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ABSTRACT 

 

This paper presents analytic study of heat and mass transfer in a two-dimensional, 

unsteady flow of Maxwell nanofluids over a horizontal stretching sheet. The non-linear 

governing equations with the relevant boundary conditions have been simplified by 

using similarity transformations and the resulting equations are solved by using the 

homotopy analysis method. The convergence and accuracy of the solutions are verified. 

Impacts of magnetic field, thermal radiation, heat source, surface permeability and 

chemical reaction on velocity, temperature and nanoparticles volume fraction profiles 

are examined and presented in graphical and tabular forms. The study reveals that 

increasing the effect of heat source maximizes the temperature profile whereas it reduces 

the nanoparticle volume fraction profile in the boundary layer. On the other hand, the 

increase in chemical reaction is found to enhance the nanoparticle concentration. 
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INTRODUCTION 

 

Due to the complex nature of non-Newtonian fluids in response to the applied 

stress tensor, various mathematical models have been proposed by researchers 

to examine and predict the flow characteristics of such fluids. For instance, 

when the applied shear stress is removed from the so-called viscoelastic fluids, 

the rate of deformation gradually decreases. This phenomenon is known as the 

stress relaxation. Moreover, the time taken by the fluid to recover upon the 
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elimination of the applied stress is called relaxation time. Maxwell model, 

proposed in 1867 by J.C. Maxwell, is one of the viscoelastic models used to 

examine the shear thinning characteristics of many industrially important fluids 

such as paints, paper pulps, shampoos and liquid polymers. 

 

The embedding of nanoparticles in the conventional heat transferring liquids 

improves thermal conductivity of the fluids (Choi and Eastman, 1995). In view 

of the practical applications of Maxwell nanofluids, several researchers have 

reported their study on the influences of various thermo-physical parameters in 

the boundary layer flow of such fluids over horizontally stretching surfaces. For 

instance, Nadeem et al. (2013) shows that the Brownian motion parameter 

reduces the rate of heat transfer but enhances the rate of mass transfer. Ramesh 

and Gireesha (2014) reported a numerical investigation of the heat source/sink 

effects. It was found that the local Nusselt number is smaller and local 

Sherwood number is higher for Maxwell fluids compared to Newtonian fluids. 

Awais et al. (2015) investigated the heat generation/absorption effects by using 

both the analytic and numerical methods. They pointed out that the increase in 

the Deborah number slows down velocity of the fluid. Moreover, the 

temperature of the fluid flow system was enhanced and diminished by the 

presence of the heat source and the heat sink, respectively.  

 

Recently, Elbashbeshy et al. (2018) investigated heat and mass transfer of the 

flow of a Maxwell nanofluid over a stretching surface with variable thickness 

embedded in a porous medium by using the Rung-Kutta fourth/fifth order 

method coupled with shooting technique. The effects of chemical reaction and 

heat source/sink on a steady magnetohydrodynamic mixed convective 

boundary layer flow of a Maxwell nanofluid over a porous exponentially 

stretching sheet was studied by Sravanthi and Gorla (2018). Further, Ijaz and 

Ayub (2019) considered nonlinear convective flow of Maxwell nanofluid over 

inclined stretched cylinder. 

 

On the other hand, some studies considered the effect of unsteadiness parameter 

in their boundary layer flow analysis. For instance, the researchers 

Mukhopadhyay and Bhattacharyya (2012) employed the shooting method to 

analyze the unsteady flow of Maxwell fluid in the presence of first order 

chemical reaction. The study showed that velocity of the fluid initially 

decreases while nanoparticles volume fraction profile decreases significantly 

due to the increase in the unsteadiness parameter. Also increasing values of the 

Maxwell parameter was found to retard velocity of the fluid but it enhanced the 

nanoparticles volume fraction profile. Mabood et al. (2016) applied the implicit 

finite difference method with quasi-linearization technique to examine unsteady 

flow of Maxwell fluid over a stretching surface in the presence of uniform 

magnetic field, nonlinear thermal radiation and first-order chemical reaction 
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with convective boundary conditions. This study revealed that for larger 

Maxwell parameter, the viscous forces are dominant enough to restrict the fluid 

motion. Significant effects of thermal and nanoparticles volume fraction Biot 

numbers were observed in influencing the temperature and nanoparticles 

volume fraction profiles, respectively.  

 

The purpose of this study was to examine the influences of pertinent parameters 

such as magnetic field, thermal radiation, heat source, surface permeability and 

chemical reaction on velocity, temperature and nanoparticles volume fraction 

profiles in the boundary layer flow region. Moreover, the study employs the 

homotopy analysis method and the results were then compared with that of 

some previously published works.  

 

MATHEMATICAL FORMULATIONS 

 

In the present study, unsteady laminar flow of an incompressible electrically 

conducting Maxwell nanofluid over a heated and permeable horizontal sheet is 

considered. A non-uniform transversal magnetic field of strength 𝐵 =
𝐵0

√1−𝑎𝑡
, 

where 𝐵0 is the initial magnetic field strength, is applied normal to the surface 

as shown in Figure 1. The flow above the x-axis (y >0) induced by the motion 

of a horizontal sheet emerging from a slit and moving with a non-uniform 

velocity of  𝑈𝑤(𝑥, 𝑡) =
𝑐𝑥

1−𝑎𝑡 
 is considered. 

 

 
 

Figure 1. Sketch of the flow problem 

 

Using the Cartesian coordinate system with origin at the slit and applying the 

Rosseland diffusion and the boundary layer approximations, we re-wrote the 

flow problem of Madhu et al. (2017) as follows:  
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𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                      (1) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐

𝜕2𝑢

𝜕𝑦2
− 𝜆0 (𝑢2

𝜕2𝑢

𝜕𝑥2
+ 𝑣2

𝜕2𝑢

𝜕𝑦2
+ 2𝑢𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
) −

𝜎𝐵0
2

𝜌𝑓
𝑢,                  (2) 

 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+ 𝜏 [𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑌
)

2

] +
16𝜎∗𝑇∞

3

3(𝜌𝐶𝑝)
𝑓

𝑘∗

𝜕2𝑇

𝜕𝑦2
+

𝑄0

(𝜌𝐶𝑝)𝑓
(𝑇 − 𝑇∞),    (3) 

 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
− 𝐾𝑟(𝐶 − 𝐶∞) ,                                                        (4) 

 

where t is the time variable, (u, v) are the velocity components in the x and y-

directions; 𝜌𝑓 and 𝜆0  denote density and viscoelasticity of the nanofluid, 

respectively; 𝜐 =
𝜇

𝜌𝑓
is kinematicviscosity with 𝜇 representing coefficient of 

dynamic viscosity; T and C denote temperature and nanoparticles volume 

fraction;  𝑇 ∞ and  𝐶 ∞ are the corresponding ambient values of temperature 

and nanoparticle volume fraction; 𝛼 =
𝑘

(𝜌𝐶𝑝)𝑓
is thermal diffusivity and 𝜏 =

(𝜌𝐶𝑝)𝑝

(𝜌𝐶𝑝)𝑓
  is ratio of effective heat capacities of nanoparticle and the ordinary fluid;  

𝐷𝐵   and 𝐷𝑇   are the Brownian and thermophoresis diffusion coefficients, 

respectively;  𝑘∗  and  𝜎∗ are the mean absorption and the Stefan-Boltzmann 

constants, respectively; the coefficient 𝑄0 stands for heat source and 𝐾𝑟  denotes 

the chemical reaction rate. We consider the following boundary conditions: 

At 𝑦 = 0,  

𝒖 = 𝑼𝒘(𝒙, 𝒕) =  
𝒄𝒙

𝟏 − 𝒂𝒕
, 𝒗 = 𝑽𝒘(𝒙, 𝒕) =

−𝒗𝟎

√𝟏 − 𝒂𝒕
, 𝑻 = 𝑻𝒘(𝒙, 𝒕) = 𝑻∞ +

𝒄𝒙

(𝟏 − 𝒂𝒕)𝟐
, 𝑫𝑩

𝝏𝑪

𝝏𝒚
+

𝑫𝑻

𝑻∞

𝝏𝑻

𝝏𝒚
= 𝟎,    (𝟓) 

 

and as 𝑦 → ∞, we have 
𝑢 → 0, 𝑇 → 𝑇∞ , 𝐶 → 𝐶∞                                                                  (6) 

where  𝑈𝑤 and 𝑇𝑤  are velocity and temperature of the surface, respectively;  𝑉𝑤   
is the mass transmission at the surface of the stretching sheet;  𝑣0  is the constant 

value of velocity; a  and  c are positive constants denoting velocity rate of the 

stretching sheet and the fluid, respectively. 
 

Next, we introduce the following similarity transformations: 

𝜼 = 𝒚√
𝒄

𝒗(𝟏 − 𝒂𝒕)
, 𝝍 = √

𝒄𝒗

𝟏 − 𝒂𝒕
𝒙𝒇(𝜼), 𝑻 = 𝑻∞ +

𝒄𝒙

(𝟏 − 𝒂𝒕)𝟐
𝜽(𝜼), 𝑪 = 𝑪∞ +

𝒄𝒙

(𝟏 − 𝒂𝒕)𝟐
𝝋(𝜼)        (𝟕) 

where  𝜂  stands for the dimensionless similarity variable;  𝑓(𝜂) ,  𝜃(𝜂)  and 

𝜑(𝜂) denote the dimensionless functions for velocity, temperature and 

nanoparticles volume fraction, respectively. 
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Using the stream function 𝜓(𝑥, 𝑦) having the property 𝑢 =
𝜕𝜓

𝜕𝑦
 and  𝑣 =

−
𝜕𝜓

𝜕𝑥
, the continuity equation for velocity in Equation (1) is identically satisfied. 

Computing the required partial derivatives with respect to 𝜂 and substituting the 

values into the governing equations (2-4), the following system of ordinary 

differential equations are obtained: 
 

𝑓′′′ − 𝐴 (
𝜂

2
𝑓′′ + 𝑓′) − 𝑓′2 + 𝑓𝑓′′ − 𝜆(𝑓2𝑓′′′ − 2𝑓𝑓′𝑓′′) − 𝑀𝑓′ = 0,              (8)  

1

𝑃𝑟
(1 +

4𝑅𝑑

3
) 𝜃′′ −

𝐴

2
(𝜂𝜃′ + 4𝜃) − 𝑓′𝜃 + 𝑓𝜃′ + 𝑁𝑏𝜃′𝜑′ + 𝑁𝑡𝜃′2 + 𝑄𝜃 = 0,             (9) 

𝜑′′ +
𝑁𝑡

𝑁𝑏

𝜃′′ − 𝑠𝑐 (
𝐴

2
(𝜂𝜑′ + 4𝜑) + 𝑓′𝜑 − 𝑓𝜑′ − 𝛾𝜑) = 0,          (10) 

where the prime ’ indicates differentiation with respect to  𝜂;  𝐴 =
𝑎

𝑐
  is the 

unsteadiness parameter; M = 
𝜎𝐵0

2

𝑎𝜌𝑓
  denotes the external magnetic field 

parameter; 𝜆 =
𝑐𝜆0

1−𝑎𝑡
 is the Deborah number representing the Maxwell 

viscoelastic parameter;  𝑃𝑟 =
𝑣

𝛼
  and  𝑆𝑐 =

𝑣

𝐷𝐵
  are the Prandtl number and the 

Schmidt number, respectively; 𝑅𝑑 =
4𝜎∗𝑇∞

3

𝑘𝑘∗  is thermal radiation parameter; 

𝑁𝑏 =
𝜏𝐷𝐵(𝐶𝑤−𝐶∞)

𝑣
and 𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝑣𝑇∞
are the Brownian motion and 

thermophoresis parameters, respectively; 𝑄 =
𝑥𝑄0

(𝜌𝐶𝑝)𝑓𝑈𝑤
 is the heat source 

parameter and  𝛾 =
𝐾𝑟𝑥

𝑈𝑤
  is chemical reaction parameter. Also employing the 

similarity transformation in Equation (5), the boundary conditions can be 

reduced as follows: 
𝑓(0)  =  𝑆,  𝑓′(0)  =  1, 𝜃(0)  =  1, 𝑁𝑏𝜑′(0) + 𝑁𝑡𝜃′(0) = 0 ,            (11) 

 

and as  𝜂 → ∞, 
𝑓′(𝜂) → 0, 𝜃(𝜂) → 0, 𝜑(𝜂) → 0                                               (12) 

 

where the parameter S = 
𝑣0

√𝑐𝑥
  is the transpiration parameter of the wall. 

 

From practical point of view, it is also useful to predict the behavior of Skin 

friction 𝐶𝑓 , local Nusselt number 𝑁𝑢𝑥  and Sherwood number 𝑆ℎ𝑥  in the 

boundary layer region are given by 

𝑅𝑒𝑥
1/2𝐶𝑓 = 2(1 + 𝜆)𝑓′′(0), 𝑅𝑒𝑥

−1/2𝑁𝑢𝑥 = − (1 +
4𝑅𝑑

3
) 𝜃′(0), 𝑅𝑒𝑥

−
1

2𝑆ℎ𝑥 = −𝜑′(0),          (13) 

where R𝑒𝑥 =
𝑥𝑈𝑤

𝑣
  is the local Reynolds number.  
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METHOD OF SOLUTION 

  

The homotopy analysis method (HAM), first proposed in 1992 by Liao, has 

been one of the most efficient analytic methods that is known to give 

convenient mechanism of ensuring the convergence of its solutions. In this 

study, the method can be implemented by following the following major 

procedures; details of the method can be referred in Liao (2003). 
 

Based on the equations (8)-(10), the non-linear operators can be defined as:  

𝑁𝑓 =
∂3∅𝑓

∂𝜂3
− 𝐴 (

𝜂

2

∂2∅𝑓

∂𝜂2
+

∂∅𝑓

∂𝜂
) − (

∂∅𝑓

∂𝜂
)

2

+ ∅𝑓

∂2∅𝑓

∂𝜂2
− 𝜆 (∅𝑓

2 ∂3∅𝑓

∂𝜂3
− 2∅𝑓

∂∅𝑓

∂𝜂

∂2∅𝑓

∂𝜂2
)

− 𝑀
∂∅𝑓

∂𝜂
                                                                                                        (14) 

𝑁𝜃 = (1 +
4𝑅𝑑

3
)

∂2∅𝜃

∂𝜂2
−

𝐴

2
(𝜂

∂∅𝜃

∂𝜂
+ 4∅𝜃) −

∂∅𝑓

∂𝜂
∅𝜃 + ∅𝑓

∂∅𝜃

∂𝜂
+ 𝑁𝑏

∂∅𝜃

∂𝜂

∂∅𝜑

∂𝜂
+ 𝑁𝑡 (

∂∅𝜃

∂𝜂
)

2

+ 𝑄∅𝜃                                                                                                            (15) 

𝑁𝜑 =
∂2∅𝜑

∂𝜂2
− 𝑆𝑐 [

𝐴

2
(𝜂

∂∅𝜑

∂𝜂
+ 4∅𝜑) +

∂∅𝑓

∂𝜂
∅𝜑 − ∅𝑓

∂∅𝜑

∂𝜂
− 𝛾∅𝜑] +

𝑁𝑡

𝑁𝑏

∂2∅𝜃

∂𝜂2
 ,                 (16) 

where ∅𝑓 , ∅𝜃  and∅𝜑  are the homotopy approximations of 𝑓, 𝜃  and 𝜑 , 

respectively satisfying the initial and boundary conditions. 

According to Liao (2003), the corresponding zeroth-order deformation 

equations can be constructed as 

(1 − 𝑞)ℒ𝑓[∅𝑓 − 𝑓0] = 𝑞ℏ𝑓𝐻𝑓𝑁𝑓                                                                  (17) 

(1 − 𝑞)ℒ𝜃[∅𝜃 − 𝜃0] = 𝑞ℏ𝜃𝐻𝜃𝑁𝜃                                                               (18) 

(1 − 𝑞)ℒ𝜑[∅𝜑 − 𝜑0] = 𝑞ℏ𝜑𝐻𝜑𝑁𝜑                                                               (19) 

where 𝑞 ∈ [0,1]  is the embedding parameter;  ℒ𝑓 , ℒ𝜃   and  ℒ𝜑  are the 

auxiliary linear operators selected as: 
 

ℒ𝑓(𝑓) =
𝑑3𝑓

𝑑𝜂3
−

𝑑𝑓

𝑑𝜂
,     ℒ𝜃(𝜃) =

𝑑2𝜃

𝑑𝜂2
+

𝑑𝜃

𝑑𝜂
 ,     ℒ𝜑(𝜑) =

𝑑2𝜑

𝑑𝜂2
+

𝑑𝜑

𝑑𝜂
     (20) 

 

Satisfying the properties  

𝐿𝑓[𝐶1+𝐶2𝑒−𝜂 + 𝐶3𝑒𝜂] = 0,     𝐿𝜃[𝐶4+𝐶5𝑒−𝜂] = 0,    𝐿𝜑[𝐶6+𝐶7𝑒−𝜂]  = 0,       (21)

with 𝐶𝑖(𝑖 = 1 − 7)  are constants to be determined from the boundary 

conditions;  𝑓0, 𝜃0  and  𝜑0  are the initial approximations given by  
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𝑓0(𝜂) = 1 + 𝑠 − 𝑒−𝜂 , 𝜃0(𝜂) = 𝑒−𝜂 ,  𝜑0(𝜂)  = −
𝑁𝑡

𝑁𝑏

𝑒−𝜂                (22) 

𝐻𝑓 , 𝐻𝜃   and  𝐻𝜑  are the auxiliary functions defined as: 
𝐻𝑓(𝜂) = 𝐻𝜃(𝜂) = 𝐻𝜑(𝜂) = 𝑒−𝜂 ,                                         (23) 

where ℏ𝑓 , ℏ𝜃 and ℏ𝜑 are the convergence-control parameters to be determined 

later.  

One can easily verify in Equations (17) to (19) that as the embedding parameter 

𝑞  increases from 0 to 1, the homotopy solutions  ∅𝑓 , ∅𝜃  and ∅𝜑  vary 

continuously from the initial approximations  𝑓0 , 𝜃0   and  𝜑0  to the exact 

solutions 𝑓(𝜂), 𝜃(𝜂)  and 𝜑(𝜂).  

Substituting the Maclaurin series expansion of  ∅𝑓, ∅𝜃  and  ∅𝜑 into the zeroth-

order deformation equations and equating the coefficients of like powers of  𝑞; 

or by differentiating the zeroth- order deformation equations 𝑚  times with 

respect to  𝑞, then dividing the resulting equations by m! and finally setting 𝑞 =
0, the following 𝑚th-order deformation equations are obtained: 

ℒ𝑓[𝑓𝑚(𝜂)  − 𝜒𝑚𝑓𝑚−1(𝜂) ] =  ℏ𝑓 H𝑓ℛ𝑚−1
𝑓

(𝜂)                                        (24) 

ℒ𝜃[𝜃𝑚(𝜂)  − 𝜒𝑚𝜃𝑚−1(𝜂) ] =  ℏ𝜃 H𝜃ℛ𝑚−1
𝜃 (𝜂)                                      (25) 

ℒ𝜑[𝜑𝑚(𝜂)  − 𝜒𝑚𝜑𝑚−1(𝜂) ] =  ℏ𝜑 H𝜑ℛ𝑚−1
𝜑

(𝜂)                                    (26) 

where 𝜒𝑚 = {
0, if m ≤ 1
1, if m > 1

  is the unit step function and 

ℛ𝑚−1
𝑓

= 𝑓′′′
𝑚−1

− 𝐴 (
𝜂

2
𝑓′′′

𝑚−1
− 𝑓′

𝑚−1
) − ∑ 𝑓𝑘

′

𝑚−1

𝑘=0

𝑓′
𝑚−1−𝑘

+ ∑ 𝑓𝑘

𝑚−1

𝑘=0

𝑓′′
𝑚−1−𝑘

 

−𝜆 (∑ ∑ 𝑓𝑘−𝑟𝑓𝑚−𝑟−1𝑓𝑚
′′′

𝑘

𝑟=0

𝑚−1

𝑘=0

− 2 ∑ ∑ 𝑓𝑚−𝑘−1𝑓′
𝑘−𝑟

𝑓𝑟
′′

𝑘

𝑟=0

𝑚−1

𝑘=0

)

− 𝑀𝑓′
𝑚−1

                                                                 (27) 

ℛ𝑚−1
𝜃 =

1

Pr
(1 +

4𝑅𝑑

3
) 𝜃′′

𝑚−1 −
𝐴

2
(𝜂𝜃′

𝑚−1 + 4𝜃𝑚−1) − ∑ 𝜃𝑘𝑓′
𝑚−𝑘−1

𝑚−1

𝑘=0

 

+ ∑ 𝑓𝑘𝜃′
𝑚−𝑘−1

𝑚−1

𝑘=0

+ 𝑁𝑏 ∑ 𝜃𝑚−1
′

𝑚−1

𝑘=0

𝑓′
𝑚−1−𝑘

+ 𝑁𝑡 ∑ 𝑓𝑘
′

𝑚−1

𝑘=0

𝑓′
𝑚−1−𝑘

+ 𝑄𝜃𝑚−1                                                                  (28) 
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ℛ𝑚−1
𝜑

= 𝜑′′
𝑚−1

− 𝑆𝑐 [
𝐴

2
(𝜂𝜑′

𝑚−1
+ 4𝜑𝑚−1) + ∑ 𝑓′

𝑚−1−𝑘

𝑚−1

𝑘=0

𝜑𝑘

− ∑ 𝑓𝑘 𝜑′
𝑚−1−𝑘

𝑚−1

𝑘=0

− 𝛾𝜑𝑚−1] +
𝑁𝑡

𝑁𝑏
𝜃′′

𝑚−1     (29) 

where the primes denote differentiation with respect to  𝜂. 

Taking the inverse of the linear operators on both sides of the higher order 

deformation equations, one can get the following iterative formula:𝑓𝑚(𝜂) =

𝜒𝑚𝑓𝑚−1(𝜂) + ℏ𝑓ℒ𝑓
−1[𝐻𝑓𝑅𝑚−1

𝑓 (𝜂)]                                           (30) 

𝜃𝑚(𝜂) = 𝜒𝑚𝜃𝑚−1(𝜂) + ℏ𝜃ℒ𝜃
−1[𝐻𝜃𝑅𝑚−1

𝜃 (𝜂)]                                        (31) 

𝜑𝑚(𝜂) = 𝜒𝑚𝜑𝑚−1(𝜂) + ℏ𝜑ℒ𝜑
−1[𝐻𝜑𝑅𝑚−1

𝜑 (𝜂)]                                      (32) 

To carry out the computation, the HAM-based Mathematica package BVPh 2.0 

was adopted (Zhao and Liao, 2013). But to ensure the convergence of the HAM 

solutions, the graphs of the kth-partial sums of the functions against the 

convergence-control parameters were plotted as shown in Figure 2. 

 

 
Figure 2. ℏ − curves 

 

Figure 2 indicates that the intervals  0.3 < ℏ𝑓 < 2.1, −0.9 < ℏ𝜃 < −0.1 and 

−0.3 < ℏ𝜑 < 0.0  are the valid regions for the range of admissible values of 

the convergence-control parameters. According to Liao (2003), taking any 

value for the convergence-control parameters will make the HAM solution 

convergent. The convergence of the series solution can also be determined from 

examining the squared residual errors as presented in Table 1. It displays that 
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the values of the selected quantities of interest are convergent before the 30th 

order HAM. Also, as the order of HAM increases, the errors are getting smaller. 

 

 
Figure 3. Total squared residual error for the 40th HAM approximation 

 

It can be seen from the above figure that increasing the order of HAM 

approximation reduces the squared residual errors which ensures the validity of 

the method in the given flow problem. 

 
Table 1. Convergence of HAM solution. 
 

Order of 

HAM 

approxim

ation 

−𝑓′′(0) −𝜃(0) −𝜑(0) Squared residual errors 

𝜀𝑓                              𝜀𝜃                             𝜀𝜑 

2 1.9283 0.54716 1.26634 9.2× 10−5 2.6× 10−3 1.3× 10−3 

6 1.81483 0.48619 1.36611 1.4× 10−6 8.2× 10−4 3.3× 10−4 

10 1.81640 0.48531 1.37948 2.5× 10−7 5.2× 10−4 2.1× 10−4 

14 1.81680 0.48529 1.38809 7.5× 10−8 3.7× 10−4 1.5× 10−4 

18 1.81695 0.48529 1.39421 3.0× 10−8 3.0× 10−4 1.2× 10−4 

22 1.81702 0.48529 1.39884 1.4× 10−8 2.5× 10−4 1.0× 10−4 

26 1.81706 0.48529 1.40251 8.0× 10−9 2.1× 10−4 8.8× 10−5 

30 1.81708 0.48529 1.40251 4.8× 10−9 1.9× 10−5 7.7× 10−5 

34 1.81710 0.48529 1.40550 3.1× 10−9 1.7× 10−5 6.9× 10−5 

38 1.81710 0.48528 1.40800 2.1× 10−9 1.5× 10−5 6.2× 10−5 

 

To ensure the validity of our results again, we make comparisons with some 

previously published works in the absence of the extended physical effects as 

depicted in Table 2. The table justifies that the values of 𝑓′′(0) obtained in this 

study are in a nice agreement with the aforementioned published results. 
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Table 2. Comparisons of the present study with previously published works on the 

values of f ′′(0) against some values of the unsteadiness parameter A when λ = M =
S = Q = γ = 0 
 

A (Sharidan et 

al., 2006) 

(Chamkha et 

al., 2010) 

(Mukhopadhyay 

et al., 2013) 

(Madhu et 

al., 2017) 

Present 

Study 

0.8 -1.261042 -1.261512 -1.261479 -1.26121 -1.261844 

1.2 -1.377722 -1.378052 -1.377850 -1.37763 -1.377947 

 

 

RESULTS AND DISCUSSION 
 

In this section, we present the most significant results of our study in graphical 

and tabular forms followed by brief discussions. The parameter values A = 0.1, 

𝜆 = 0.2, 𝑀 = 1, 𝑃𝑟 = 0.5, 𝑅𝑑 = 0.1,  𝑁𝑏 = 𝑁𝑡 =0.2,   𝑆 = 0.4, 𝑆𝑐 = 1 , 𝑄 =
𝛾 = 0.1 and the optimal values for the convergence control parameters ℏ𝑓 ≈

1.4468, ℏ𝜃 ≈ −0.5941 and ℏ𝜑 ≈ −0.1992 have been used throughout this 

study unless and otherwise stated. The influences of various thermo-physical 

parameters on fluid velocity 𝑓′(𝜂), temperature  𝜃(𝜂) and nanoparticle volume 

fraction  𝜑(𝜂) profiles in the boundary layer region are presented.  
 

It can be seen from Figure 4 that all the velocity, temperature and nanoparticles 

volume fraction profiles are decreasing functions of the unsteadiness parameter 

A. It is observed that nanoparticles volume fraction and the temperature profiles 

decrease faster than velocity of the fluid in the boundary layer region. This is 

also evident from the fact that as the unsteadiness parameter increases, the 

velocity of the stretching sheet decreases which causes the transfer of less 

amount of heat and mass from the sheet to the boundary layer region.  
 

 
Figure 4. Effects of unsteadiness parameter A on velocity and temperature profiles. 
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The effects of the Maxwell viscoelastic parameter 𝜆  has been studied and 

presented in Figure 5.  It can be observed that the temperature and nanoparticles 

volume fraction profiles can be enhanced by increasing the parameter 𝜆. On the 

other hand, the velocity falls rapidly with increasing values of 𝜆. Physically, 

this corresponds to the fact that as  𝜆  increases, the fluid is getting thicker. 
 

 
Figure 5. Impacts of  λ on velocity, temperature and concentration profiles. 

 

 
Figure 6. Effects of M on velocity, temperature and concentration profiles. 

 

Impacts of the external magnetic field in the flow field has been studied and 

presented in Figure 6. The results in the figure display that the increase in 

external magnetic field slows down the fluid velocity but it enhances the 
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nanoparticles volume fraction and temperature profiles. This is true as the 

increase in magnetic field produces a resistive force, called the Lorentz force, 

which retards the motion of the fluid. On the other hand, this resistive force 

causes the increase in the temperature and nanoparticles volume fraction in the 

boundary layer. The effect of thermal radiation in the boundary layer region has 

been presented in Figure 7. The figure displays that the increase in thermal 

radiation causes the raise in temperature and the fall in concentration profiles. 

This is because higher thermal radiation causes the increase in the kinetic 

energy of the fluid molecules and higher heat flux near the stretching surface. 

It can also be noted that there is no significant variation of the velocity with the 

change in the parameter. 

 
Figure 7. Impacts of  Rd on velocity, temperature and concentration profiles 

 

As pointed out in Figure 8, the increase in chemical reaction found to increase 

the concentration profile but it does not show any significant influence on the 

velocity and temperature profiles. The reason is that the increase in constructive 

chemical reaction has a tendency to enhance mass diffusion. 

 

The heat source parameter Q has been used to describe the impacts of heat 

generation and heat absorption as shown in Figure 9. 

  

According to the result in Figure 9, the increase in heat source parameter leads 

to the increase in the temperature and the decrease in concentration profiles. It 

can also be observed that velocity profile does not vary with the heat source 

parameter. 
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                 Figure 8. Effects ofγon velocity, temperature and concentration profiles. 

 

 
 

Figure 9. Effects of Q on velocity, temperature and concentration profiles. 

 

The permeability effect of the stretching sheet has been examined and 

illustrated in Figure 10. It can be seen from Figure 10 that both the temperature 

and nanoparticles volume fraction profiles are decreasing while the velocity 

profile is increasing with the increase in the permeability parameter. The 

impacts of some pertinent parameters on local skin friction coefficient (𝐶𝑓), 

Nusselt number ( 𝑁𝑢𝑥 ) and Sherwood number ( 𝑆ℎ𝑥 ) were examined and 

expressed in terms of the coefficients 𝑓′′(0), −𝜃′(0)and −𝜑′(0), respectively. 
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The variations of skin friction coefficient for different values of some 

parameters are plotted in Figures (11-12). 

 

 
Figure 10. Effects of S on velocity, temperature and concentration profiles. 

 

 

 
Figure 11. Variation of skin friction coefficient for different values of the unsteadiness 

parameter A along with the heat source parameter Q.  

 

The results in Figure 11-12 indicate that the coefficient of skin friction is 

observed to decline as the values of the unsteadiness parameter 𝐴increase along 

with the increase in the heat source parameter 𝑄  or the chemical reaction 

parameter 𝛾. 

 

Both heat source/sink and chemical reaction parameters have no effect on skin 

friction coefficient. Further results on the variations of skin friction coefficient, 
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Nusselt number and Sherwood number with respect to some pertinent 

parameters is presented in Table 3. 

 
Figure 12. Variation of skin friction coefficient for different values of the unsteadiness 

parameter A along with the chemical reaction parameter γ. 
 

Table 3. Coefficients of Skin-friction, Nusselt number and Sherwood number. 
 

A 𝜆 M 𝑅𝑑 S 𝑆𝑐 Q 𝛾 −𝑓 ′′(0) −𝜃′(0) −𝜑'(0) 

0.1        1.58556  0.569631 1.43037 

0.2        1.60972  0.637310 1.36269 

0.3 0.1       1.63367  0.698930 1.30107 

 0.2       1.62921  0.564361 1.43564 

 0.3 1.0      1.71973  0.690822 1.30918 

  2.0      2.01674  0.669738 1.33026 

  3.0 0.1     2.27216  0.654251 1.34575 

   0.2     2.27216  0.617937 1.38206 

   0.3 0.2    2.27216  0.587700 1.41230 

    0.3    2.27216  0.587700 1.41230 

    0.4 1.0   2.38107  0.601453 1.39855 

     2.0   2.50563  0.620985 1.37901 

     3.0 0.1  2.50563  0.624377 1.37562 

      0.2  2.50563  0.591982 1.40802 

      0.3 0.1 1.81708  0.597492 1.40251 

       0.2 1.81708  0.597492 1.40251 

       0.3 1.81708  0.597492 1.40251 

 

One can see from the table that the values of skin friction can be increased by 

increasing the unsteadiness parameter A or the magnetic parameter M. The local 

Nusselt number can be maximized by increasing the unsteadiness parameter A 

or Schmidt number Sc. It can also be enhanced by reducing the magnetic 

parameter M or the radiation parameter Rd. Also, the local Sherwood number 
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can be increased by increasing the magnetic parameter M or the radiation 

parameter Rd. It can also be increased by reducing the unsteadiness parameter 

A or Schmidt number Sc. 

 

 

CONCLUSION 
 

In this study, efforts were made to improve existing models by considering 

additional parameters such as the effects of heat source and chemical reaction 

in the flow models. On the other hand, a powerful method, namely the 

homotopy analysis method was used and the results agreed with previous 

reports. In conclusion, the impacts of pertinent parameters on velocity, 

temperature and nanoparticles volume fraction profiles are summarized as 

follows: 

 

•The flow velocity can be accelerated by reducing the values of the 

unsteadiness, Maxwell viscoelastic, magnetic or permeability parameters; 

•The temperature profile can be maximized in the boundary region by 

increasing the values of Maxwell, magnetic, permeability or heat source 

parameters. This profile can also be enhanced by reducing the effects of 

unsteadiness or radiation parameters; 

•The concentration of nanoparticles can be raised by increasing the Maxwell, 

magnetic, permeability or chemical reaction parameters. The concentration 

profile can also be raised by minimizing the unsteadiness, radiation or heat 

source parameters. Moreover, the results obtained in the present study were also 

found to be in a nice agreement with previous works under some restricted 

assumptions. 
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