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ABSTRACT 

 

Tuberculosis (TB) remains a global health concern. It commonly spreads through the air 

and attacks low immune bodies. TB is the most common and known health problem in low 

and middle-income countries. Genetic programming (GP) is a machine learning model for 

discovering useful relationships among the variables in complex clinical data. It is more 

appropriate in a circumstance when the form of the solution model is unknown a priori. 

The main objective of this study was to develop a model that can detect positive cases of 

TB suspected patients using genetic programming approach. In this paper, Genetic 

Programming (GP) is exploited to identify the presence of positive cases of tuberculosis 

from the real data set of TB suspects and hospitalized patients. First, the dataset is pre-

processed, and target variables are identified using cluster analysis. This data-driven cluster 

analysis identifies two distinct clusters of patients, representing TB positive and TB 

negative. Then, GP is trained using the training datasets to construct a prediction model 

and tested with a separate new dataset. With the 30 runs, the median performance of GP 

on test data was good (sensitivity=0.78, specificity=0.95, accuracy=0.89, AUC=0.91). We 

find that GP shows better performance in predicting TB compared to other machine 

learning models. The study demonstrates that the GP model might be used to support 

clinicians to screen TB patients. 
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INTRODUCTION  

 

Tuberculosis (TB) continues to be a substantial global problem as it is a common 

and deadly infectious disease that can occur at any age. It was assessed that 10 

million persons world-wide were newly infected in 2017, including 3.2 million 

women, 5.8 million men and 1 million children (WHO, 2018). TB is caused by 
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single pathogen infection, and its mortality rate in 2017 reached 16% (World 

Health Organisation, 2018). Early screening and diagnosis of TB is the most 

important accomplishment that should be considered (Wang, 2019). However, the 

occurrence of TB infection is commonly challenging to predict, and delays in 

identification and diagnosis are common. Delay in diagnosis may lead to drug 

resistance, multi drug resistance (MDR), where an isolate shows resistance to two 

first line drugs, rifampicin and isoniazid, and extensive drug resistance (XDR) 

which include multiple drug resistance (MDR) and also show resistance to 

fluoroquinolones and at least one of the injectable drugs (Gandhi et al.., 2010). In 

medical science, lab tests require expensive microscopic examination of sputum 

and other profiles of patients. Identifying positive cases of tuberculosis is often 

complicated and time-consuming. The symptoms of patients are usually unclear, 

and the similarities in symptoms of some tuberculosis diseases are difficult to 

distinguish based on decision boundaries or discriminating rules. This creates 

many difficulties in reaching the right decision or diagnosis.  In spite of the 

challenges, the diseases require rather immediate medical treatment to prevent 

serious consequences.  

 

Machine learning approaches can support health professionals in making 

decisions for the diagnosis or prediction of TB. Many statistical and machine 

learning methods have been used for modelling and prediction of TB disease 

(Mello et al.., 2006; Aguiar et al.., 2012; Bobak et al.., 2019; Khan et al.., 2019). 

These techniques include logistic regression, neural network, support vector 

machines, decision trees, naïve Bayes, etc. Despite the contribution of these 

techniques, there are still some issues that prevent them from becoming adopted 

in modelling practical problems. One of the main limitations of the traditional 

methods is that a specific model form must be assumed that demands strong 

theoretical knowledge. For example, in a regression problem, the task is often 

limited to finding a set of model coefficients for the linear or polynomial functions 

that best describe the input variables. Moreover, prior knowledge about the 

statistical distribution of the data is essential in such models. Evolutionary 

algorithms can be used as a remedy for solving highly complex, nonlinear 

problems (Smith, 2018). Genetic programming (GP) is one of the evolutionary 

algorithms that allows searching for a suitable model more differently and 

intelligently. It is a general methodology for the development of mathematical 

models rather than a specific technique for solving particular problems (Angeline, 

1994; Bannister et al.., 2018). In modelling or supervised learning, GP is 

preferable to other machine learning methods in circumstances where the form of 

the solution model is unknown a priori. GP has been successful in automatically 

evolving variable-length computer programs to solve medical problems (Hu et 

al.., 2015; Wang et al.., 2017).   
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In this paper, a cluster analysis followed by genetic programming (GP) is 

proposed for modelling and prediction of pulmonary TB. In particular, GP is 

suitable for detecting the presence of positive cases of tuberculosis based on data 

collected from TB suspects and hospitalized patients. Detection of tuberculosis 

cases is a challenging task due to the presence of nonlinear interactions between 

many variables. One main reason for using GP is to get the advantage of its global 

search mechanism in a considerable space of possible solutions. Many decision 

tree generation algorithms (e.g., CART and C4.5) perform a greedy local search 

to generate classification rules, while GP performs a more global search through 

the space of a large number of possible solutions. To date, various literature on 

TB prediction pays special attention to the traditional, statistical and machine 

learning methods to predict TB; however, evolutionary algorithms, such as GP, 

could also have the capability to model TB problems. 

 

 

METHODS  

 

Study framework 

 

The study adopted an approach that comprised a combination of two phases. The 

first phase is data preparation and cluster analysis (Figure 1). First, data were pre-

processed, i.e., data cleaning, integration, and feature selection. Then multiple 

correspondence and clustering analyses were done to identify homogenous groups 

of cases in the dataset.  In this first phase, the study aimed to explore the potential 

presence of coherent clusters of patients. The high density-based spatial clustering 

of applications with noise (HDBSCAN) algorithm was used to discover the 

patient groups from a data-driven perspective. This stage realised the discovery 

of two well-separated patient clusters. The second phase includes the development 

of machine learning models that can make predictions on the clustered data. 

Specifically, a genetic programming model was built and trained for predicting 

tuberculosis cases. This phase also includes the learning and evaluation phases. 

The learning phase is designed to evolve the GP classification model for the 

tuberculosis dataset, which comprises train GP with the training dataset and test 

GP with a separate test dataset. Finally, the fitness of the evolved model is 

measured with an appropriate metric. 

 

Data collection and preparation   

The data used for this experiment was taken from Menelik II hospital, Addis 

Ababa. The data was collected from TB suspects and hospitalized patients for 

analysis and prediction. The patients’ real data contains 4241 instances and 25 
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attributes recorded for administrative purposes. All the needed data pre-

processing steps such as data cleaning, transformation and feature selection 

activities were performed before analysis, and only 13 relevant attributes were 

selected for this experiment. The following attributes were excluded in the 

analysis: medical record number, unit TB number, name of patient, address of 

patient, name of contact person, address of contact person, laboratory number, 

drug, month, CPT started date, enrolled in HIV care, since they had no important 

effect in the prediction. The final selected attributes included in the analysis are 

shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The proposed framework 
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Table 1. Final selected variables and their description 
 

No. Variable Description 

1 Sex Patient’s sex 

2 Age Patient’s age in years 

3 Weight Weight of the patient 

4 Exhaustion A weakness of the patient  

5 HIV performed Patient tested for HIV 

6 HIV test result HIV test result of the patient 

7 Headache Whether the patient has a headache 

8 Cough Cough for about 2 weeks 

9 Chest pain Some pain around the chest 

10 Bloody sputum Sputum mixed with a blood 

11 Fever An expected increase in temperature 

12 Weight loss Whether the patient reduced in weight 

13 Night sweats Whether the patient has sweats 

 

Clustering approach  

The study aims to detect patterns in the patients' data and to classify individuals 

at risk of tuberculosis (TB) correctly. However, since the data doesn’t contain any 

identified number of groups, it was not feasible to apply classification algorithms 

directly on the dataset. Therefore, clustering analysis was first considered as a pre-

processing step for classifying patients into different groups. We identified 

subgroups TB patients that have similar characteristics using the following three 

steps: 

1. Multiple Correspondence Analysis (MCA), a data analysis method designed 

for categorical variables, was used to detect underlying structures in the data 

set. It is an extension of correspondence analysis (Greenacre, 2015) for 

multivariate datasets which projects a given dataset in a lower-dimensional 

subspace producing two major effects: It reduces the dimensionality of the 

dataset, and it projects the observations on continuous space. In our study, 

the transformed dataset contains two numerical dimensions derived from 13 

categorical variables. Then, the resulting data has joined the continuous 

variables which were ready for the process of clustering analysis. 

2. Min –Max Normalization: It is common practice to normalize the data before 

clustering in case that the range of features values varies widely, and the 

relationship between each feature is unknown. Many studies in the literature 

argued that large variations within the range of feature values could affect the 

quality of clusters (Visalakshi and Thangavel, 2009).  In our case, after 

transforming the data into low-dimensional representation using MCA, the 

newly created artificial features were rescaled to constrain dataset values to a 
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standard range. The min-max normalization method was used, where each 

feature was rescaled to the [0, 1] interval. The values were transformed based 

on the formula shown below (Elbattah and Molloy, 2017): 

Z =
𝑥−min⁡(𝑥)

[max(𝑥)−min(𝑥)]
    Eq. (1) 

3. Hierarchical Density-based Spatial Clustering of Applications with Noise 

(HDBSCAN):  From the geometric space created in Multiple 

Correspondence Analysis (MCA), TB patients were grouped into clusters 

using HDBSCAN. HDBSCAN algorithm extends DBSCAN by converting it 

into a hierarchical clustering algorithm and then using a technique to extract 

a flat clustering based on the stability of clusters (McInnes and Healy, 2017).  

It is especially good at finding oddly shaped clusters or more dense regions 

of a dataset that are surrounded by other lower density regions, in which the 

partitioning clustering methods such as k-means might have difficulty in 

doing it. Figure 2 depicts the results of clustering using HDBSCAN via MCA, 

in which two well- separated clusters have been produced. 

 

Figure 2. Two-dimensional visualization of clustering results using HDBSCAN 

 

Using silhouette analysis, we determined the degree of separation between 

clusters as well as the compactness within each cluster. The cluster outcome 

showed a silhouette measure of cohesion and separation of 0.73, indicating that it 

is a substantial cluster solution.  
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Validation and stability analysis  
 

Stability measure is one method of validation for a learning system (Johnson and 

Omland,  2004;  Lange et al., 2004). In the domain of machine learning, a learning 

system is stable if it can generate consistent results with respect to small 

perturbation of training samples, such as sub-sampling or the addition of noise 

(Pascual et al., 2010). In this study, two major consecutive learning systems have 

been employed, i.e., clustering followed by the classification, and therefore, 

stability can be viewed from two perspectives: clustering stability and 

classification stability. Here, we used the validation/stability approach for these 

two learning paradigms that are in line with current practices in the field.  

 

A) Validation of clustering results  

Validation of clustering results is, generally, one of the most difficult problems 

that remain unsolved, as there is no ground truth to compare with (Kleinberg, 

2003; Nascimento et al., 2003). However, various methods have been suggested 

in the literature, including, external validity, internal validity, relative criteria (Xu, 

2005), and stability approaches (Rakhlin and Caponnetto, 2007). The internal 

measure, which is the most commonly used approach in the literature and the 

stability approaches, have been adopted in this study. Silhouette analysis is one of 

the most popular and an effective internal measure which allows evaluating the 

appropriateness of the assignment of a data object to a cluster by measuring both 

intra-cluster cohesion and inter-cluster separation. Clusters within the range of 

51% to 70% and 71% to 100%, respectively, indicate that a reasonable and a 

strong intra-cluster cohesion and inter-cluster separation are found (Lv et al., 

2016). The silhouette score can take values in the interval [-1, 1]. Negative 

silhouette values represent wrong data placements, while positive silhouette 

values better data assignments. Therefore, we want the scores to be as big as 

possible and close to 1 to have good clusters. In our experiments, the cluster 

outcome showed a silhouette measure of cohesion and separation of 0.73, 

indicating that it is a plausible cluster solution.   

 

We also propose to measure the stability of the clustering results through 

statistical significance. Differences in characteristics between clusters were 

compared with respect to all the variables, using Pearson Chi-square tests. 

The significance level was set at α = 0.05 and all tests were two-tailed.  All 

input variables varied significantly between clusters (all p-values <0.05), 

except three variables, namely sex, weight, and bloody sputum with p-values 

0.36, 0.61, and 0.36, respectively.  Table 3 presents detailed information in 

the two clusters (clusters 1 and 2) and statistical test results between the two 

clusters with respect to all the input variables.  
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Table 2. Comparison of input variables between the two clusters. 
 

Variable Code Cluster 1 Cluster 2 χ2 DF CV P-value 

n % n % 

Sex 0 534 43.70 478 45.61 0.83 1 3.84 0.36 

  1 688 56.30 570 54.39         
Age 0 138 11.29 8 0.76 0.21 2 5.99 0.00 

  1 909 74.39 937 89.41         

  2 175 14.32 103 9.83         
Weight 0 118 9.66 95 9.06 1.00 2 5.99 0.61 

  1 743 60.80 624 59.54         

  2 361 29.54 329 31.39         
Year 0 90 7.37 97 9.26 9.82 3 7.81 0.02 

  1 312 25.53 218 20.80         

  2 479 39.20 449 42.84         
  3 341 27.91 284 27.10         

HIV performed  0 14 1.15 45 4.29 22.09 1 3.84 0.00 

  1 1208 98.85 1003 95.71         
HIV test result 0 1218 99.67     0.16 1 3.84 0.00 

  1 4 0.33 44 4.20         

  2     1004 95.80         
Headache 0 624 51.06 479 45.71 6.48 1 3.84 0.01 

  1 598 48.94 569 54.29         

Cough 0 939 76.84 763 72.81 4.90 1 3.84 0.03 
  1 283 23.16 285 27.19         

Chest pain 0 902 73.81 723 68.99 6.46 1 3.84 0.01 

  1 320 26.19 325 31.01         
Bloody sputum 0 666 54.50 551 52.58 0.84 1 3.84 0.36 

  1 556 45.50 497 47.42         

Fever 0 681 55.73 456 43.51 33.68 1 3.84 0.00 
  1 541 44.27 592 56.49         

Night sweating 0 348 28.48 239 22.81 9.47 1 3.84 0.00 

  1 874 71.52 809 77.19         

*Comparison of the variables between clusters using Pearson's Chi-square test; χ2: Chi-square 

statistic; DF: Degrees of freedom; CV: Critical Value; n:  number of feature values in each cluster; 

%: percentage of values in each cluster 

 

B) Validation of classification results  

The primary purpose of a classification model is to increase our understanding of 

the current world (e.g., identify risk factors for infection) or make predictions 

about the future (e.g., predict who will become infected) (Adane Tarekegn et al.., 

2020). Validation of such models is at the core of machine learning. There are 

different approaches to assessing the performance or stability of machine learning 

models, such as hypothesis stability, error stability, and leave-one-out cross-

validation stability (Elisseeff and Pontil, 2003). The aim of all these different 

approaches is to estimate the generalization error. 
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Currently, the well adopted and commonly used measure of generalization error 

is the cross-validation approach.  In this study, we adopted the k-fold cross-

validation, where the training set is split into several subsamples. In particular, we 

employed 10-fold cross-validation aiming to tune the parameters of the model and 

reduce the variance of the resulting generalization estimate by averaging over ten 

different subsamples. This 10-fold cross-validation can deal with limitations of 

the holdout method, such as to reduce overfitting, and therefore is more reliable 

and provides better generalization performance on the test data (Adane Tarekegn 

et al., 2020).  

In genetic programming (GP), the classification model that we adopted here, 

validation is just more than that of the 10-fold cross-validation. Because GP is a 

probabilistic stochastic search algorithm, that is, even if all the parameters are the 

same, the results are not the same for each operation of each subsample. Stochastic 

characteristic enables GP to explore the solutions space of optimization problem 

and realize the diversification and exploration.  Without the randomness, GP 

usually will converge to a local optimum very quickly (Pétrowski and Ben 

Hamida, 2017). Therefore, to measure the stability of the GP model across its 

stochastic nature, we did 30 runs and take the best and median of the solutions. 

The details of the whole validation process for the GP model are presented in 

subsequent sections (sections 3).   

Experimental settings  

After having identified the target variable through the process of clustering 

analysis, the dataset was randomly split into training and testing. The GP model 

is trained using the proportions of 75% the training and 25% for testing.  First, the 

10-folds cross-validation approach is applied to the training set (i.e., on the 75%).  

The training set is used to train and optimize the model and includes both input 

data and the corresponding expected output. The testing set, on the other hand, 

includes only input data, not the corresponding expected output. The testing data 

is used to assess how well the algorithm was trained and to estimate model 

properties. The experiment includes learning a binary classification of data to TB 

positive and TB negative by considering the profiles of each individual patient.  

 

GP parameter setup    

In GP, setting the control parameters is an important first step to manipulate data 

and to obtain good results. In our problem, we tried several experiments for 

classification tasks by using the control parameters, such as population size, 

selection method, number of elite individuals, initialization method, number of 

generations, crossover probability rates, and mutation probability rates. Due to the 
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stochastic nature of GP, 30 runs were performed in all problems, each with a 

different random number generator seed. The selection mechanism has been the 

tournament selection and the maximum tree depth set to the default value. GP 

requires that further control parameters be specified. The common parameter 

settings with their values that were used for this experiment are listed in Table 3.  

 
Table 3. GP control parameter settings 
 

Parameter  Value  

Population size 1000 

Maximum number of generations 100 

Crossover probability 0.90 

Mutation probability 0.15 

Selection method  Tournament selection  

Termination Condition  Max generation  

Tree initialization  Ramped half and half 

Genetic operators  Crossover, Mutation  

Elites  1 

 

Population size: is the actual number of individuals in a population.   

Maximum number of generations: are fixed based on some trial runs. However, 

it depends upon the population size, preciseness of definition of objective function 

and constraints, use of real valued or binary valued chromosomes, method of 

selecting chromosomes for reproduction, crossover type (single point/multipoint), 

crossover rate, mutation rate, etc. 

Crossover probability: is the probability that crossover will occur at a particular 

mating; that is, not all mating must reproduce by crossover, but one could choose 

Pc=1.0. 

Mutation probability: After the offspring are generated from the selection and 

crossover, the offspring chromosomes may be mutated. Like crossover, there is a 

mutation probability. If a randomly selected floating-point value is less than the 

mutation probability, mutation is performed on the offspring; otherwise, no 

mutation occurs. 

Selection method: Usually with a larger population, not all units of observation 

can be analysed. Therefore, a smaller sample is drawn from the population, 

whereby the survey results are representative of the entire population. 

http://www.statista.com/statistics-glossary/definition/311/population/
http://www.statista.com/statistics-glossary/definition/371/sample/
http://www.statista.com/statistics-glossary/definition/183/survey/
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Termination condition: is an expression or a mathematical equation consisting 

of variables, constants, operators, and common functions that limit or define 

movement. 

Tree initialization: A tree is a nonlinear data structure, compared to arrays, 

linked lists, stacks and queues which are linear data structures. A tree can be 

empty with no nodes or a tree is a structure consisting of one node called the root 

and zero or one or more sub trees. 

Genetic operators: is an operator used in genetic algorithms to guide the 

algorithm towards a solution to a given problem. There are three main types of 

operators (mutation, crossover and selection), which must work in conjunction 

with one another in order for the algorithm to be successful. 

Elites:  It is the choice or best of anything considered collectively, as of a group 

or class. 

Evaluation metrics   

In GP, fitness function defines a measure to calculate the accuracy of a solution 

by comparing the predicted class labels with the actual class labels. In the two-

class classification problem, the outcome of classification performance can be 

represented by a confusion matrix shown below:  

 
Outcomes of a two-class classification problem 
 

Actual positive class True positive (TP) False negative (FN) 

Actual negative class False positive (FP) True negative (TN) 

 

Then, the following performance metrics are obtained from the confusion matrix, 

as shown in equations 2-4.  The prediction model obtained from GP was evaluated 

in terms of overall accuracy, AUC, sensitivity, and specificity. In the context of 

this study, sensitivity measures the percentage of subjects who are correctly 

identified as having the event, i.e., TB positive, while specificity refers to the 

percentage of subjects who are correctly identified as not having the event, i.e., 

TB negative.  

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑞. (2) 

Sensitivity⁡ =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁⁡
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑞. (3) 

 

Specificty⁡ =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑞. (4) 
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The major limitation of accuracy and other measures is that they represent the 

performance of a solution when it is evaluated using a single class threshold. In 

contrast, the area under the ROC curve (or AUC) measures the classification 

performance at multiple class thresholds. The AUC measures the overall quality 

of a classifier when the threshold parameter biasing the final classification 

decision is varied ( Urvesh Bhowan et al., 2002; Kumar and Indrayan, 2011). 

𝐴𝑈𝐶 =∑ ⁡
1

2
(𝐹𝑃𝑖+1⁡ − 𝐹𝑃𝑖)

𝑁−1

𝑖=1
(𝑇𝑃𝑖+1⁡ + 𝑇𝑃𝑖 ⁡)  Eq. (5) 

where N is the number of thresholds, and TPi / FPi represents the performance of 

the solution at class threshold i. The equation sums the area of the individual 

trapezoids fitted under the ROC points.  The AUC corresponds to the probability 

that a minority class example is correctly predicted across different class 

thresholds (Hajian-Tilaki, 2013). The AUC is a particularly useful and common 

measure of performance in classification tasks with unbalanced data as it 

represents how well a learned classifier approximates the trade-off between the 

minority and the majority classes across multiple classification thresholds.   

 
True positive is an outcome where the model correctly predicts the positive class.  

True negative is an outcome where the model correctly predicts the negative class.  

False positive is an outcome where the model incorrectly predicts the positive class. 

False negative is an error in which a test result improperly indicates no presence of a 

condition (the result is negative), when in reality it is present. 

 

 

RESULTS AND DISCUSSION  

GP model selection  

In the GP process, the first task is to evaluate the quality of the generated model. 

This quality is called the fitness of a solution candidate. In GP based classifier, 

there are multiple possible ways to compute the quality of a model.  In this paper, 

the mean squared error function (MSE) is considered, which calculates the 

average value of the squared residuals of the estimated values and original values. 

The population dynamics across generations are also evaluated based on this mean 

squared error. With the results stored from 30 runs of GP, we calculated the 

average fitness of the best solution per generation. Figure 3 and 4 show the best 

and median MSE on the test data at each generation over the 30 runs. Best fitness 

refers to the fitness of the best individual in the current population and the average 

fitness is simply the mean of the fitness values across the entire population. The 

evolution of the error in both average and best fitness reveals the ability of GP in 
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learning the relationship between variables. There is a constant reduction in the 

test error across generations, indicating that no overfitting is occurring.  

 
Figure 3. GP evolution plot. The line represents the best MSE on the test set. 

 

Figure 4. GP evolution plot. The line represents the average MSE on the test set. 

Among the 30 best solutions, we selected a prediction model that produced the 

lowest MSE on the test set. The selected solution obtained the best value of 0.092 

and its average is 9.96, as shown in Figures 3 and 4. The final model produced by 

the GP model included 7 predictors: bloody-sputum, night-sweats, chest-pain, and 
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cough, HIV-test-result, night-sweats and headache. These variables were the most 

frequent variables which were the most relevant for the prediction of pulmonary 

TB. The final prediction model generated by GP was represented using the 

following equation: 

𝑌 = 𝑖𝑓(c0. headache⁡ > (if((c1. fever < c2), c3. hiv − test − result⁡,
c4. headache) − c5. bloody − sputum))⁡⁡,
c6. hiv − test − result,
if((c7. fever < c8. hiv − test − result)⁡⁡,
(c9 − c10.weight)⁡,
c11. headache⁡)/(c12 − c13.weight)) 

 

Where c0=2.42, c1=0.62, c2=0.71, c3= .88, c4=0.89, c5=2.42, c6=0.62, 

c7=0.90, c8=0.94, c9=-0.12, c10=1.2, c11=0.31, c12=0.77, c13=0.81, c14=-

0.13, c15=0.15, c16=1.15, c17=1.08 

 

As shown in the equation, some variables were missing due to that GP performs 

an implicit features selection. The fact that GP required fewer predictors to 

achieve the required performance may have an advantage in the practical 

application of the developed TB prediction model. 

GP model performance  

In analysing GP for classification, the most fundamental aspect is to know the 

number of samples that are classified correctly and those, which are classified 

incorrectly. The results averaged from 30 runs of GP experiments are presented 

in Table 4 on the training set and Table 5 on the testing set. The classification 

performance is measured using sensitivity, specificity, overall accuracy and AUC.  

 

For a fair comparison of GP with other machine learning methods, we used the 

Wilcoxon signed-rank test. From the results, we understood that for α =0.01 

significance level, GP showed competitive results in performance compared to 

support vector machine, neural networks, and random forest. Finally, the 

performance of the selected GP model on the training together with other machine 

learning methods are shown in Table 4 and Table 5 in terms of accuracy, 

sensitivity, specificity, and AUC.  



 85 Ethiop. J. Sci. & Technol. 14(1): 71-88, January 2021 

 Table 4.  Results of GP and other classifiers on training data 
 

Classifier  Sensitivity  Specificity  Accuracy  AUC  

Support vector machine  74.69 96.27 89.62 89.71 

Random forest 87.34 96.68 93.80 89.65 

Artificial neural network  74.93 96.59 89.84 89.01 

GP (Max) 77.19 96.98 91.09 90.00 

GP(Median)  76.59 96.02 89.94 89.58 

 
Table 5.  Results of GP and other classifiers on test data 
 

Classifier  Sensitivity  Specificity  Accuracy  AUC  

Support vector machine 76.94 95.73 89.82 90.03 

Random forest 75.14 91.17 86.52 88.93 

Artificial neural network 76.94 95.87 89.91 90.05 

GP (Max)  73.92 96.99 89.99 89.92 

GP (Median)  72.84 96.23 89.12 88.82 

 

 

CONCLUSION 

 

The combined clustering /genetic programming approach implemented in the 

study can draw more attention to the significance of patient clustering while 

dealing with prediction-related problems. The clustering-aided approach 

produced further concerns that can contribute to improving the accuracy of 

predicting patient outcomes. 

 

GP is used as a potential tool for developing a prediction model for the 

tuberculosis dataset. The performance of the model obtained by GP is evaluated 

using sensitivity, specificity, accuracy and AUC. From the results obtained, it is 

evident that GP algorithms perform well in separating the positive cases from the 

negative cases of the TB disease. The overall classification accuracy for both 

training and testing is comparable with the well-accepted existing machine 

learning techniques like artificial neural network and support vector machines 

with considerable additional advantages. However, the computationally intensive 

nature of genetic programming makes it difficult to apply to the real-world 

problems with large amounts of datasets. So, further research is recommended to 

accelerate the time-consuming fitness evaluation step. 
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