Abhiruchi, R and Anurag, D. (2018). Energy effieceint clustering in wireless sensor network using ANFIS. International Journal of Engineering and Techniques 4(3):17
Akkaya, K and Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad hoc Networks 3(3): 325-349.
Al Sibahee, M.A., Lu, S., Masoud, M.Z., Hussien, Z.A., Hussain, M.A and Abduljabbar, Z.A. (2016). LEACH-T: LEACH clustering protocol based on three layers. In 2016 International Conference on Network and Information Systems for Computers (ICNISC) (pp. 36-40).
Arunraja, M., Malathi, V and Sakthivel, E. (2015). Distributed energy efficient clustering algorithm for wireless sensor networks. Informacije MIDEM 45(3): 180-187.
Bagci, H and Yazici, A. (2013). An energy aware fuzzy approach to unequal clustering in wireless sensor networks. Applied Soft Computing 13(4):1741-1749.
Brittain, J., Cendon, M., Nizzi, J and Pleis, J. (2018). Data scientist’s analysis toolbox: Comparison of Python, R, and SAS Performance. SMU Data Science Review 1(2): 7.
Heinzelman, W.B., Chandrakasan, A.P and Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications 1(4): 660-670.
Helkey, J., Holder, L and Shirazi, B. (2016). Comparison of simulators for assessing the ability to sustain wireless sensor networks using dynamic network reconfiguration. Sustainable Computing: Informatics and Systems 9: 1-7.
Hussain, S., Matin, A.W and Islam, O. (2007). Genetic algorithm for energy efficient clusters in wireless sensor networks. In: Fourth International Conference on Information Technology (ITNG'07) (pp. 147-154). IEEE.
Julie, E.G and Selvi, S. (2016). Development of energy efficient clustering protocol in wireless sensor network using neuro-fuzzy approach. The Scientific World Journal 20(16): 1-8.
Nayak, P and Devulapalli, A. (2015). A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime. IEEE Sensors Journal 16(1): 137-144.
Nayyar, A and Singh, R. (2015). A comprehensive review of simulation tools for wireless sensor networks (WSNs). Journal of Wireless Networking and Communications 5(1): 19-47.
Omari, M., Abdelkarim, H and Salem, B. (2015). Optimization of energy consumption based on genetic algorithms optimization and fuzzy classification. In 2015 2nd World Symposium on Web Applications and Networking (WSWAN) (pp. 1-4). IEEE.
Rault, T., Bouabdallah, A and Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks 67: 104-122.
Robinson, Y. H., Julie, E. G., Balaji, S and Ayyasamy, A. (2017). Energy aware clustering scheme in wireless sensor network using neuro-fuzzy approach. Wireless Personal Communications 95(2): 703-721.
Singh, S., Panchal, M and Jain, R. (2016). Fuzzy logic based energy efficient network lifetime optimization in wireless sensor network. In 2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE) (pp. 493-498). IEEE.
Selvara, V. (2017). Adaptive neuro fuzzy inference systems based clustering approach for WSN. International Journal Of Engineering And Computer Science 6(11): 23064-23071.
Sujithra, T and Venkatesan, R. (2016). Genetic algorithm based energy efficient data gathering in wireless sensor networks. International Journal of Applied Information Systems 11(2): 1-7.
Veena, K and Kumar, B.V. (2010). Dynamic clustering for wireless sensor networks: a neuro-fuzzy technique approach. In 2010 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1-6).
Zahmatkesh, A and Yaghmaee, M.H. (2012). A genetic algorithm-based approach for energy-efficient clustering of wireless sensor networks. International Journal of Information and Electronics Engineering 2(2): 165.