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ABSTRACT 

 

In this paper, a mathematical model is proposed to study the effect of prey refuge on the 

dynamics of three species food web system. The food web comprises of a single prey 

and two competing predators. The two predators predate their prey following Holling 

type II functional response. In this work we discussed boundedness of the system, 

existence condition of the equilibrium points and the Jacobean matrix is obtained by 

linearization techniques. The local stability of the equilibrium points was discussed by 

using Routh-Hurwitz criteria and the global stability of the equilibrium points by 

constructing suitable Lyapunov function. Numerical simulation is conducted to support 

the analytical result. Finally, the effect of prey refuge on the dynamics of one prey two 

predator was discussed based on the analytical and numerical simulation results. From 

the numerical simulations, it is found that the dynamical system is persistent for a small 

value of the refuge constant. However, an increase in the refuge constant leads to the 

extinction of one of the predator species. 
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INTRODUCTION 

 

The dynamic relationship between predators and their prey has long been and 

will continue to be one of the dominant themes in both ecology and 

mathematical ecology due to its universal existence and importance (Berryman, 

1992). Systems of differential equations have a certain extent, successfully to 

describe the interactions (relationship) between species. The basic system is the 

Lotka-Volterra model, which models the interaction between a predator and a 

prey. Various dynamical relations between predators and their prey in ecology 

and mathematical ecology have been studied (Kuang and Beretta, 1998). The 

three species interaction shows very complex dynamical behavior (Gakkhar et 
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al., 2007; Naji and Balasim, 2007; Lv and Zhao, 2008; Upadhyay and Naji, 

2009; Yu and Zhao, 2009; Reddy and Ramacharyulu, 2011; Li et al., 2014; 

Hsu et al., 2015; Panday et al., 2018; Mishra and Raw, 2019). The co-existence 

and extinction of interacting species have been of great importance and studied 

extensively in the past (Dubey and Upadhyay, 2004; Naji and Balasim, 2007; 

Feng et al., 2009; Alebraheem and Abu-Hasan, 2012). Dubey and Upadhyay 

(2004) have studied the dynamics of one-prey two-predator system with 

ratio-dependent functional response. Criteria for local stability, instability and 

global stability of the nonnegative equilibrium points were obtained. 

 

Hsu (1982) proposed and analyzed a model of two predators competing for a 

single prey. He showed that if the interference coefficient is small, then the 

winner in purely exploitative system competes its rival successfully and if the 

interference coefficient is large enough, then the competition outcome depends 

on the initial population of predator species. Freedman (Freedman and 

Waltman, 1984) considered three level food webs and two competing predators 

feeding on a single prey and a single predator feeding on two competing prey 

species. They obtained criteria for the system to be persistent. Kar (2005) 

studied on the stability analysis of a prey predator model incorporating a prey 

refuge. 

 

Jawdat and Yahya (2012) studied two competing predators sharing one prey in 

homogeneous environment with Holling type-II functional response. The 

conditions of coexistence and extinction of the predators in the case of 

non-periodic solution were obtained in terms of efficiency of predator 

conversion of prey biomass into predator offspring. Edwin (2010) study the 

dynamics of a system of two prey and one predator in which the predator 

shows a Holling type II response to one prey that is also harvested, and a 

ratio-dependent response to the other prey. The major observation from results 

of numerical simulation is that the predator population density increased 

significantly when the intrinsic growth rate of both preys increased. This can 

imply that a high intrinsic growth rate of the prey initially increases their 

population density, which increases the predator chance of capturing the prey, 

and so the predator population density increases. 

 

Nature can provide some degree of protection to a given number of prey 

populations by providing refuges. Such refugia can help in prolonging prey 

predator interactions by reducing the chance of extinction due to predation 

(Huang et al., 2006; Kar, 2005; Srinivasu and Gayatri, 2005) and damp prey 

predator oscillations (Collings, 1995). The effects of prey refuges on the 

population dynamics are very complex in nature, but for modeling purposes, it 

can be considered as constituted by two components: the first effects, which 
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 affect positively the growth of prey and negatively that of predators, comprise 

the reduction of prey mortality due to decrease in predation success. The 

second one may be the trade-offs and by-products of the hiding behavior of 

prey which could be advantageous or detrimental for all the interacting 

populations (González-Olivares and Ramos-Jiliberto, 2003). 

 

In the literature studies show that refuges have both stabilizing (Hassell, 2020) 

and destabilizing effect (McNair, 1986). The traditional ways in which the effect 

of refuge used by the preys has been incorporated in predator prey models is to 

consider either a constant number or a constant proportion of the prey 

population being protected from predation (Smith, 1978). Hassel (Hassell, 2020) 

notes that in reality refugia fall between these two extremes. It is pointed out 

that those protecting a proportion of the prey population appearing to be more 

common (Collings, 1995). However, the refuges, which protect a constant 

number of preys, have a stronger stabilizing effect on population dynamics than 

the refuges, which protect a constant proportion of prey (González-Olivares and 

Ramos-Jiliberto, 2003; Krivan, 1998). For more biological background and 

results on the effects of a prey refuge, one could refer to several other reports 

(McNair, 1986; Sih, 1987; Collings, 1995; Krivan, 1998; Kar, 2005; Ko and 

Ryu, 2006). 

 

In this paper, we intended to improve Jawdat Alebraheem and Yahya 

Abu-Hasan (2012) study on one prey and two-predator system by incorporating 

prey refuge and taking the classical Holling type II numerical response on the 

two predators to study the co-existence, boundedness and stability of the system 

and see the effect of prey refuge on the dynamics of the proposed system. 

 

The organization of the paper is as follows. In section two, the mathematical 

model is presented. Section three is devoted to mathematical analysis: existence 

and boundedness of the solutions, existence and stability of the unique steady 

state of the system. In section four, numerical simulations are shown. At last, 

conclusion is presented in section five. 

 

Model formulation 

 
Jawdat Alebraheem and Yahya Abu-Hasan (2012) considered the case of an 

environment where there is a prey and two predators. A two-predator one prey 

model was studied with a prey population X(t) and predator populations Y(t) 

and Z(t). The predators prey on the prey species based on the Holling type-II 

functional response. Portion of the prey species is supposed to take refuge. The 

prey species are assumed to grow logistically. Interspecific competition among 
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the predator species was also included in the model. The model has had three 

non-linear autonomous ordinary differential equations describing how the 

population densities of the three species would vary with time. 

 

The Model equation is written as  

  

  (1) 

  

for , . 

It is assumed that prey grows logistically in the absence of predators such that 

 is the per capita intrinsic growth rate of prey and with carrying capacity K. 

 and  measure the inter-specific competition of the predator Z on 

predator Y and vice-versa;  and  are the saturation value of the functional 

response of the predator Y and predator Z, respectively. And  and  

measure efficiency of the searching and the capture of predators  and , 

respectively;  and  represent efficiency of converting consumed prey 

into predator offspring.  and  are the death rate of predators Y and Z, 

respectively. The functions F1(X) and F2(X) represent the Holling type-II 

functional responses. The constant m represents prey refuge constant. 

 

In this work, we intended to modify the model (1) by incorporating a refuge 

protecting mX of the prey. This leaves (1-m)X of the prey available to the 

predators. Thus, the modified system becomes:  

  

  (2) 

  

for 

 

where all the parameters in the model are assumed to be positive. 

 

The following non-dimensional state variables and parameters are chosen.  

  

 

 

The model equation (2) takes the following non-dimensional form  
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  (3) 

  

for   

 

 

MATHEMATICAL ANALYSIS 

 

Positivity and boundedness of the model 

 

In the theory of the dynamics of food web system, the positivity and 

boundedness of the system implies that the system is biologically well behaved. 

One can easily prove that the function  of the system (3) is 

Locally Lipschitz on the region . 

Fundamental theorem of existence and uniqueness assures existence and 

uniqueness of solution of the system (3) with the given initial condition. The 

uniqueness and existence theorem ensures that any trajectory starting from the 

first octant remains in it, that is, no trajectory will cross the coordinate axes.   

 

Theorem 1: All the solutions of system (3) which start in  are uniformly 

bounded.   

 

Proof. Let x(t), y(t) and z(t) be any solutions of the system (3) with positive 

initial condition. 

Let . 

Then, we have . From equation (3), we have 

, 

    ,  

    , 

    

where . 

Thus, we have   (4) 

Applying the theory of differential inequality, we obtain  

 , 
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which upon letting  yields . Therefore, the solutions of 

the system are bounded for  and . 

Hence, all the solutions of (3) that initiate in  are confined in the region  

 for any   

 

Existence of equilibrium points of the system  

 

In this section, conditions for the existence of the equilibrium points of the 

system (3) are established. One can see that the system (3) has five biologically 

feasible equilibrium points:   

1. The trivial equilibrium point: ,  

2. The axial equilibrium points: , , , 

where , 

      . 

The equilibrium point  exists when  

  and  (5) 

The equilibrium point  exists when  

  and  (6) 

3. The co-existence equilibrium point , where 

, 

and  is the positive solution of the cubic polynomial  

 , (7) 

with  

       

 

,  

. 

 

Therefore, sufficient conditions for the existence of the positive equilibrium 

point in the interior of the first octant are easily obtained as follows:  

  (8) 

 

Local stability of the equilibrium points 

 

The local asymptotic stability of each equilibrium point is studied by 

computing the Jacobian matrix and checking the sign of the real part of the 
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 eigenvalues of the Jacobean matrix evaluated at each equilibrium point. For 

stability of the equilibrium points, the real parts of the eigenvalues of the 

Jacobian matrix must be negative. 

 

The Jacobian matrix is 

 , 

 

Where   

  

  . 

One can see that the trivial equilibrium point  is always unstable. 

 

Theorem 2: The axial equilibrium point  is stable provided  

. (9) 

Proof. The characteristic equation at  is 

, where 

 

Thus, all the eigenvalues are negative if . 

Hence, the equilibrium point  is locally asymptotically stable.  

 

Theorem 3: The axial equilibrium point  is stable provided  

 . (10) 

  

Proof. The characteristic equation at  is , 

where 

, 

, 

, 
 

.  

The eigenvalues are negative if and only if  and . 

Since , one can easily see that  and  if condition (10) 



 112 Dawit Melese and Abraha Hailu 

holds. Thus,  is locally asymptotically stable. 

 

Theorem 4: The axial equilibrium point  is locally asymptotically 

stable provided  

 . (11) 

Proof. The characteristic equation at  is  , 

where ,  

, 

, 

.  

The eigenvalues are negative if and only if  and .  

Since , one can easily see that  and  if condition (11) 

holds. Thus,  is locally asymptotically stable.  

 

Theorem 5: Suppose that the positive equilibrium point  exists in 

the interior of the positive octant. Then  is not stable.  

 

Proof. The entries of the Jacobian matrix evaluated at the positive equilibrium 

point  are  

 

 , 

 
The characteristics equation of the Jacobian matrix around  is:  

 , 

Where ,  

 According to Routh-Hurwitz 

criteria,  is local asymptotic stability if and only if  and 

 are all positive. 

 

Let , then it can be seen that . If , then from the signs of 

Jacobean matrix elements  one can conclude that . 

Therefore, the Routh-Hurwitz criteria is not satisfied and the positive 

equilibrium point  is not stable.  

 



 

 
 

113 Ethiop. J. Sci. Technol. 14(2): 105-121, June 2021 

 Numerical simulation 

 

The dynamical behavior of the system (3) about the equilibrium points has 

been seen in the previous sections and obtained the analytical results. Now in 

this section, we have performed some numerical simulations by using MatLab 

to observe and describe the effect of prey refuge on the dynamics of the system 

(3) with a set of reasonable parameter values given in table (1). The effect of 

prey refuge on the dynamics of the system (3) is numerically investigated by 

keeping all parameters in table (1) constant except the prey refuge m.  

 

Table 1. Parameter values of the system (3). 
 

Parameter Value Source 

 0.82 (Edwin, 2010) 

 0.86 (Edwin, 2010) 

 0.085 Estimated 

 0.086 Estimated 

 0.46 Estimated 

 0.48 Estimated 

 0.01 (Edwin, 2010) 

 0.01 (Edwin, 2010) 

 0.02 Estimated 

 0.02 Estimated 

 0.2 Estimated 

 

The effect of prey refuge m to the equilibrium point  

 

The equilibrium point  exists for  and the rest of 

the parametric values are given in Table 1. The system (3) is locally 

asymptotically stable around the equilibrium point  for 

 and unstable otherwise. The existence condition (5) 

and the stability condition (10), (C.F. Theorem 3), are satisfied. The parametric 

plot of the solution of the system (3) in Figure 1 (top) shows a limit cycle about 

the equilibrium point  with parameter values 

as in Table 1 except  in the  plane. The time series solution of 

the system (3) in Figure 1 (bottom) shows that the system oscillates around the 

equilibrium point  in the given time interval with parameter value as in 

Table 1. Thus, for the given set of parametric values as in Table 1 except for 

, the equilibrium point  is unstable. 
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Figure 2 (top and bottom) represent the phase portrait and time series solution 

of the system (3) at the equilibrium point  for 

the set of parametric values as in Table 1, respectively. From Figure 2 (top and 

bottom), we can observe that the equilibrium point  is locally 

asymptotically stable for the parametric values as in Table 1. 

 

 
Figure 1. The parametric plot (top) and time series solution (bottom) of the 

system (3) about the equilibrium point  with parametric values as in Table 1 

except .   
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Figure 2. (Top) The phase portrait and (Bottom) time series of the system (3) 

around the equilibrium point  with parametric values as in table 1. 

 

The effect of prey refuge  to the equilibrium point  

 

The equilibrium point  exists for  and the rest of 

the parametric values are given as in Table 1. The system (3) is locally 

asymptotically stable around the equilibrium point  for 

 and unstable otherwise. The existence condition 

(6) and the stability condition (11), (C.F. Theorem 4), are satisfied. 
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The phase portrait in Figure 3 (top) shows the limit cycle around the 

equilibrium point  with the parametric value 

in Table 1 except . The time series solution in Figure 3 (bottom) 

shows an oscillation with high amplitude around the equilibrium point  

with the parametric value in Table 1 except . Figure 3 (top and 

bottom) both signify that  is unstable equilibrium point and the behavior of 

the system (3) is oscillatory. 

 
 

 
Figure 3. The phase portrait (top) and time series solution (bottom) of the 

system (3) around the equilibrium point  with parametric values as in Table 

1 except .  

 

The phase portrait in Figure 4 (top) and the time series solution (bottom) show 

that the equilibrium point  is locally 



 

 
 

117 Ethiop. J. Sci. Technol. 14(2): 105-121, June 2021 

 asymptotically stable for the parameter values in Table 1. Thus, in the absence 

of the predator-z the system (3) converges to the equilibrium point 

 for the parametric value as in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. The phase portrait (top) and time series solution (bottom) of the 

system (3) around the equilibrium point  with parametric values as in Table 

1. 
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The effect of prey refuge to the co-existence equilibrium point  

 
The positive equilibrium point E4 exists for m < 0.8122699 and the rest of the 

parametric values are given as in Table 1. The time series solution in Figure 5 

shows that for the given set of parametric values as in Table 1 except (m=0.07), 

the prey and the predators oscillate around the positive equilibrium point 

. It is evident to see that all the 

three species persist for m < 0.164181. 

 

  
Figure 5. The time series solution of the system (3) around the positive 

equilibrium point E4 with parametric values as in table 1 except (m=0.07). 

 

 

CONCLUSION 

 
In this paper, a mathematical model is proposed and analyzed to study the 

effect of prey refuge on the dynamics of a three species food web system 

consisting of two predators competing for a single prey. Both predators show a 

Holling type II functional response to the prey. All the biologically feasible 

equilibrium points were calculated. The boundedness and positivity of the 

solutions of the system (3) are obtained. Conditions for the local stability of 

each equilibrium points, except the positive equilibrium point, are given with 

the help of the Routh-Hurwiz criteria.  

 

Numerical simulations are performed to support and verify our analytical 

findings. In achieving this, we have concentrated on the equilibrium points, 
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 namely E2, E3 and E4. These observations depend on the parameter values in 

Table 1 except the prey refuge constant m, where m is taken as a control 

parameter. The refuge constant is found to play a crucial role in stabilizing the 

dynamics of the system (3). Huang et al. (2006) stated that the non-zero 

equilibrium point could change from unstable state surrounded by a stable limit 

cycle to globally asymptotically stable state as increasing the prey in the refuge. 

Our numerical simulation shows also that an increase in prey refuge will lead 

to an extinction of one of the predators (see Figures 1 to 4). 

 

From the numerical simulations we found that the system (3) is not persistent 

for . This is due to the fact that the system (3) 

has a stable boundary equilibrium points, E2 and E3, under this range. The 

principle of competitive exclusion holds in such cases. However, it is observed, 

c.f. Figure 5, that the system (3) exhibits persistence for , as the 

system (3) shows oscillatory behavior around the boundary equilibrium points 

E2 and E3. Therefore, one of the predators manages to survive at a very low 

level leading to persistence. Generally, as we have seen from the numerical 

simulation, as the number of preys in the refuge increases, the dynamics of a 

three species system changes the stability from limit cycle to a stable 

equilibrium point. 
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