southeast cluster in 2022 for all AOD, AWV and CFM;
in 2010 for PPT and OLR and in 1999 and for OLR with their maxima at northeast cluster in 2010 for
AOD, AWV and CFM; in 2009 for PPT; and in 2011 and 2022 for CTP and CTT from both instruments.
Accordingly, the AOD, AWV, CFM, PPT, CTP and CTT minimum values are 0.22, 1.90, 0.21, 1.15, 253.86,
504.53 and 257.73 for Terra and 0.18, 1.91, 0.27, 252.14, 533.43 and 262.94 for Aqua, and the maxima are
0.35,2.33,0.33, 2.26, 271.23, 619.08 and 268.49 for Terra and 0.35, 2.35, 0.41, 272.22, 640.07 and 272.58
for Aqua, respectively. The parameters OLR and AWV had the lowest optimum significant PCs at the
Humera and Dahlak sites whereas the PCs retained based on AET at the Awassa site and AWV at the
Dangote site were the highest. Differences in retained PCs point to different atmospheric dynamics
responsible for the behavior of climate during various seasons of the year and the spatial coherence arising
from both interannual and intraseasonal variability. And our observation using the HYSPLIT model and fire
map confirms that transported aerosol particles in the atmosphere show varied source regions, mostly the
Arabian desert and the southwest Indian ocean, at different levels.
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INTRODUCTION

Our atmosphere is an ever-changing system that keeps the Earth inhabitable by
absorbing shortwave radiation and re-emitting long-wave radiation. The atmosphere
contains gases, aerosol particles, and collections of liquid and solid hygrometers that
make up clouds. Atmospheric aerosols are small mixtures of both solid particles and
liquid droplets of particulate matter suspended in the atmosphere (Kafle and Coulter,
2013; Grythe, 2017). Their size ranges from a few tens of nanometers to several tens
of micrometers, which is to say they are in between the width of the smallest viruses
and the diameter of human hair, barely visible to the human eye, with lifetimes
ranging from hours to years. These compositions, sizes, and lifetimes of the aerosol
particles affect how far they can travel around the world, their interactions with
precipitation, clouds, and radiation budgets, and their total potential effects on climate
and human health (Okuda, 2013; ; Mushtaq et al., 2022; Duffney et al., 2023).

The aerosol particles that are injected directly into the atmosphere through natural and
anthropogenic sources are known as ‘primary aerosols’. These include sea spray,
biomass burning, incomplete combustion of fossil fuels, volcanic eruptions, wind-
driven or traffic-related suspension of the road, soil, mineral dust, sea salt, sand, and
biological materials. Secondary aerosol particles are emitted in another form and then
become aerosol particles after going through chemical reactions in the atmosphere,
such as sulphate aerosols from volcanoes or industrial emissions. All aerosols can also
undergo further chemical changes, referred to as ‘aging effects’. They have numerous
potential feedback processes that are still poorly understood, making them an essential
component of the atmospheric hydrological cycle and its radiation budget (Gaffney et
al., 2006; Wild and Liepert, 2010; Behera, 2016; Chi et al., 2019).

There is clear and rapidly growing evidence that atmospheric aerosol particles have
profound impacts on the thermodynamics and radiative energy budgets of the Earth.
The aerosol particles affect the atmosphere: directly by altering the properties of the
radiation energy budget through scattering and absorbing the solar radiation;
indirectly by affecting the cloud microphysical properties; and semi-directly through
the absorbed radiation energy by aerosol particles, which is able to increase the
temperature of the surrounding air, resulting in the evaporation of cloud droplets and
ice particles (Kafle and Coulter, 2013; Myhre et al., 2013). Therefore, in addition to
their radiative effects, aerosol particles act as condensation nuclei for cloud CCN and
ice IN formation and can therefore affect precipitation in several ways (Kaufman et
al., 2000; Andreae and Rosenfeld, 2008; Li et al., 2021).

The aerosol particles-cloud parameters-precipitation interactions attract more
attention, so regional as well as global scientific observations are needed to qualify
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and confirm the situations. From a previous literature review, we found that there are
few studies on atmospheric aerosol particles optical properties in East Africa—Ethiopia
using ground or satellite data (Getachew, 2009; Homa et al., 2017; Eshet and Raju,
2022). However, to date, no one has reported the effects of aerosol particles on cloud
parameters and precipitation using satellite data from the Moderate Resolution
Imaging Spectroradiometer MODIS, Tropical Rainfall Measuring Mission TRMM,
and Clouds and Earth‘s Radiant Energy System CERES.

The MODIS is a key instrument that consists of Terra and Aqua satellites onboard
that provide long-term and continuous measurement of different aerosol properties
from a very long time and plays important role in validating and developing new
models to predict climate change (Pagano and Durham, 1993; Koukouli et al., 2010;
Ismael, 2015; Deep et al., 2021). The Terra satellite orbits around the Earth during the
morning at 10:30 local time, descending in the north-to-south direction, while Aqua
orbits during the afternoon at 13:30 local time, ascending in the south-to-north
direction (Levy et al., 2018; Liu et al., 2021; Ustin and Middleton, 2021). Both of
these instruments capture the same area on the Earth with 36 spectral bands that can
observe its surface every 1-2 days (Justice et al., 1998; Bekker et al., 2014; Verma et
al., 2019).

The TRMM is a joint space mission in between the National Aeronautics and Space
Administration NASA and Japan’s National Space Development Agency NASDA of
Japan which is designed to monitor and study tropical and subtropical precipitation
and the associated release of energy. By covering the tropical and subtropical regions
of the Earth, the TRMM provided important precipitation information using several
space-borne instruments to increase our understanding of the interactions between
water vapor, clouds, and precipitation that are central to regulating Earth’s climate
(Simpson et al., 1988; Theon, 1994; Maggioni et al., 2016;).

The CERES is a key component of the Earth Observing System EOS, Suomi National
Polar-Orbiting Partnership S-NPP, and National Oceanic and Atmospheric
Administration NOAA-20 observatories. It also consists of Terra and Aqua satellites
with a three-channel radiometer: a shortwave channel, a long-wave channel, and a
total channel that measures both solar-reflected radiation at the top of the atmosphere
and Earth-emitted radiation from the Earth’s surface (Smith et al., 2011; Loeb et al.,
2018; Parkinson, 2022).

Hence, in this study, we used the climatological database of the aerosol particles
optical properties, namely the aerosol optical depth AOD and Angstrém Exponent
AET (Toledano et al., 2007; Kumar et al., 2015; Al-Taie et al., 2020), and the cloud
parameters such as atmospheric water vapor AWV, mean cloud fraction CFM, cloud
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top pressure CTP, and cloud top temperature CTT (Sporre, 2016; Barthlott and Hoose,
2018) from MODIS, the precipitation PPT (Li et al., 2017; Barthlott and Hoose, 2018)
from TRMM, and the outgoing long-wave radiation OLR flux (Myhre et al., 2013; Li
et al., 2017) from CERES satellite instruments, to identify the interactions over East
Africa-Ethiopia.

MATERIALS AND METHODS

This section outlines research areas and locations selected for the effects of aerosol
particles, along with the data source. In addition, this section includes the methods
used in this study to fill in the gaps left by other findings from previous work.

The study areas and sites

This research was carried out in East Africa, specifically in Ethiopia. Despite the fact
that they have become independent daughter countries, Djibouti and Eritrea, once
parts of Ethiopia, and South Sudan were purposively incorporated into the study areas
of the research project (Tongco, 2007; Negash, 2019). Sixteen sites, i.e., ten from
Ethiopia, three from South Sudan, two from Eritrea, and one from Djibouti, were
selected and then divided into four clustered regions: southwest, southeast, northwest,
and northeast. Figure 1 shows four East African countries, namely Ethiopia, Eritrea,
Djibouti, and South Sudan{3-18" N, 24-48" E} which have been taken as the study
areas (1,897,129 km?) of this research, along with details of those sites in their
clustered regions. Generally, the study areas and selected sites consisted of both the
continental and maritime aerosol particle sources.

Remote sensing data

Remote sensing is the process of obtaining information about objects, areas, or
phenomena from a distance without being in physical contact to the object. It includes
the use of satellite or aircraft-based sensor technologies to detect and classify objects
on the Earth’s surface, in the atmosphere and in oceans (Roughgarden et al., 1991;
Silleos, 2000). The high spatial and temporal resolution of satellite remote sensing
data is more valuable in most atmospheric science studies. Such measurements are
made using different platform sensor configurations (Briffa et al., 2020; Freemantle et
al., 2020; Zhang et al., 2022). For this study, monthly data obtained at the web portals
were used: MODIS https://ladsweb.modaps.eosdis.nasa.gov/search/order/ to retrieve
aerosol particles and cloud parameters; CERES https://asdc.larc.nasa.gov/data/
CERES/ES4/ to calculate outgoing long-wave flux; and TRMM https://daac.gsfc.
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nasa.gov/datasetssyTRMM_3B43_7/summary?keywords=TRMM_3B43 7 to find the
precipitation. Particularly, we collected the data for the Terra satellites MOD08_M3—
61 and Terra-Xtrk_Edition4 from January 2001-December 2022 and for
TRMM_3B43 from January 1998-December 2019, all for a period of 264 months,
and for the Aqua satellite MYDO08_3M-61 and Aqua-Xtrk_Edition4 from July 2002-
December 2022 for a period of 246 months.
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Figure 1. Latitudinal and longitudinal sites of the study area.

Key: JB = Juba; AW = Agnuak; RG = Raga; AS = Awassa; KD = Kebri Dahar; AA = Addis Ababa; DG = Dangote; TG =
Tonga; ED = Great Ethiopian Renascence Dam; BD = Bahir Dar; HR = Humera; KC = Kombolcha; DT = Djibouti; AB =
Aseb; EA = Erta Ale; DL = Dahlak.

Satellite data retrieval

After browsing the monthly hierarchical data format HDF datasets from the MODIS,
TRMM, and CERES websites, we extracted the aerosol, clouds, precipitation, and
outgoing long-wave radiation parameters, namely AOD, AWV, CFM, CTP, CTT,
PPT, and OLR, and then AET was calculated from AOD both using MATLAB and
Python codes. This subsection describes the methods we have been using to derive the
details of those parameter retrievals from the satellite datasets.

The parameter aerosol optical depth AOD is the measure of the turbidity-opacity of an
environment or a medium (Chen et al., 2020; LeBlanc et al., 2020; Wu et al., 2021).
The optical parameter AOD describes section of light removed from a beam by
scattering and absorption during its path through the environment (Jin et al., 2023).
The AOD values that depend on the sizes, shapes, numbers, concentrations, and the
indexes of refraction of the aerosol particles, were related to the wavelength by using
the following equation (Eq 1) (Symeonidis, 2017):
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where: i, A is the spectral radiant flux in wavelength received; ¢&, A is the spectral
radiant flux in wavelength transmitted; T, is the spectral transmittance in wavelength
A

Typically, the AOD (0.55 pm) ranges from 0.05 to 1 over the remote ocean, to 2.0 or
even 5.0 during the time of heavy pollution, smoke and dust (Patel and Application,
2016; B. AL-Taie et al., 2020;). For AOD values x;, the mean X could be calculated as
follows (Hopkins and Weeks, 1990; Bryhn and Dimberg, 2011):
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And the coefficient of variance CV in % is:
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The parameter Angstrom exponent AET is one of the basic parameters that is widely
used in atmospheric sciences dealing with the optical properties of aerosol particles.
This optical parameter is treated as the indirect measure of the aerosol size in a given
column of air. Given the turbidity coefficient , then AET had been cal culated from
the AOD values using equation 5 below (Thapa et al., 2016):

AOD(A) = BA~AET and then, AET = W ®)

Principal component analysis

The principal component analysis PCA is useful for compressing geophysical data in
space-time and separating noise from meaningful data that converts the data to a new
coordinate system. PCA involves the transformation of variables into a linear
combination of orthogonal components. A series of axes provides location of each
data points which represents separate uncorrelated information. The output is
covariance matrix denoting transformation coefficients listed in decreasing order of
variation. Let P be an m x n matrix of daily data, where m is the number of days and n
is the number of stations. This matrix can be decomposed into linear functions of m
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temporal and n spatial vectors so that the observation P;; on day i at station j is given
by the following equation (Stephenson et al., 1999; Gitau et al., 2013; Ledesma and
Valero-Mora, 2019):

- (6)
Pi' =Zaikejk<:)P=ZPij = ae

k=1
where aj, is the element for day i in k™" time vector and ejk the element for station j in
K™ space vector.

The standardized dataset (A;) and symmetric n x n correlation matrix C are given as:

Aij = @and C = A’_A (7)
d m-1
The eigenvectors e are space vectors and the corresponding eigenvalues A are
measures of the explained variance accounted for each eigenvector. Decomposition of
correlation matrix into eigenvectors e, and associated eigenvalues A are obtained by
solving:

(C—ADe=0s|(C-AD|=0 (8)

Given p x m matrix, Uy, = (U, Uy, U3 ...., Uy) of PCA loadings. Simplifying with
rotation can be achieved by seeking an m x m rotation matrix R to construct rotation
of the empirical orthogonal functions REOFs K according to equation 9 (Hansen et
al., 2008);

K=UpB 9)

Maximum factor loadings after rotation that is the correlation coefficients between
the variables and factors will be used to determine the relation of selected variables,
the parameters for the aerosol optical properties, clouds and precipitations. The
simplicity criterion for choosing the rotation matrix for maximization problem is
expressed by:

maxf(UnB) (10)
HYSPLIT trajectory analysis

The HYbrid Single-Particle Lagrangian Integrated Trajectory HYSPLIT model is
completed system for computing both simple air parcel trajectories and complex
dispersion and deposition simulations. The model calculation method is a hybrid
between the Lagrangian approach and the Eulerian approach. The Lagrangian
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approach uses a moving frame of reference as the air parcel moves from their initial
location. And the Eulerian approach uses a fixed three-dimensional grid as a frame of
reference (Huang et al., 2009; Lu et al., 2022).

An advection and diffusion calculations are made in Lagrangian framework following
the transport of the air parcel, while pollutant concentrations are calculated on a fixed
grid. Using the model, advection of the particle can be computed from the average of
the three-dimensional velocity vectors at the initial position P(t) and first-guess
position P’(t+At). Respectively, the first guess and final positions are given by Draxler
and Hess (1998):

P’(t + At) = P(t) + V (P, H)At
P(t+ At) = P(t) + 0.5V (P, t) + V (P’, t + At)At (11)

RESULTS AND DISCUSSION

After extracting the HDF datasets and collecting their spatial raster AOD, AWV,
CFM, CTP, and CTT array values from MODIS, PPT array values from TRMM, and
OLR array values from CERES during January 2001-December 2022, the AET
values were calculated from the AOD values using the formula described in the
methodology section. And then monthly, seasonal and yearly temporal averages were
obtained for selected sites clustered into four regions, i.e., southwest, southeast,
northwest, and northeast of the study area. In addition, we also discuss the PCA-
explained variance and fire-map trajectory model analysis in this section.

Spatial variation

Generally, the East African-Ethiopian climate has been categorized into four major
seasons: December—February as winter or bega season in Amharic, March—May as
spring or tseday season in Amharic, June—August as summer or kiremt season in
Ambharic, and September—November as autumn or belg season in Amharic (Makokha
et al., 2017; Ayanlade et al., 2019; Aga, 2023; Kalisa et al., 2023). In this section,
respectively from right to left, bega, tseday, kiremt, belg, and annual, we presented the
seasonal as well as the total annual average spatial distribution variations for the study
periods 2001-2022. The spatial distribution fluctuations of the parameters we
observed in these research findings are shown using Figure 2 for the Terra and Figure
3 for Aqua satellite data.
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Figure 2. The aerosol optical parameters spatial distribution.

Our observations include the research findings that contain: the aerosol particles
optical parameters 0.00<AOD<0.35 (1% upper panels); the cloud parameters
0.00<AWV<3.50 (2" panels), 0.00<CFM<0.80 (3" panels), 400.00<CTP<800.00 (6"
panels), and 2500.00<CTT<300.00 (lower panels); the precipitation 0.00<PPT<25.00
(only in Terra 4™ panels); and the outgoing long-wave radiation flux
100.00<OLR<350.00 (the 5™ panels) over the globe we take the study area {3-18° N,
24-48° E} regions with in it.

From both the seasonality and total annual results, we can observe that the parameters
are generally oriented towards the western part of the study area regions, mostly in the
southwest of the study area regions. The seasonality distribution variation shows that
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the minimum values are found in the bega season (1% column a panels) and the
maximum values are in the kiremt season (3" column c panels). The belg season (4"
column d panels) is the next to have minimum values, while the next maximum
values for the kiremt season are in the tesday season (2" column b panels) for both
the Terra and Aqua instruments.
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The results are similar to the findings of the studies from the Taklimakan desert in
China (Li et al., 2014) and the Nile River Basin in Ethiopia (Getachew et al., 2020)
while they contradict the observations of the studies at four selected sites: Addis
Ababa, Debre Markos, and Debre Tabor in Ethiopia, and Djibouti in Djibouti (Homa
et al., 2017; Eshet and Raju, 2022). In the case of the instruments, greater values are
observed from the Aqua instrument and less from the Terra instrument, which
contradicts previous observations (Kharol et al., 2011).
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So, we can generalize that the findings in our observations show that the parameters
have seasonal minimums in the bega season and maximums in the kiremt season, and
spatial minimums mostly in 33-42°E and maximums in the southwest of the study
area regions, respectively. And the parameters are higher on the Terra instrument
relative to the Aqua instrument. Even if there are also contradictory findings to our
results, the studies undergone by different scholars we discussed above and others (Li
et al., 2014; Ngaina et al., 2014; Boiyo et al., 2018; Torres-Delgado et al., 2021;
Kalisa et al., 2023) about the seasonality of the parameters fluctuation, the different
local activities, and the long—range aerosol particles transport to the study area regions
confirmed our observation.

Monthly variation

This section of the study depicts the results of the total monthly temporal values
fluctuations for the aerosol particles, cloud parameters, precipitation, and outgoing
long-wave radiation flux we described before. The temporal monthly mean values of
the parameters are constructed for each site in the four clustered regions. The results
of our observations for the parameters values variations are illustrated in Figure 4 for
the Terra and Figure 5 for Aqua satellite data. The increase and decrease fluctuations
for the parameters AWV, CFM and PPT are with AOD, while for OLR, CTP and
CTT they are vice-versa!

In the southwest cluster (1% column a panels), the minimum values for the parameters
are observed in South Sudan at the Raga site, while the maximum values are observed
in Ethiopia at the Agnuak site for AOD, CFM, CTP, and CTT; in South Sudan at the
Juba site for AWV; and at the Raga site for PPT and OLR. For the southeast cluster
(2™ column b panels), the minimum values are observed in Ethiopia at the Kebri
Dahar site AOD, CFM, and PPT. The other minimas in Ethiopia are at the Addis
Ababa site for AWV, OLR, CTP, and CTT. And the maximum values are observed in
Ethiopia at the Addis Ababa site for AOD and PPT, and still in Ethiopia at the Kebri
Dahar site for AWV, OLR, CTP, and CTT. Another maximum value is observed in
Eritrea at the Aseb site for CFM. Here, the results we observed and discussed in the
southern clustered regions are from both the Terra and Aqua satellite instruments.

In the northwest cluster (3" column ¢ panels), minimum values for the parameters are
observed in Ethiopian at the Humera site for AOD, CFM, PPT, OLR, and CTT. The
other minima in Ethiopia are at the Dangote sites for AWV and at the Bahir Dar site
for CPT.



40 Ambachew Abeje and Jaya Prakash Raju

L e

Amosghuic Woks Vopor Mesn Ao Opteal g L O e

it Fackn ean

TR Prciatin

When we moved to the northeast cluster (4™ column d panels), the minimum values
for the parameters were observed in Ethiopia at the Kombolcha site for AOD, AWV,
OLR, CTP, and CTT. The other minimum values for the parameters were observed in
Djibouti at the Djibouti site for CFM and in Eritrea at the Dahlak site for PPT. And
the maximum values for the parameters are observed in Eritrea at the Aseb site for
AOD and CFM and at the Dahlak site for CPT and CTT. The other maximum values
for the parameters are observed in Djibouti at the Djibouti site for AWV and OLR,
and also in Ethiopia at the Kombolcha site for PPT. Here, the results we observed and
discussed in the northern clustered regions are from both the Terra and Aqua satellite
instruments, with some exceptions. Minimum values for the parameters are observed
for OLR at the Bahir Dar and the Ethiopian Renaissance Dam sites, and maximum
values for CTP and CTT at the Tonga site in the Aqua satellite.
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Figure 5. The aerosol optical parameters monthly variation.

In general, for both of the Terra and Aqua instruments: the minimum values are found
at the Kebri Dahar site for ADD, at the Kombolcha site for AWV, at the Humera site
for both CFM and PPT, all in January and December, while their maximum values
were AOD at the Aseb site, AWV at the Tonga site, CFM at the Agnuak site, and PPT
at the Bahir Dar site, all in July; the minimum values were found for OLR at the
Humera site and CTP at the Bahir Dar site both in August and CTT at the Raga site in
March and April, while the maximum OLR value was at the Kebri Dahar site in
February; the maximum CTP value was at the Dahlak site in January and December;
the maximum CTT value was at the Dahlak site in November. Exceptionally, the
minimum values for the OLR were at the Bahir Dar and Ethiopian Renascence Dam
sites in July and August for the Terra and Aqua instruments, respectively.
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Seasonal variation

The seasonal variations of the parameters at the selected sites clustered into four areas
are addressed in this section. The evolution of these parameters estimated from the
study periods of 2001-2022 are shown respectively in Figures 6 and 7 for the Terra
and Aqua satellite data together with their corresponding total average means. The
minimum values for the parameters AOD, AWV, CFM, and PPT were found in the
bega season, their maximum values in the kiremt season, while the minimum values
for the parameters OLR, CTP and CTT in the kiremt season, and their maximum
values were found in the bega season, which were reversed in all of the clusters and
both of the instruments.

In the southwest cluster (1% column a panels), the minimum values for the parameters
are observed in South Sudan at the Raga site, while the maximum values were
observed in Ethiopia at the Agnuak site for AOD, CFM, PPT, CTP, and CTT; in
South Sudan at the Raga site for the parameters AWV and OLR. For the southeast
cluster (2" column b panels), the minimum values were observed in Ethiopia at the
Kebri Dahar site AOD, CFM, and PPT. The other minimas in Ethiopia are at the
Addis Ababa site for AWV and OLR, and in Eritrea they were at the Aseb site for
CTP and CTT. And the maximum values were observed in Ethiopia at the Addis
Ababa site for AOD and PPT, and still in Ethiopia at the Kebri Dahar site for AWV,
OLR, CTP, and CTT. Another maximum value was observed in Eritrea at the Aseb
site for CFM. Here, the results we observed and discussed in the southern clustered
regions were from both the Terra and Aqua satellite instruments.

In the northwest cluster (3™ column ¢ panels), minimum values for the parameters
were observed in Ethiopia at the Humera site for AOD and CFM and at the Ethiopia
Renaissance Dam site for CTT. The other minima in Ethiopia were at the Dangote
sites for AWV and at the Bahir Dar site for OLR and CPT. The maximum values for
the parameters were observed in Ethiopia at the Bahir Dar site for AOD and PPT and
at the Humera sites for OLR and CTT. The other maxima values for the parameters
were observed in South Sudan at the Tonga site for AWV, CFM, and CPT. When we
moved to the northeast cluster (4™ column d panels), the minimum values for the
parameters were observed in Ethiopia at the Kombolcha site for AOD and AWV and
at the Erta Ale site for CTP and CTT. The other minimum values for the parameters
were observed in Djibouti at the Djibouti site for CFM and in Eritrea at the Aseb site
for PPT and OLR. And the maximum values for the parameters were observed in
Eritrea at the Aseb site for AOD and CTP and at the Dahlak site for CFM and CTT.
The other maximum values for the parameters were observed in Djibouti at the
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Djibouti site for AWV. Still, other values were also observed in Ethiopia at the
Kombolcha site for PPT and at the Erta Ale site for OLR. Here, the results we
observed and discussed in the northern clustered regions were from both the Terra and
Aqua satellite instruments, with some exceptions. Minimum values for the parameters
were observed for OLR, CTP and CTT at the Kombolcha and the Ethiopian
Renaissance Dam sites, and maximum values for CTP and CTT at the Tonga site in
the Aqua satellite.

In general, for both of the Terra and Aqua instruments: the minimum values were
found at the Kebri Dahar site for ADD, at the Kombolcha site for AWV, at the
Humera site for both CFM and PPT, they were all in bega, while the maximum values
are for AOD at the Aseb site, AWV at the Tonga site, CFM at the Agnuak site, and
PPT at the Bahir Dar site, they were all in kiremt. And also, the minimum values were
found for OLR at the Bahir Dar and Ethiopian Renaissance Dam sites, CTP at the
Bahir Dar site and CTT at the Humera site, they were all in Kiremt, while the
maximum values were for OLR at the Humera site, CTP and CTT at the Dahlak site
they were all in bega. Therefore, almost all of the results in the figures indicate
extreme values at similar locales, like those of the observations in Figures 6 and 7,
with a few noted exceptions.

Those results are similar to the findings and the reasons in the study from eastern
China (Liu et al., 2021). The seasonal results for the parameters were similar to those
of the observations made in Austria (Yang et al., 2021), Algeria (Khan et al., 2021),
eastern China (Liu et al., 2021), and Hong Kong (Yu et al., 2022), despite the fact that
there had been no prior studies on the sites in the clustered regions. The discrepancies
we discovered were in the minimums with different data periods and site selections.
Furthermore, in the study conducted by Yu et al. (2022) the minimum values were
primarily at bega and the maximum at kiremt.

Yearly variation

In this section, we summarize the total yearly variations of the parameters for all the
selected sites belonging to the four clustered regions. Respectively from top to
bottom, the first column (a panels) in the error bar in Figures 8 and 9 indicate the
yearly variations for parameters AOD, AWV, CFM, PPT, OLR, CTP, and CTT from
the Terra and Aqua satellites corresponding to the selected sites in the southwest
cluster, and the average of all the sites is also superimposed on all plots. Similarly, the
other 2", 3™ and 4™ columns (b, ¢ and d panels) in the figures produced yearly
variations of the parameters for the remaining three clustered regions. The majority of
the sites, both in the western and eastern cluster zones, clearly demonstrate
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interannual variability with frequent minimum and maximum values for parameters,
as repeated in the aforementioned figures.
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The average of the clustered regions shows the minima at the southeast cluster in
2022 for all AOD, AWV and CFM; in 2010 for PPT and OLR and in 1999 and for
OLR with their maxima at the northeast cluster in 2010 for AOD, AWV and CFM; in
2009 for PPT; and in 2011 and 2022 for CTP and CTT from both instruments.
Accordingly, the AOD, AWV, CFM, PPT, CTP 295 and CTT minimum values were
0.22, 1.90, 0.21, 1.15, 253.86, 504.53 and 257.73 for Terra and 0.18, 1.91, 0.27,
252.14, 533.43 and 262.94 for Aqua, and the maxima are 0.35, 2.33, 0.33, 2.26,
271.23, 619.08 and 268.49 for Terra and 0.35, 2.35, 0.41, 272.22, 640.07 and 272.58
for Aqua, respectively. Here, the parameter PPT is illustrated only in Figures 8 and
the values for all of the parameters we observed in the Aqua satellite were mostly
greater than those of the Terra satellite. The values for the parameters were higher in
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the southern clusters, specifically in the southwest clusters, than in the northern
clusters.
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The explained variance

In this study, the PCA analysis was used to evaluate the contribution of selected
satellite-derived aerosol particles, clouds, outgoing long-wave radiation flux, and
precipitation dataset parameters at 16 selected sites clustered into four regions over
East Africa-Ethiopia. Table 1 presents results for the optimum number of the principal
component retained based on aerosols, clouds, outgoing long-wave radiation flux, and
precipitation datasets. The results in Figures 10 present a detailed analysis to
investigate the variability explained by the number of significant PCs retained for
aerosol particles, clouds, outgoing long-wave radiation flux, and precipitation
parameters.
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Figure 8. The acrosol optical parameters yearly variation.

The identified PCs were found to be significant at 95% confidence level based on
Monte Carlo testing (Ngaina, 2015). Notably, the OLR and AWV parameters, both at
the Humera and Dahlak sites, had the lowest optimum significant PCs, which was
attributed to the course resolution of the datasets from both of the instruments. The
number of significant PCs retained based on AET at the Awassa site and AWV at the
Dangote site was highest compared to the other parameters. The differences in
retained PCs point to the different atmospheric dynamics responsible for the behavior
of climate during the various seasons of the year and the spatial coherence arising
from both interannual and intraseasonal variability. Further, the use of seasonal and
annual totals provides information on interannual variability only. However, the other
studies showed that results from the monthly analysis were better during prolonged
rainfall due to high variability (Ininda, 1994; Gitau et al., 2013). According to the
findings, the entire East Africa region was classified into eight and nine near
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homogeneous zones based on the annual and seasonal observed rainfall, respectively
(Indeje et al., 2000).
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Figure 9. The aerosol optical parameters yearly variation.

The fire-map trajectory

In this research, the backward fire-map trajectory analysis was done using the
HYSPLIT model at the Agnuak site from the southwest cluster, at the Kebri Dahar
and Addis Ababa sites from the southeast cluster, at the Humera site from the
northwest cluster, and at the Aseb site from the northeast cluster. We utilized a five-
day backward trajectory analysis to identify the sources of atmospheric aerosol
particles at 500-5000 metres above ground-level MAGL. For the selected five
location sites: the 2™ row panels for the Agnuak site in 2002, the 3" row panels for
the Kebri Dahar site in 2011, the 4" row panels for the Addis Ababa site in 2015, the
5" row panels for the Humera site in 2011, and the 6" row panels for the Aseb site in
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2012, with a high factor loading based on TRMM 3B43 satellite-derived rainfall
estimates were utilized.

The 1% row panels in the Figures are to illustrate the fire map trajectories for the
sources from the biomass burnings BBs. The HYSPLIT trajectories were computed
for the start, June 01 and 16 (the 1% and 2™ columns a, b panels); mid, Jula/ 01 and 16
(the 3" and 4™ columns ¢, d panels); and end, August 01, 16 and 31 (the 5", 6" and 7"
columns e, f, g panels), of the kiremt season, as shown in Figure 10.

At the beginning of the season, the backward trajectories identified the continental
source regions as the Arabian Desert and the Indian subcontinent. The selected
continental stations included Agnuak, Kebri Dehar, Addis Ababa, and Humera. The
locations of the maritime source regions were in the sub-western Indian Ocean, with
the selected sink station at the Aseb site. In the middle of the season, the source
regions for the study area sites were in the southwest Indian Ocean, Kenya,
Madagascar, Uganda, Sudan, and Egypt. At the end of the season, all the source
regions for all stations at all levels were located in the Arabian Desert, the southwest
Indian Ocean, Central Africa, Kenya, Madagascar, Uganda, Sudan, and Egypt.

Here, the study area regions by themselves were also the source regions at the
beginning, middle, and end of the season at all levels. And we observed that there
were active fires in all the source regions during the beginning, middle, and end of the
season on the fire map projected as in the 1% row panels of the Figures (Figure 11).

Generally, at different levels, transported aerosol particles in the atmosphere show
varied source regions. The aerosol particles undergo vertical mixing inland in East
Africa-Ethiopia. Further, several high mountains >2000 m are situated near the Great
Rift Valley area in East Africa-Ethiopia. They include Mount Kilimanjaro, Mount
Kenya, and Mount Rwenzori. These mountains block the eastward transport of the
Sahel smoke as well as dust from the Bodele Depression (Washington and Todd,
2005; Fiedler and Tegen, 2014). Therefore, these mixed aerosols accounted for
increased rainfall over locations with high factor loadings based on TRMM 3B43
rainfall (Yang and Zeng, 2013).

Here, the study area regions by themselves were also the source regions at the
beginning, middle, and end of the season at all levels. And we observed that there
were active fires in all the source regions during the beginning, middle, and end of the
season on the fire map projected as in the 1% row panels of the Figures (Figure 11).
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‘Table 1: Percentage of explained variance based on AOD in precipitation and cloud parameters.
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Generally, at different levels, transported aerosol particles in the atmosphere show
varied source regions. The aerosol particles undergo vertical mixing inland in East
Africa-Ethiopia. Further, several high mountains >2000 m are situated near the Great
Rift Valley area in East Africa-Ethiopia. They include Mount Kilimanjaro, Mount
Kenya, and Mount Rwenzori. These mountains block the eastward transport of the
Sahel smoke as well as dust from the Bodele Depression (Washington and Todd,
2005; Fiedler and Tegen, 2014). Therefore, these mixed aerosols accounted for
increased rainfall over locations with high factor loadings based on TRMM 3B43
rainfall (Yang and Zeng, 2013).
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Figure 11. Fire maps and HYSPLIT backward trajectories during start, mid and end of kiremt.

CONCLUSION

The purpose of this study is to investigate the effects of aerosol particles on
precipitation and cloud parameters based on the spatiotemporal distribution variations
retrieved from the MODIS, TRMM 3B43, and CERES sensors over a period of 22
years (for Terra: January 2001 to December 2022, and for Aqua: July 2002 to
December 2022). Those parameter retrievals included the spatial, monthly, seasonal,
and yearly values at sixteen selected sites clustered in four regions with their
corresponding averages. The main conclusions drawn from our work are as follows:

The seasonality total spatial averaged values for the aerosol particles optical depth
parameters were 0.00 < AOD < 0.35; for the cloud parameters, they were 0.00 <
AWV < 3.50, 0.00 < CFM < 0.80, 400.00 < CTP < 800.00, and 2500.00 < CTT <
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300.00; for precipitation, they were 0.00 < PPT < 25.00; and for the outgoing long-
wave radiation flux, they were 100.00 < OLR <350.00, with their minimums
occurring in the bega season and their maximums occurring in the kiremt season.
Across the globe, we consider the study area {3-18° N, 24-48° E} regions within it.
The minimum monthly values were found at the Kebri Dahar site for ADD, at the
Kombolcha site for AWV, at the Humera site for both CFM and PPT, they all in
January and December, while their maximum values were AOD at the Aseb site,
AWV at the Tonga site, CFM at the Agnuak site, and PPT at the Bahir Dar site, they
all in July; the minimum values were found for OLR at the Humera site and CTP at
the Bahir Dar site both in August and CTT at the Raga site in March and April, while
the maximum OLR value was at the Kebri Dahar site in February; the maximum CTP
value was at the Dahlak site in January and December; the maximum CTT value was
at the Dahlak site in November. Exceptionally, the minimum values for the OLR were
at the Bahir Dar and Ethiopian Renaissance Dam sites in July and August for the
Terra and Aqua instruments, respectively.

The minimum values were found at the Kebri Dahar site for ADD, at the Kombolcha
site for AWV, and at the Humera site for both CFM and PPT; they were all in bega,
while the maximum values were for AOD at the Aseb site, AWV at the Tonga site,
CFM at the Agnuak site, and PPT at the Bahir Dar site; they were all in kiremt. And
also, the minimum values were found for OLR at the Bahir Dar and Ethiopian
Renaissance Dam sites, CTP at the Bahir Dar site, and CTT at the Humera site; they
were all in kiremt, while the maximum values were for OLR at the Humera site, CTP,
and CTT at the Dahlak site; they were all in bega.

The total annual average variation shows the minima at the southeast cluster in 2022
for all AOD, AWV and CFM; in 2010 for PPT and OLR and in 1999 and for OLR
with their maxima at the northeast cluster in 2010 for AOD, AWV and CFM; in 2009
for PPT; and in 2011 and 2022 for CTP and CTT from both instruments. Accordingly,
the AOD, AWV, CFM, PPT, CTP and CTT minimum values were 0.22, 1.90, 0.21,
1.15, 253.86, 504.53 and 257.73 for Terra and 0.18, 1.91, 0.27, 252.14, 533.43 and
262.94 for Aqua, and the maxima were 0.35, 2.33, 0.33, 2.26, 271.23, 619.08 and
268.49 for Terra and 0.35, 2.35, 0.41, 272.22, 640.07 and 272.58 for Aqua,
respectively.

The OLR and AWV parameters, both at the Humera and Dahlak sites, had the lowest
optimum significant PCs, whereas the PCs retained based on AET at the Awassa site
and AWV at the Dangote site were the highest compared to the other parameters. The
differences in retained PCs point to the different atmospheric dynamics responsible
for the behavior of climate during the various seasons of the year and the spatial
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coherence arising from both interannual and intraseasonal variability. And our
observation using the HYSPLIT model and fire map confirms that transported aerosol
particles in the atmosphere show varied source regions, mostly the Arabian desert and
the southwest Indian ocean, at different levels.
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