Main Article Content

Establishing and Comparing the Normal apparent Diffusion Coefficient Values of Fetal Organs and Placenta Using 1.5 Tesla and 3.0 T MRI at Various Gestational Age


Chandrasekhar Priyanka
Rajeswaran Rangasami
Chitra Andrew
N. Paarthipan

Abstract

BACKGROUND: Diffusion-weighted imaging (DWI) is the random Brownian motion of water molecules within a tissue voxel. The apparent diffusion coefficient (ADC) is a quantitative parameter calculated from the DWI that directly reflects the mobility of water molecules in biological tissues. The objective of this study was to establish and compare the normal reference ADC values of fetal organs and the placenta using 1.5 T and 3.0 T MRI at various gestational ages.


METHODS: This was a retrospective and prospective observational study. This study included one hundred and three (103) singleton pregnancies for each magnetic field strength. Diffusion-weighted imaging was performed using single-shot spin-echo-planar imaging (EPI) in the axial plane of the fetal head-trunk with a slice thickness of 4mm and diffusion gradient values of b = 0 and b = 700–800 s/mm².


RESULTS: The mean ADC values of cerebral WM areas were significantly higher than the deep grey areas in the brain. The white-matter regions, lung, and placenta showed a positive and significant correlation with increasing gestational age in both field strengths. A statistically weak negative correlation was observed between increasing gestational age and ADC measurements obtained in the thalamus, cerebellum, pons, and kidney.


CONCLUSION: This study gives the reference values for both 1.5T and 3T MRI of vital organs. The current study shows that diffusion-weighted MRI can offer a promising technique to evaluate the structural development of fetal organs and can potentially act as a biomarker for predicting the functionality of the fetal organs in abnormalities.


Journal Identifiers


eISSN: 2413-7170
print ISSN: 1029-1857