Predictors of Poor Clinical Improvement After Transcatheter Aortic Valve Implantation: To TAV or not to TAV

Mahmoud Baraka*, Diaa Kamal, Mohamed Yehia, Ahmad E. Mostafa

Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt

*Corresponding author: Mahmoud Baraka, Mobile: (+20) 01223687658,

Email: mahmoudbaraka@hotmail.com, ORCID: 0000-0002-6894-5268

ABSTRACT

Background: Transcatheter aortic valve implantation (TAVI) has become an appealing option in managing patients with severe aortic stenosis (AS) after demonstrating better survival rates, reduction in symptom burden, and improvement in the quality of life (QOL). However, some patients fail to demonstrate benefits after TAVI, whether in terms of survival or QOL.

Objective: This study opted to investigate the predictors of poor clinical outcomes following TAVI from a real-world national registry

Patients and Methods: This prospective observational study was derived from an Egyptian single-center registry through the duration from November 2022 to May 2023. It included 122 patients who were treated with TAVI. The participants' QOL was evaluated using the EuroQol 5-Dimension 5-Level (EQ-5D-5L) questionnaire at baseline and 6 months follow-up after TAVI. Participants were subdivided into two groups: Group A (good improvement) reported survival and >20% improvement from baseline and group B (poor improvement) reported mortality or $\leq 20\%$ improvement.

Results: The mean age of our patients was 73.67 ± 7.04 years, 47.5% were males. A total of 106 patients (86.9%) showed good outcomes in the form of survival and QOL improvement >20%. Three patients (2.5%) experienced periprocedural mortality and 13 patients (10.6%) did not show an improvement in QOL of >20%. The independent predictors correlated to poor outcomes were: DM (*P*=0.028), creatinine clearance ≤ 46 ml/min (*P*=0.002), and pre-existing intraventricular conduction delay (IVCD) (*P*=0.017) and post-procedural CrCl ≤ 49 ml/min (*P*=0.011).

Conclusions: Our study concluded that certain preoperative risk factors and postoperative complications can predict patients' outcomes after TAVI. The independent predictors of poor outcomes were pre-procedural factors (pre-existing DM, chronic kidney disease (CKD) with $CrCl \le 46$ ml/min, and pre-existing IVCD) and a post-procedural factor which was $CrCl \le 49$ ml/min.

Keywords: Aortic stenosis, TAVI, VARC-3, QOL, Predictors of outcome.

INTRODUCTION

TAVI provides an acceptable alternative to surgery for many high-risk individuals ⁽¹⁾. It has proven noninferiority to surgical aortic valve replacement (SAVR) in patients with intermediate risk. And, in low-risk trials such as the PARTNER 3, Nordic NOTION 2, and the Medtronic TAVR low-risk trial. TAVI was able to show either non-inferiority or superiority when compared to SAVR in terms of efficacy and safety ⁽²⁻⁴⁾.

Compared to medical therapy, TAVI significantly improved QOL, symptom burden reduction, and better rates of survival. However, it is now obvious that TAVI does not benefit all patients in terms of enhanced functional capacity, QOL, or mortality ⁽⁵⁻⁶⁾.

It's unlikely that extended survival on its own without better QOL- would be considered a desirable result. Thus, both survival and QOL must be taken into account when defining a good -or bad- outcome for TAVI. Therefore, the most logical definition of poor outcome after TAVI should include the combination of death and poor improvement or worsened QOL⁽⁷⁾.

Patient-reported outcome assessments (PROs) e.g., EQ-5D-5L and KCC questionnaires offer prognostic significance in addition to chances for better patientcentered treatment ⁽⁸⁾. Clinically, significant changes in health status over time were more likely to be identified by evaluation utilizing PROs, and these changes demonstrated greater prognostic significance than changes in symptom burden and NYHA class ⁽⁹⁾.

Although the prediction of poor outcomes after TAVI is still imprecise, a better basis for informed consent can be provided for patients by identifying predictors of bad outcomes, and the increasing trend of treating low-risk patients has highlighted the significance of lowering the risk of complications that may have an impact on long-term prognosis. Registries are great resources that offer valuable information into outcomes and can be used to assess how cost-effectively different interventions work ⁽¹⁰⁾.

This study opted to investigate the predictors of poor clinical outcomes following TAVI from a realworld national registry.

PATIENTS AND METHODS

This was a prospective observational study derived from an Egyptian single-center registry. It was from November 2022 to May 2023. The study included 122 patients who suffered from severe aortic stenosis and were treated with TAVI after a decision from our conjoint heart team including cardiologists, cardiothoracic surgeons and anaesthesiologists following the latest ESC guidelines for the management of valvular heart diseases ⁽¹¹⁾. All patients underwent close follow-ups at 1,3, and 6 months. Failure to gain informed consent and failure of follow-up were excluded.

All patients involved in the study were subjected to the following (at baseline and 6 months follow-up):

A. Preprocedural and procedural data: Thorough history taking including symptomatology with emphasis on NYHA score, local examination, ECG, echocardiography, Pre-TAVI CT aortography, and procedural data collection.

B. Patient-reported outcomes (PROs) ⁽¹²⁾:

- EQ-5D-5L questionnaire: (Euro quality of life 5 dimensions 5 levels)

The EuroQol Group created the EQ-5D-5L, a standardized health status measure, to offer an easy, general-purpose indicator of health for clinical and financial evaluation. The following five categories make up the descriptive system: mobility, self-care, ordinary activities, pain or discomfort, and anxiety or depression. There are five levels for each dimension: none, minor, moderate, severe, and extreme difficulties.

The participant was requested to check (or place a cross) the box next to the statement that best fit each of the five dimensions to represent his or her current state of health.

-The EQ VAS score: (Euro- quality of life visual analogue scale)

A visual analogue scale that is 20 cm vertical and has endpoints labeled "the best health you can imagine" and "the worst health you can imagine," measuring the participant's total self-rated health state. The respondents' subjective assessments of their own health are quantified using this data.

Participants were subdivided into two groups: Group A (good improvement) reported survival and > 20% improvement from baseline and group B (poor improvement) reported mortality or \leq 20% improvement from baseline at follow-up based on the EQ-5D-5L questionnaire and overall EQ-VAS score.

C. Procedural outcomes:

The procedural outcomes were studied according to the Valve Academic Research Consortium-3 (VARC-3) definitions of complications following TAVI including conduction disturbances or the need for permanent pacemaker implantation, bleeding, vascular complications, acute kidney injury (AKI), stroke, and mortality ⁽¹³⁾. **Ethical approval:** The study protocol was approved by The Local Ethical Committee, Ain Shams University. After gathering all of the information, the participants gave their signed permissions. All the patients were coded by numbers to preserve their confidentiality. The study adhered to the Helsinki Declaration throughout its execution.

Statistical analysis:

The data were entered, coded, and modified using IBM SPSS, version 23.0. When it was discovered that the quantitative data were not parametric, they were given as the median, IQR, mean \pm SD, and ranges. Numbers and percentages were also used to illustrate qualitative aspects. The qualitative data was compared between groups using the X^2 -test and/or Fisher exact test when the expected count in any cell was found to be less than 5. When comparing two independent groups with quantitative data and a parametric distribution, the independent t-test was employed. For non-parametric distributions, the Mann-Whitney test was utilized. The quantitative data from two paired groups with a nonparametric distribution were compared using the Wilcoxon Rank test, while the parametric data from two groups were compared using the Paired t-test. The factors linked to inadequate progress were assessed using univariate and multivariate logistic regression analysis in the study. To evaluate the variability between two qualitative variables, use kappa agreement. Using the Log Rank Test, Kaplan Meier analysis was utilized to assess the relationship between overall survival and the other factors under investigation. The confidence interval was 95%, and the accepted error margin was 5%. Thus, the following p-value was deemed significant: P-values greater than 0.05 indicate non-significates (NS), 0.05 indicates significance (S), and 0.01 indicates high significance (HS).

RESULTS

The present study included 122 patients, with a mean age of 73.67 ± 7.04 years, 47.5% were males. The comparison between group A (Good outcome) and group B (Poor outcome) as regards demographic and clinical parameters revealed that BSA was significantly lower in group B (P=0.047), Euro Score II was significantly higher in group B (P=0.008), DM was higher in group B (P=0.012), and creatinine clearance (CrCl) was significantly lower in group B (P=0.016). As regards NYHA classification, group A showed a significantly larger percentage in NYHA class III and IV (P=0.016) (Table 1).

Tuble (1): Dusenne denne	grupine dutu, ennieu	The last strations							
Paramet	ters	Total number = 122 patients							
Age (years)		Mean ± S	D (Range)	73.67 ± 7.04 (55 – 90)					
Sex		Female	e /Male	64 (52.5%)) /58 (47.5	5%)			
BMI (kg/m^2)		Mean ± S	D(Range)	30.32	2 ± 6.35				
				(18.31 – 50.52)					
$BSA(m^2)$		Mean ± S	$1.89 \pm 0.21(1.35 - 2.47)$						
Comp	arison between den	nographic parameter	graphic parameters among the two study groups						
Parameters		Good outcome(A)	Poor outcome(B)	Test value	P_value	Sig			
Parameters		No. = 106	No. = 16	lest value	I -value	Big.			
Sov	Female	55 (51.9%)	9 (56.2%)	0.106*	0.745	NS			
Sta	Male	51 (48.1%)	7 (43.8%)	0.100	0.745	TID			
Age	Mean ± SD	73.25 ± 6.90	76.50 ± 7.49	-1.738•	0.085	NS			
Body mass index	Mean ± SD	30.61 ± 5.90	28.39 ± 8.81	1.309•	0.193	NS			
Body surface area	Mean ± SD	1.90 ± 0.20	1.79 ± 0.22	2.009•	0.047	S			
Euro Score II	Median (IQR)	3.26 (1.85 – 5.6)	3.26 (1.85 – 5.6) 7.31 (2.59 – 13.19)		0.023	S			
< 4%		65 (61.3%)	7 (43.8%)			T I			
Euro Score II	(4% - 8%)	31 (29.2%)	3 (18.8%)	9.626*	0.008	HS			
	>8%	>8% 10 (9.4%) 6 (37.5%)							
STS PROM	Median (IQR)	2.51 (1.72 - 4.3)	3.76 (2.11 – 7.67)	<u>-1.8</u> 32≠	0.067	NS			
Previous CABG		10 (9.4%)	2 (12.5%)	0.147*	0.701	NS			
Valve in Valve		1 (0.9%)	0 (0.0%)	0.152*	0.696	NS			
Current smoker		8 (7.5%)	1 (6.2%)	0.721*	0.607	NC			
Smoking	Ex-smoker	Ex-smoker 7 (6.6%) 2 (12.5%)		0.721**	0.097	IND			
Diabetes m	ellitus	38 (35.8%)	11 (68.8%)	6.262*	0.012	S			
Hyperten	sion	81 (76.4%)	13 (81.2%)	13 (81.2%) 0.184*		NS			
Ischemic hear	rt disease	44 (41.5%)	9 (56.2%)	9 (56.2%) 1.229*		NS			
Cerebrovascul	lar stroke	6 (5.7%)	3 (18.8%)	3.486*	0.062	NS			
Chronic liver	· disease	11 (10.4%)	2 (12.5%)	0.066*	0.798	NS			
Rheumatic hea	rt disease	5 (4.7%)	0 (0.0%)	0.787*	0.375	NS			
Bicuspid aor	tic valve	5 (4.7%)	0 (0.0%) 0.787		0.375	NS			
	I	0 (0.0%)	1 (6.2%)						
NVUA basalina	II	0 (0.0%)	0 (0.0%)	6 680*	0.025	S			
IN I HA Daseille	III	78 (73.6%)	11 (68.8%)	0.000	0.055	3			
	IV	28 (26.4%)	4 (25.0%)						
Hemoglobin baseline	Mean ± SD	11.46 ± 1.08	10.84 ± 0.84	-0.955•	0.342	NS			
Creatinine clearance	Median (IQR)	62.5 (48 - 80)	41.5 (35 - 62)	<u>-2.4</u> 08≠	0.016	S			
*: Chi-square test; •: Inde	pendent t-test; ≠: Ma	ann-Whitney test							
BMI: body mass index BSA: body surface area STS score: Society of Thoracic Surgeons									

	Table ((1): Baseline	demographic data	clinical paramet	ers, and laboratory	v investigations
--	---------	---------------	------------------	------------------	---------------------	------------------

According to the EQ-5D-5L questionnaire and overall EQ-VAS score, we divided our patients into two groups: Group A (Good outcome group) with an improvement of > 20% and no mortality, and group B (Poor outcome group) mortality or improvement < 20%. Group A consisted of 106 patients (86.9%), and Group B consisted of 16 patients (13.1%) as shown in table (2).

		Baseline	Follow-up			C
		No. (%)	No. (%)	Test value	P-value	Significance
	No problem	0 (0.0%)	84 (68.9%)			
Mobility/ Independence	Slight	0 (0.0%)	33 (27.0%)			
	Moderate	13 (10.7%)	2 (1.6%)	225.564*	< 0.001	HS
	Severe	75 (61.5%)	1 (0.8%)			
	Extreme	34 (27.9%)	2 (1.6%)			
	No problem	0 (0.0%)	91 (74.6%)		<0.001	
	Slight	1 (0.8%)	27 (22.1%)			
Ordinary activities	Moderate	32 (26.2%)	1 (0.8%)	225.018*		HS
	Severe	68 (55.7%)	1 (0.8%)			
	Extreme	21 (17.2%)	2 (1.6%)			
Self-care	No problem	0 (0.0%)	103 (84.4%)		<0.001	
	Slight	9 (7.4%)	16 (13.1%)			
	Moderate	63 (51.6%)	0 (0.0%)	212.243*		HS
	Severe	47 (38.5%)	1 (0.8%)			
	Extreme	3 (2.5%)	2 (1.6%)			
	No problem	0 (0.0%)	96 (78.7%)	_	<0.001	
	Slight	13 (10.7%)	23 (18.9%)			
Pain or Discomfort	Moderate	68 (55.7%)	0 (0.0%)	202.878*		HS
	Severe	39 (32.0%)	1 (0.8%)			
Pain or Discomfort	Extreme	2 (1.6%)	2 (1.6%)			
	No problem	2 (1.6%)	91 (74.6%)	-		
	Slight	34 (27.9%)	28 (23.0%)			
Anxiety or Depression	Moderate	64 (52.5%)	0 (0.0%)	167.253*	< 0.001	HS
	Severe	17 (13.9%)	0 (0.0%)			
	Extreme	5 (4.1%)	3 (2.5%)			
EQ-VAS Score	Mean ± SD	62.48 ± 4.99	84.92 ± 7.33	-29.663•	< 0.001	HS
Outcome	Good improvement	nt (Group A)	Poo	r improvem	ent (Grou	ip B)
	106 (86.9%)			16 (13	.1%)	
*: Chi-square test. •: Paired	l t-test	51 1 50 14	a (1)	6116		1 \
EU-5D -5L(euro-quality of	Inte – 5 dimensions-	5 levels), EO-VA	S (euro-quality	of life visua	i analogue	e scale)

Table (2): EO-5D-5L c	uestionnaire and EO-VAS score at baseline and 6 months follow up

As regards baseline ECG and echocardiographic data, group B had a significantly higher percentage of patients with IVCD (P=0.006). Group B had a significantly higher percentage of patients with reduced EF (P= 0.002). Moreover, group B showed a significantly thinner SWT (P < 0.001), larger left ventricular end-systolic diameter (P=0.007), and lower PPG (P< 0.001). There were no statistically significant differences between the two groups as regards CT parameters as shown in table (3).

Parameters		Good outcome(A)	Poor outcome(B)	Test volue	D voluo	Sig			
		No. = 106	No. = 16	Test value	P-value	51g.			
		Baseline ECG par	Baseline ECG parameters						
A trial Fibrillation	Permanent	11 (10.4%)	0 (0.0%)	3 507*	0 166	NS			
Atrial Fibriliation	Paroxysmal	8 (7.5%)	3 (18.8%)	5.597	0.100	IND			
	LBBB	10 (9.4%)	1 (6.2%)	0.172*	0.678	NS			
BBB	RBBB	8 (7.5%)	2 (12.5%)	0.453*	0.501	NS			
	IVCD	3 (2.8%)	3 (18.8%)	7.534*	0.006	HS			
PR	Mean ± SD	177.79 ± 38.57	173.75 ± 39.81	1.697•	0.092	NS			
QRS	Mean \pm SD	102.36 ± 26.42	109.38 ± 29.32	0.386•	0.700	NS			
Fightion fraction	Reduced function	17 (16.0%)	8 (50.0%)	0.842*	0.002	ЦС			
Ejection fraction	Normal function	89 (84.0%)	8 (50.0%)	9.042	0.002	115			
CWT	Mean \pm SD	12.78 ± 1.92	11.78 ± 1.71	1 200.	< 0.001	UC			
5 W 1	Range	8-20.1	8-15	4.200•	< 0.001	пз			
LVEDD	Mean \pm SD	50.12 ± 7.04	53.38 ± 6.60	-0.122•	0.903	NS			
LVESD	Mean \pm SD	32.87 ± 7.89	39.69 ± 8.11	-2.744•	0.007	HS			
PPG	Mean \pm SD	81.66 ± 21.25	75.94 ± 23.24	-3.721•	< 0.001	HS			
MPG	Mean \pm SD	50.50 ± 13.78	47.56 ± 15.56	0.991•	0.323	NS			
AVA	Mean \pm SD	0.70 ± 0.20	0.70 ± 0.20	0.782•	0.436	NS			
RVSP	Mean \pm SD	42.90 ± 11.65	45.31 ± 15.01	-0.750•	0.455	NS			
		Baseline CT para	imeters						
Annulus Diameter	Mean \pm SD	23.88 ± 2.18	23.03 ± 1.66	-0.743•	0.459	NS			
Annulus Perimeter	Mean \pm SD	76.99 ± 6.77	74.52 ± 5.58	-0.756•	0.451	NS			
MS Length	Mean \pm SD	8.41 ± 1.88	9.26 ± 2.62	0.026•	0.979	NS			
	0	1 (0.9%)	0 (0.0%)						
~	Ι	21 (19.8%)	3 (18.8%)						
Grade of Calcification	II	38 (35.8%)	8 (50.0%)	3.025*	0.554	NS			
Curenteution	III	33 (31.1%)	2 (12.5%)						
	IV	13 (12.3%)	3 (18.8%)						
BSC	Yes	12 (11.3%)	2 (12.5%)	0.019*	0.890	NS			

Table (3): Baseline ECG, TEE, and CT data of the studied patients comparing good Vs. poor outcomes

*: Chi-square test; •: Independent t-test; \neq : Mann-Whitney test

IVCD: Intraventricular conduction delay, LBBB: Left bundle branch block, RBBB: Right bundle branch block, SWT: septal wall thickness, LVEDD: left ventricular end-diastolic diameter, LVESD: left ventricular end-systolic diameter, AV: aortic valve, PPG: peak pressure gradient, MPG: mean pressure gradient, RVSP: right ventricular systolic pressure, MS: membranous septum, BSC: basal septal calcification

There were no statistically significant differences between the two groups as regards procedural parameters except for the percentage of depth of implantation to the membranous septum (DIMS), which was significantly higher in group B (P=0.027) as shown in tables (4).

Procedural data		Good outcome(A)	Poor outcome(B)	Testuslas		Sig
		No. = 106	No. = 16	lest value	P-value	51g.
	Evolut R (96 valves, 78.6%)	88 (83%)	8 (50%%)			
THV type	Acurate neo 2 (12 valves, 9.8%)	8 (7.5%)	4 (25%)	2.393*	0.495	NS
	Sapien 3 (14 valves, 11.4%)	10 (9.4%)	4 (25%))			
THV	Mean ± SD	29.59 ± 2.67	29.50 ± 2.61	0.122	0.895	NC
I H V SIZE	Range	23 - 34	26 - 34	0.132•		
DI (mm)	Mean ± SD	3.78 ± 1.94	4.79 ± 3.50	1.144•	0.255	NS
DIi (mm/m ²)	Mean ± SD	1.98 ± 1.03	2.67 ± 1.76	-1.716•	0.089	NS
Pre-Dilatation	Yes	21 (19.8%)	4 (25.0%)	0.230*	0.632	NS
Post-Dilatation	Yes	19 (17.9%)	2 (12.5%)	0.287*	0.592	NS
DIMS	Mean ± SD	46.64 ± 23.97	59.20 ± 45.33	-2.244•	0.027	S
	Percutaneous	102 (96.2%)	13 (81.2%)			
Approach	Surgical	2 (1.9%)	2 (12.5%)	1.116*	0.572	NS
	Percutaneous then Surgical	2 (1.89%)	1 (6.2%)			
* Chi gavara tast	a: Independent t test: -: Monn V	Whitney test	()	1		I

": Chi-square test; •: Independent t-test; \neq : Mann-Whitney test

THV: Transcatheter heart valve, DI: depth of implantation, DIMS: Percentage of depth of implantation to membranous septum length

Follow-up of laboratory, ECG, and echocardiography, data of the studied patients revealed statistically significant differences between the two groups regarding haemoglobin and creatinine clearance levels in which both were lower in group B (P=0.03, and P= 0.024, respectively). Permanent CHB was higher in group B (P< 0.001), and mean pressure gradient (MPG) was also higher in group B (P=0.009). As regards Post-TAVI clinical outcomes, there were statistically significant differences between the two groups regarding total mortality, stroke, hospitalization, and permanent pacemaker implantation (PPM) with P value < 0.001. Moreover, the NYHA classification was worse in group B (P=0.005). Other clinical outcome parameters can be seen in table (5).

https://ejhm.journals.ekb.eg/

Table (5): Follow-up	laboratory, ECG,	and echocardiography	data of the	e studied patien	ts comparing go	ood Vs. poor
outcomes						

		Good outcome(A)	Poor outcome(B)	Test	D voluo	Sig.
		No. = 106	No. = 16	value	P-value	
	Laboratory]	parameters at follow	/-up			
Homoglahin (gm/dl)	Mean ± SD	11.52 ± 1.19	10.84 ± 0.92	2 162	0.022	c
riemogionin (gin/ui)	Range	8.8 - 14.4	9.2 - 12.2	2.105•	0.033	3
Creatining algorithms (mil/min)	Median (IQR)	67 (55 – 84)	51.5 (37 - 71)	2 2524	0.024	c
Creatinine clearance (mi/min)	Range	15 - 120	15 – 103	-2.2337	0.024	3
	Cond. Disturbances	37 (34.9%)	9 (56.3%)	2.696*	0.101	NS
ECG at follow up	New LBBB	19 (17.9%)	2 (12.5%)	0.287*	0.592	NS
ionow up	Permanent CHB	4 (3.8%)	5 (31.3%)	15.360*	< 0.001	HS
	Echocardiograp	hic parameters at fo	llow-up			
TIT	Mean ± SD	64.25 ± 10.35	52.44 ± 15.29	0.082.	0.024	NC
EF	Range	32 - 84	32 - 70	0.085•	0.934	IN S
MPG	Mean ± SD	6.08 ± 1.54	6.48 ± 1.82	-2.638•	0.009	HS
PVL	No	94 (88.7%)	11 (68.8%)		0.067	NS
	Mild	11 (10.4%)	5 (31.2%)	5 411*		
	Moderate	1 (0.9%)	0 (0.0%)	3.411*		
	Severe	0 (0.0%)	0 (0.0%)			
Post-TAVI outco	mes according to VA	ARC-3 and follow-up	o of the NYHA class	ification		
Total Martality	Cardiac	0 (0.0%)	3 (18.8%)	20 102*	<0.001	ЦÇ
	Non-cardiac	1 (0.9%) 0 (0.0%)		20.462	<0.001	нз
Total stroke	Yes	0 (0.0%)	2 (12.5%)	13.471*	< 0.001	HS
Hospitalization (days)	Cardiac	6 (5.7%)	9 (56.2%)	34 210*	<0.001	нс
Hospitalization (days)	Non-cardiac	10 (9.4%)	2 (12.5%)	54.210	<0.001	115
PPM implantation	Yes	4 (3.8%)	5 (31.2%)	15.360*	< 0.001	HS
AKI	Yes	1 (0.9%)	0 (0.0%)	0.152*	0.696	NS
Rleeding	Minor	6 (5.7%)	2 (12.5%)	1 195*	0 550	NS
	Major	1 (0.9%)	0 (0.0%)	1.170	0.000	
Vascular complications	Pseudoaneurysm	1 (0.9%)	0 (0.0%)	0 307*	0.858	NS
, ascalar complications	Infection	1 (0.9%)	0 (0.0%)	0.507	0.050	1.0
	Ι	100 (94.3%)	12 (75.0%)			
NYHA	II	6 (5.7%)	3 (18.8%)	10.420*	0.005	HS
	111	0 (0.0%)	0 (0.0%)			
*. Chi aquara tasti Indan	IV	0 (0.0%)	1 (6.2%)			

•: Independent t-test; \neq : Mann-Whitney test

EF: Ejection fraction, MPG: mean pressure gradient, PVL: paravalvular leak, PPM: Permanent pacemaker, AKI: Acute kidney injury

ROC curves were done to obtain cut-off values of some of the significant predictors as shown in figures (1 and 2) and table (6). Univariate analysis revealed multiple predictors of poor improvement, these predictors are Euro Score II > 7.96, history of DM, baseline creatinine clearance \leq 46 ml/min, pre-existing IVCD, LVESD > 32 mm, and indexed LVESD > 17.61. On the other hand, pre-existing normal LV systolic functions in TTE showed a protective effect with an Odds ratio (OR) of 0.191. Post-procedural and follow-up parameters that showed significance were hemoglobin <11.9 gm/dl, creatinine clearance \leq 49 ml/min, permanent CHB, cardiac hospitalization, and NYHA > II. When applying multivariate logistic regression analysis, there were 4 independent predictors of poor outcome; 3 pre-existing factors: DM, CKD (CrCl \leq 46 ml/min), and baseline IVCD in ECG, and 1 factor at follow-up: $CrCl \le 49$ ml/min as shown in table (7).

https://ejhm.journals.ekb.eg/

	Cut off point	AUC	Sensitivity	Specificity	PPV	NPV
Euro Score II	>7.96	0.677	50.00	88.68	40.0	92.2
Creatinine clearance (baseline)	≤46	0.687	68.75	79.25	33.3	94.4
LVESD (mm) (baseline)	>32	0.746	87.50	58.49	24.1	96.9
LVESDi (mm/m ²) (baseline)	>17.61	0.779	81.25	63.21	25.0	95.7
Hemoglobin (gm/dl) (follow-up)	≤11.9	0.677	87.50	46.23	19.7	96.1
Creatinine clearance (follow-up)	≤49	0.675	50.00	83.96	32.0	91.8
MPG (mmHg) (follow-up)	≥ 5	0.550	87.50	27.36	15.4	93.5

Table (6): Best cut-off point, AUC, sensitivity, and specificity for predictors of poor improvement at baseline and follow up

AUC: area under curve, ROC: receiver operating characteristic curve, PPV: positive predictive value, NPV: negative predictive value, LVESD: left ventricular end-systolic diameter, MPG: mean pressure gradients

Table (7): Univariate and Multivariate logistic regression analysis for factors associated with poor outcome

		Univariate				Multivariate			
			Odds ratio (OR)	95% C.I. for OR		P-value	Odds ratio	95% C.I. for OR	
				Lower	Upper			Lower	Upper
Body surface area <	≤1.9 m ²	0.087	2.833	0.858	9.356	_		_	
Euro Score II >7.96		< 0.001	7.833	2.482	24.727	0.680	0.980	0.888	1.080
Diabetes mellitus		0.017	3.937	1.273	12.177	0.028	5.028	1.190	21.236
Creatinine clearanc	e at baseline ≤46	< 0.001	8.400	2.642	26.706	0.002	14.248	2.725	74.498
NYHA at baseline		0.288	0.548	0.180	1.663	-	Ι	_	
IVCD at baseline		0.017	7.923	1.446	43.419	0.017	18.437	1.687	201.510
EF at baseline (Normal function)		0.003	0.191	0.063	0.579	0.795	0.776	0.114	5.276
	LVESD >32	0.003	9.864	2.133	45.604	0.083	8.430	0.757	93.891
ECHO at baseline	LVESDi >17.61	0.003	7.150	1.919	26.642	0.834	0.776	0.073	8.294
	PPG <=73	0.061	2.786	0.955	8.129	_	_	_	_
DIMS ≥ 70.42		0.102	2.550	0.829	7.841	—	_	—	—
		1	Follow-	up data					
Hemoglobin ≤ 11.9	mg/dl	0.022	6.018	1.303	27.790	_	_	-	_
CrCl at follow-up ≤ 49		0.003	5.235	1.727	15.867	0.011	6.324	1.538	26.004
Permanent CHB		0.001	11.591	2.707	49.636	-	-	—	_
MPG≥5 mmHg		0.218	2.636	0.564	12.321	-	_	-	_
Cardiac hospitaliza	tion	0.040	7.071	1.098	45.536	-	_	-	-
NYHA≥II		0.016	5.556	1.370	22.522	-	_	—	_
* Chi gavara tast:	· Indonandant t to	at. 4. Mar	n Whitney t	act					

*: Chi-square test; •: Independent t-test; \neq : Mann-Whitney test

CI: confidence interval, OR: odds ratio, IVCD: intraventricular conduction delay, DIMS: depth of implantation/membranous septum, CHB: complete heart block, MPG: mean pressure gradient

Figure (1): ROC curves for significant baseline predictors of poor improvement

Figure (2): ROC curves for significant follow-up predictors of poor improvement.

DISCUSSION

In our study, we opted to study predictors of poor clinical outcomes after TAVI based on VARC-3 definitions and the Euro-QOL questionnaire. It is well known that the ultimate goal of TAVI is not only to add years to patients' lives by reducing mortality but also to add life to their years by improving quality of life. That is why the most logical definition of a poor outcome following TAVI should include both mortality and QOL components.

Our study demonstrated that 106 patients (86.9%) had good outcomes in the form of survival and QOL improvement > 20%; 3 patients (2.5%) died and 13 patients (10.6%) did not have a significant improvement in QOL. The France TAVI registry ⁽¹⁴⁾, also studied outcomes based on the Euro-QOL questionnaire and showed that 18.9% of patients died and 14.5% showed a significant decline in QOL. The outcome sub-study from the PARTNER trial ⁽¹⁵⁾, revealed overall poor outcome (32.9%). This may be attributed to a large number of participants and higher risk scores in the France registry and the PARTNER trial. When compared to another national TAVI study, **Ghanem et al.** ⁽¹⁶⁾ showed 11.1% mortality, which is close to our results.

In our study we found multiple significant predictors of poor outcome after TAVI, these predictors

are Euro Score II >7.96 (P <0.001), History of DM (P= 0.017), chronic kidney disease (CKD) with CrCl < 46ml/min (P<0.001), IVCD at baseline (P = 0.017), LVESD > 32 mm (P= 0.003). When applying multivariate logistic regression analysis, DM (P= 0.028), Baseline CrCl \leq 46 ml/min) (P= 0.002), and pre-existing IVCD (P=0.017), were the most significant independent predictors of poor outcome. This goes in concordance with the France TAVI registry⁽¹⁴⁾, which concluded that DM (P=0.001), CKD (P<0.001), supraventricular arrhythmia (P <0.001), and anticoagulation therapy at discharge (P=0.01) as independent factors were associated with procedure futility. On the other hand, Auffret et al. (17) revealed that RV dysfunction, significant baseline pulmonary hypertension, and AF are the indicators of poor 6-month outcomes.

A multicentre Canadian study ⁽¹⁸⁾ showed that atrial fibrillation (AF) and CKD were correlated with reduced survival after TAVI. A multicentre Brazilian study ⁽¹⁹⁾ showed that chronic obstructive pulmonary disease (COPD), stroke, AKI, and moderate to severe paravalvular leakage (PVL) were correlated with overall mortality after TAVI. In another multicentre Spanish study ⁽²⁰⁾, predictors of mortality were renal failure, atrial fibrillation, peripheral vascular disease, and moderate to severe postoperative PVL. A single-center Canadian study ⁽²¹⁾ showed that male sex, CLD, and the 6-minute walk test distance were correlated with 1-year mortality after TAVI. Another single-center German study ⁽²²⁾ showed that older age, lower BMI, NYHA class IV, depressed LV ejection fraction, and higher calculated surgical risk scores were all correlated with 1-year mortality.

Different predictors of poor outcomes reported by different studies may be attributed to differences in the study populations (numbers, comorbidities and overall mortality risk score), team experience and immediate complications, follow-up periods, assessment tools, cutoff points, and standardized definitions of poor outcomes.

CONCLUSIONS

Our study concluded that certain preoperative risk factors and postoperative complications can predict patients' outcomes after TAVI. The independent predictors of poor outcomes were pre-procedural factors (pre-existing DM, CKD with CrCl \leq 46 ml/min, and pre-existing IVCD) and a post-procedural factor, which was CrCl \leq 49 ml/min. These findings should be validated on a larger scale and in multiple centers and may assist physicians in obtaining the best possible results with such a promising technique if these factors have been taken into consideration when evaluating patients for TAVI.

Finances: None.

Conflicts of interest: None.

REFERENCES

- 1. Vahanian A, Alfieri O, Andreotti F *et al.* (2012): Guidelines on the management of valvular heart disease (version 2012). Eur Heart J., 33 (19): 2451-96.
- 2. Thyregod H, Steinbrüchel D, Ihlemann N et al. (2015): Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial. Journal of the American College of Cardiology, 65 (20): 2184-2194.
- **3.** Mack M, Leon M, Thourani V *et al.* (2019): Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. New England Journal of Medicine, 380 (18): 1695-1705.
- **4. Popma J, Deeb G, Yakubov S** *et al.* (2019): Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. New England Journal of Medicine, 380 (18):1706-1715.
- 5. Leon M, Smith C, Mack M *et al.* (2010): Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med., 363 (17): 1597-607.
- 6. Reynolds M, Magnuson E, Lei Y *et al.* (2011): Healthrelated quality of life after transcatheter aortic valve replacement in inoperable patients with severe aortic stenosis. Circulation, 124 (18): 1964-72.
- 7. Arnold S, Spertus J, Lei Y *et al.* (2013): How to define a poor outcome after transcatheter aortic valve replacement: conceptual framework and empirical observations from the placement of aortic transcatheter valve (PARTNER) trial. Circ Cardiovasc Qual Outcomes, 6 (5): 591-7.
- 8. Pokharel Y, Khariton Y, Tang Y *et al.* (2017): Association of Serial Kansas City Cardiomyopathy

Questionnaire Assessments With Death and Hospitalization in Patients With Heart Failure With Preserved and Reduced Ejection Fraction: A Secondary Analysis of 2 Randomized Clinical Trials. JAMA Cardiol., 2 (12): 1315-1321.

- **9.** Greene S, Butler J, Spertus J *et al.* (2021): Comparison of New York Heart Association Class and Patient-Reported Outcomes for Heart Failure With Reduced Ejection Fraction. JAMA Cardiol., 6 (5): 522-531.
- **10.** Doble B, Blackhouse G, Goeree R *et al.* (2013): Costeffectiveness of the Edwards SAPIEN transcatheter heart valve compared with standard management and surgical aortic valve replacement in patients with severe symptomatic aortic stenosis: a Canadian perspective. J Thorac Cardiovasc Surg., 146 (1): 52-60.
- **11. Vahanian A, Beyersdorf F, Praz F** *et al.* (2022): 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J., 43 (7): 561-632.
- **12. EuroQol Group (1990):** EuroQol--a new facility for the measurement of health-related quality of life. Health Policy, 16 (3): 199-208.
- **13.** Généreux P, Piazza N, Alu M *et al.* (2021): Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research. Eur Heart J., 42 (19): 1825-1857.
- 14. Suc G, Boureau A, Gouysse M *et al.* (2023): Predictors of futility outcomes after TAVI: insights from the France TAVI Registry. European Heart Journal, 44 (2): 1702. doi:10.1093/eurheartj/ehad655.1702
- **15.** Arnold S, Reynolds M, Lei Y *et al.* (2014): Predictors of poor outcomes after transcatheter aortic valve replacement: results from the PARTNER (Placement of Aortic Transcatheter Valve) trial. Circulation, 129 (25): 2682-90.
- **16. Ghanem M, Frere A, Elzaky M** *et al.* **(2022):** Predictors of Outcomes of Transcatheter Aortic Valve Implantation in Patients with Severe Aortic Stenosis. Zagazig University Medical Journal, 28 (5): 991-998.
- **17.** Auffret V, Boulmier D, Oger E *et al.* (2014): Predictors of 6-month poor clinical outcomes after transcatheter aortic valve implantation. Archives of Cardiovascular Diseases, 107 (1): 10-20.
- **18.** Rodés-Cabau J, Webb J, Cheung A *et al.* (2012): Longterm outcomes after transcatheter aortic valve implantation: insights on prognostic factors and valve durability from the Canadian multicenter experience. J Am Coll Cardiol., 60 (19): 1864-75.
- **19. de Brito F, Carvalho L, Sarmento-Leite R** *et al.* (2015): Outcomes and predictors of mortality after transcatheter aortic valve implantation: results of the Brazilian registry. Catheter Cardiovasc Interv., 85 (5): 153-62.
- **20.** Sabaté M, Cánovas S, García E *et al.* (2013): In-hospital and mid-term predictors of mortality after transcatheter aortic valve implantation: data from the TAVI National Registry 2010-2011. Rev Esp Cardiol., 66 (12): 949-58.
- **21.** Mok M, Nombela-Franco L, Urena M *et al.* (2013): Prognostic value of exercise capacity as evaluated by the 6-minute walk test in patients undergoing transcatheter aortic valve implantation. J Am Coll Cardiol., 61 (8): 897-8.
- 22. Seiffert M, Schnabel R, Conradi L *et al.* (2013): Predictors and outcomes after transcatheter aortic valve implantation using different approaches according to the valve academic research consortium definitions. Catheter Cardiovasc Interv., 82 (4): 640-52.