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Abstract 
 

Some zero-free regions were known on the right half of the complex plane in the form of 

vertical strips for fractional hypergeometric zeta functions. In this paper, we describe and 

demonstrate zero-free regions on the left half of the complex plane for fractional 

hypergeometric zeta functions. The fractional hypergeometric zeta function of order “𝑎” has 

no zeros to the left half of the complex plane except the trivial zeros on the real axis.    
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INTRODUCTION 

The study of the location of zeros and zero-free regions of the families of zeta functions has 

been studied by so many scholars, (Albeverio & Cebulla, 2007; Fekih-Ahmed, 2011; 

Garunkstis & Steuding, 2007; Apostol, 1976; Hassen & Nguyen, 2011). The families of 

hypergeometric zeta functions and fractional hypergeometric zeta functions are known only 

in their integral representations as generalizations of the classical Riemann zeta function via 

integral representation (Geleta & Hassen, 2016; Hassen & Nguyen, 2010). It was also 

discovered that both the hypergeometric zeta functions 𝜁𝑁(𝑠) of order "𝑁", and the fractional 

hypergeometric zeta functions 𝜁𝑎(𝑠) of order "𝑎", can be continued meromorphically to the 

whole complex plane (Geleta & Hassen, 2016; Hassen & Nguyen, 2010). Following these 

authors, it was described and demonstrated that zero free region on the right half plane 

ℋ = {𝑠 = 𝜎 + 𝑖𝑡 ∈ ℂ: 𝜎 > 1}  in the form of vertical strips 𝑉𝑎 = {1 ≤ 𝜎 < 2 − 𝑎}  for 

fractional hypergeometric zeta functions 𝜁𝑎(𝑠)  and 𝑉𝑁 = {1 ≤ 𝜎 < 2}  for hypergeometric 

zeta functions 𝜁𝑁(𝑠), where 𝑎 is a positive real number between 0 and 1 and "𝑁" is a natural 

number (Birmechu & Gelete, 2022). It was shown that the fractional hypergeometric zeta 

functions 𝜁𝑎(𝑠)  are zero-free for infinitely many positive real numbers "𝑎"  in the delta 
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neighborhood of 1. Specifically, there is a positive real number 𝛿 so that 𝜁𝑎(𝑠) is zero-free 

where the classical Riemann zeta function 𝜁(𝑠) is zero-free for  𝑎 ∈ (1 − 𝛿, 1 + 𝛿) (Geleta, 

2022).  

The fractional hypergeometric zeta function 𝜁𝑎(𝑠) has an infinite number of simple poles at 

1, 0, −1, −2, …,  and an infinite number of zeros at 1 − 𝑎, −𝑎, −(1 + 𝑎), −(2 + 𝑎), … 

(Geleta, 2014; Geleta & Hassen, 2016). These zeros are called trivial zeros for the fractional 

hypergeometric zeta function. Observe that if 𝑎 > 1 is fixed, then all the trivial zeros for the 

fractional hypergeometric zeta function are on the negative real axis, and if 0 < 𝑎 < 1, then  

“1 − 𝑎” is the only positive trivial zero for the fractional hypergeometric zeta function. The 

question of whether or not these zeros are the only zeros of fractional hypergeometric zeta 

function  𝜁𝑎(𝑠) is unsettled. It has been suggested that it is possible to extend zero-free 

regions for these families of zeta functions to both the right and the left half of the complex 

plane with some evidence but no proof (Birmechu & Gelete, 2022). Motivated by this 

suggestion, in this paper, we show that the fractional hypergeometric zeta functions 𝜁𝑎(𝑠) 

have no zeros for 𝑎 > 1 on {𝜎 + 𝑖𝑡 ∈ ℂ: 𝜎 < 1} and for 0 < 𝑎 < 1 on {𝜎 + 𝑖𝑡 ∈ ℂ: 𝜎 < 0} 

except the trivial zeros aforementioned. For 0 < 𝑎 < 1  at present time we are not sure 

whether or not "1 − 𝑎" is the only zero on the critical strip of the Riemann zeta function 

{𝜎 + 𝑖𝑡 ∈ ℂ: 0 < 𝜎 < 1}  for the fractional hypergeometric zeta functions. To prove our 

results we use the method of analytic continuation for fractional hypergeometric zeta 

functions 𝜁𝑎(𝑠) strip-by-strip (Geleta & Hassen, 2016) to the left half of the complex plane; 

positivity results on oscillatory integrals and monotonicity of real-valued functions 

(Albeverio & Cebulla, 2007). 

Throughout this paper, we use the following notations for vertical strips between the poles 

of the fractional hypergeometric zeta functions. For each natural number 𝑛 we define the 

vertical strip 𝑉𝑛 as follows: 

𝑉𝑛 = {𝑠 ∈ ℂ: 𝑠 = 𝜎 + 𝑖𝑡, 𝑡 ∈ ℝ  and  1 − 𝑛 < 𝜎 < 2 − 𝑛} 

𝑉𝑛
+ = {𝑠 ∈ ℂ: 𝑠 = 𝜎 + 𝑖𝑡, 𝑡 > 0  and  1 − 𝑛 < 𝜎 < 2 − 𝑛}  

𝑉𝑛
− = {𝑠 ∈ ℂ: 𝑠 = 𝜎 + 𝑖𝑡, 𝑡 < 0  and  1 − 𝑛 < 𝜎 < 2 − 𝑛}  

𝑉𝑛 = 𝑉𝑛
+ ∪ 𝑉𝑛

− ∪ ℝ. 

 In this paper, for each natural number 𝑛 we first show that, 
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𝐹𝑛,𝑎(𝑠) = ∑ 𝐿𝑘(𝑎)Γ(𝑠 + 𝑘 − 2)

𝑛

𝑘=1

+ ∫ (
1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

𝑥−𝑎+𝑘−1) 𝑥𝑠+𝑎−2𝑒−𝑥
∞

0

𝑑𝑥 

is the analytic continuation of  

Γ(𝑠 + 𝑎 − 1)

Γ(𝑎 + 1)
𝜁𝑎(𝑠) = ∫

𝑥𝑠+𝑎−2

𝑎𝛾(𝑎, 𝑥)𝑒𝑥

∞

0

𝑑𝑥 

on 𝑉𝑛. So that 
Γ(𝑠+𝑎−1)

Γ(𝑎+1)
𝜁𝑎(𝑠) = 𝐹𝑛,𝑎(𝑠) on each 𝑉𝑛. Then to prove that 𝜁𝑎(𝑠) has no zeros on 

𝑉𝑛 , except for the trivial zeros mentioned, it is enough to show ℑ (𝐹𝑛,𝑎(𝑠)) has no zeros on 

𝑉𝑛
+ and 𝑉𝑛

−. This can be accomplished by showing that ℑ (
Γ(𝑠+𝑎−1)

Γ(𝑎+1)
𝜁𝑎(𝑠)) = ℑ (𝐹𝑛,𝑎(𝑠)), 

where ℑ(𝑧) represents an imaginary part of 𝑧. 

Observe that the left-hand side 
Γ(𝑠+𝑎−1)

Γ(𝑎+1)
𝜁𝑎(𝑠) is defined only for 𝜎 > 1, but the right-hand 

side 𝐹𝑛,𝑎(𝑠) is defined for 𝜎 ∈ ℝ\{1, 0, −1, −2, −3, … , 2 − 𝑛}.  

The main result of this paper is the following: 

Theorem 3.1 Let 𝑎 be a fixed positive real number. Then 𝜁𝑎(𝑠) has no zeros on 𝑉𝑛 except 

for infinitely many trivial zeros on the left side of 𝜎 = 0,  one in each of the intervals 

𝐼𝑛 = [−𝑛, 1 − 𝑛],  for 𝑎 ∈ (0, 1)  and one in each of the intervals 𝐼𝑛 = [1 − 𝑛, 2 − 𝑛]  for 

𝑎 > 1, where 𝑛 ∈ ℕ.  

In this theorem, the trivial zero "1 − 𝑎" is not included, as we are not sure whether or not it 

is the only positive root in the critical strip {𝑠 ∈ ℂ: 0 < 𝜎 = ℜ(𝑠) < 1}  of the classical 

Riemann zeta function. We present this issue in the conclusion part as a conjecture based on 

some evidence. 

The structure of the present work is as follows. In section 2 we review some of the main 

results obtained so far regarding fractional hypergeometric zeta functions 𝜁𝑎(𝑠) which we 

think are important for the coming sections. In section 3 we reveal and prove our main result 

and demonstrate that 𝜁𝑎(𝑠) are zero-free on the left half of the complex plane, except for the 

aforementioned trivial zeros. In section 4 we give some concluding remarks. 

Preliminaries  

In this section, we review basic terms and results which we will use to prove the main result 

of this paper. As our work is the continuation of (Birmechu & Gelete, 2022; Geleta, 2022), 
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we review some results concerning fractional hypergeometric zeta functions 𝜁𝑎(𝑠) and its 

analytic continuation, to state and prove our results in perspective. 

Definition 2.1 Let 𝑠 = 𝜎 + 𝑖𝑡 be a complex variable. Then the Riemann zeta function 𝜁(𝑠) 

for  𝜎 > 1 is defined by the Dirichlet series  

𝜁(𝑠) = ∑ 𝑛−𝑠

∞

𝑛=1

, 

Respectively by an Euler product over prime numbers P  

𝜁(𝑠) = ∏(1 − 𝑝−𝑠)−1

𝑝∈P

. 

For 𝜎 > 1, the classical zeta function 𝜁(𝑠) is also defined by the integral   

𝜁(𝑠) =
1

Γ(𝑠)
∫

𝑥𝑠−1

𝑒𝑥 − 1

∞

0

𝑑𝑥,  

where Γ(𝑠) is the Gamma function given by  

Γ(𝑠) = ∫ 𝑥𝑠−1𝑒−𝑥
∞

0

𝑑𝑥 . 

Since the convergent of the infinite product of non-zero factors is not zero, the zeta function 

does not vanish on the right half of the complex plane for 𝜎 > 1. Therefore, this product 

formula is one of the important tools to show that the Riemann zeta function is zero-free on 

the right half of the complex plane (actually for 𝜎 > 1). 

 The functional equation is also another important representation of the zeta function to 

locate the zeros of the zeta function. It is given by  

𝜁(𝑠) = 2(2𝜋)𝑠−1𝜁(1 − 𝑠)Γ(1 − 𝑠) sin (
𝜋𝑠

2
) 

and it is the celebrated functional equation for the Riemann zeta function. The reflection 

principle  

𝜁(𝑠̅) = 𝜁(𝑠)̅̅ ̅̅ ̅̅   for 𝑠 ∈ ℂ 

provides a further functional equation for the Riemann zeta function. The functional 

equation, together with the reflection principle, evokes a strong symmetry of the Riemann 

zeta function with respect to the so-called critical line 𝜎 =
1

2
.  

Definition 2.2 The points 𝑠 = −2, −4, −6, …  are called the “trivial” zeros of the zeta 

function 𝜁(𝑠), and the vertical strip 𝑉 = {𝑠 ∈ ℂ: 0 ≤ 𝜎 ≤ 1} is called the critical strip. 
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Regarding the zeros inside the critical strip, it is conjectured that these nontrivial zeros all 

lay on the critical line at 𝜎 =
1

2
. This conjecture is known as Riemann’s Hypothesis.  

As a generalization of the Riemann zeta function 𝜁(𝑠) via integral representation we have 

the following definition:    

Definition 2.3 The fractional hypergeometric zeta function 𝜁𝑎(𝑠) is defined for all positive 

real numbers "𝑎" and 𝜎 > 1 as  

𝜁𝑎(𝑠) =
Γ(𝑎 + 1)

Γ(𝑠 + 𝑎 − 1)
∫

𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

0

𝑑𝑥, 

where Γ(𝑠) is the Gamma function defined by 

Γ(𝑠) = ∫ 𝑡𝑠−1𝑒−𝑡
∞

0

𝑑𝑡 

and 𝛾(𝑎, 𝑥) is the lower incomplete gamma function given by 𝛾(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡𝑥

0
𝑑𝑡, and 

they have the following relation, 

Γ(𝑠) = ∫ 𝑡𝑠−1𝑒−𝑡
∞

0

𝑑𝑡 = ∫ 𝑡𝑎−1𝑒−𝑡
𝑥

0

𝑑𝑡 + ∫ 𝑡𝑎−1𝑒−𝑡
∞

𝑥

𝑑𝑡 = 𝛾(𝑎, 𝑥) + Γ(𝑎, 𝑥). 

In the above expression Γ(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡∞

𝑥
𝑑𝑡  is called the upper incomplete gamma 

function. 

Observe that when 𝑎 = 𝑁, the natural number we get the hypergeometric zeta functions 

𝜁𝑁(𝑠),  and if 𝑎 = 1,  we get a classical Riemann zeta function 𝜁(𝑠) . The fractional 

hypergeometric zeta functions 𝜁𝑎(𝑠) have poles at 𝑠 = 1, 0, −1, −2, … and zeros at 𝑠 = 1 −

𝑎, −𝑎, −(1 + 𝑎), −(2 + 𝑎), … (Geleta & Hassen, 2016). These zeros are called the trivial 

zeros of 𝜁𝑎(𝑠). 

Concerning zero free regions for fractional hypergeometric zeta function 𝜁𝑎(𝑠),  the 

following results were known.  

Theorem 2.1. Let 0 < 𝑎 < 1 be fixed. Then 𝜁𝑎(𝑠) ≠ 0 in the vertical strip  

𝑉𝑎 = {𝑠 = 𝜎 + 𝑖𝑡 ∈ ℂ: 1 ≤ 𝜎 < 2 − 𝑎} (Birmechu & Gelete, 2022).  

Theorem 2.2 There is a positive number 𝛿  such that the fractional hypergeometric zeta 

functions of order "𝑎", 𝜁𝑎(𝑠) is zero free for 𝑎 ∈ (1 − 𝛿, 1 + 𝛿) where the zeta function is 

zero-free (Geleta, 2022). 

Positivity Properties of Integrals 
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Proposition 2.1 For some nonnegative integer 𝑘 and positive real number 𝑡, let the function 

ℎ(𝑟) ≥ 0 on (0, ∞), ℎ ∈ 𝐿𝑙𝑜𝑐
1 (0, ∞), ℎ is decreasing and strictly decreasing on some open 

sub-intervals of the type (
𝑘𝜋

𝑡
,

(𝑘+1)𝜋

𝑡
). Then  

∫ ℎ(𝑟) sin(𝑡𝑟)
∞

0

𝑑𝑟 > 0. 

Moreover,  

∫ ℎ(𝑟) sin(𝑡𝑟)
𝑇

0

𝑑𝑟 > 0  

for any 𝑇 > 0 provided, ℎ  satisfies the above assumptions where (0, ∞) is replaced with 

(0, 𝑇) (Albeverio & Cebulla, 2007).    

Corollary 2.1 Let 𝑡 > 0  and 𝑥̃𝑡,𝑘 ≥ 1  be such that 𝑡 ln(𝑥̃𝑡,𝑘) = 2𝜋𝑘,  for some positive 

integer 𝑘 and let 𝑔 ≥ 0 on [𝑥̃𝑡,𝑘 , ∞), 𝑔 ∈ 𝐿𝑙𝑜𝑐
1 (𝑥̃𝑡,𝑘, ∞) such that 𝑥 ⟼ 𝑥𝑔(𝑥) is decreasing 

on [𝑥̃𝑡,𝑘, ∞), strictly decreasing on (ln
𝑗𝜋

𝑡
, ln

(𝑗+1)𝜋

𝑡
) for some positive integer 𝑗. Then  

∫ 𝑔(𝑥) sin(𝑡 ln 𝑥)
∞

𝑥𝑡,𝑘

𝑑𝑥 > 0. 

Moreover,  

∫ 𝑔(𝑥) sin(𝑡 ln 𝑥)
𝑇

𝑥𝑡,𝑘

𝑑𝑥 > 0 

For any 𝑇 > 𝑥̃𝑡,𝑘, whenever 𝑥𝑔(𝑥) is decreasing in [𝑥̃𝑡,𝑘, 𝑇], strictly decreasing on (ln
𝑗𝜋

𝑡
,

ln
(𝑗+1)𝜋

𝑡
) for some positive integer 𝑗 such that ln

𝑗𝜋

𝑡
≥ 𝑥̃𝑡,𝑘, and ln

(𝑗+1)𝜋

𝑡
≤ 𝑇 (Albeverio & 

Cebulla, 2007). 

 

Analytic Continuation 

Next, we review the analytic continuation. The analytic continuation of an analytic function 

is a process of extending the domain of the function to a larger domain. 

Definition 2.4 Let 𝑓 and 𝑔 both be analytic in domains 𝐷1 and 𝐷2 respectively. If 𝐷1 ∩ 𝐷2 ≠

∅ and 𝑓(𝑠) = 𝑔(𝑠) for all 𝑠 in 𝐷1 ∩ 𝐷2, then we call 𝑔 a direct analytic continuation of 𝑓 to 

𝐷2. 

The analytic continuation of the fractional hypergeometric zeta functions 𝜁𝑎(𝑠) has been 

shown strip-by-strip in stages (Geleta & Hassen, 2016). Concerning the analytic 

continuation of 𝜁𝑎(𝑠), the following results were also known. 
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Theorem 2.3 For 0 < ℜ(𝑠) = 𝜎 < 1, 

𝜁𝑎(𝑠) =
Γ(𝑎 + 1)

Γ(𝑠 + 𝑎 − 1)
[Γ(𝑠 − 1) + ∫ (

1

𝑎 𝛾(𝑎, 𝑥)
−

1

𝑥𝑎
) 𝑥𝑠+𝑎−2𝑒−𝑥

∞

0

𝑑𝑥] 

(Geleta & Hassen, 2016).   

In general this analytic continuation is based on the series representation of 
1

𝑎𝛾(𝑎,𝑥)
, where 

𝛾(𝑎, 𝑥)  is the lower incomplete gamma function given by 𝛾(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡𝑥

0
𝑑𝑡  and, 

Γ(𝑎, 𝑥) is the upper incomplete gamma function given by Γ(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡∞

𝑥
𝑑𝑡 and they 

have the following relation, Γ(𝑠) = 𝛾(𝑠, 𝑥) + Γ(𝑠, 𝑥). 

1

𝑎𝛾(𝑎, 𝑥)
= 𝑥−𝑎 [1 +

𝑎

1 + 𝑎
𝑥 + (

𝑎2

(1 + 𝑎)2
−

𝑎

2! (2 + 𝑎)
) 𝑥2

+ (
𝑎3

(1 + 𝑎)3
−

𝑎2

(1 + 𝑎)(2 + 𝑎)
+

𝑎

3! (3 + 𝑎)
) 𝑥3 + ⋯ ]. 

To simplify things put 𝐿1(𝑎) = 1, 𝐿2(𝑎) =
𝑎

1+𝑎
, 𝐿3(𝑎) =

𝑎2

(1+𝑎)2 −
𝑎

2!(2+𝑎)
,  

𝐿4(𝑎) =
𝑎3

(1+𝑎)3 −
𝑎2

(1+𝑎)(2+𝑎)
+

𝑎

3!(3+𝑎)
, … the coefficients of 𝑥𝑘−1 for each 𝑘 = 1, 2, 3, ….  

Using the above notation observe that, 

1

𝑎𝛾(𝑎, 𝑥)
=

1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

+ ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

. 

From this multiplying both sides by 𝑥𝑠+𝑎−2𝑒−𝑥 we obtain,  

𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)
= (

1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

) 𝑥𝑠+𝑎−2𝑒−𝑥 

                              + 𝑥𝑠+𝑎−2𝑒−𝑥 ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

, for 𝑥 ∈  (0, ∞).   

Extending zero free Region to the left half of the Complex plane for 𝜻𝒂(𝒔) 

In this section, we prove our main result and demonstrate that the fractional hypergeometric 

zeta function 𝜁𝑎(𝑠) has no zeros on the left half of the complex plane except the trivial 

zeros. 

Theorem 3.1 Let 𝑎 be a fixed positive real number. Then 𝜁𝑎(𝑠) has no zeros on 𝑉𝑛 except 

for infinitely many trivial zeros on the left side of 𝜎 = 0,  one in each of the intervals 

𝐼𝑛 = [−𝑛, 1 − 𝑛],  for 𝑎 ∈ (0, 1)  and one in each of the intervals 𝐼𝑛 = [1 − 𝑛, 2 − 𝑛]  for 

𝑎 > 1, where 𝑛 ∈ ℕ.  
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Proof: From the analytic continuation of 
Γ(𝑠+𝑎−1)

Γ(𝑎+1)
𝜁𝑎(𝑠) on each 𝑉𝑛, we have,  

Γ(𝑠 + 𝑎 − 1)

Γ(𝑎 + 1)
𝜁𝑎(𝑠) = ∫

𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

0

𝑑𝑥 = 𝐹𝑛,𝑎(𝑠), where 

𝐹𝑛,𝑎(𝑠) = ∑ 𝐿𝑘(𝑎)Γ(𝑠 + 𝑘 − 2)

𝑛

𝑘=1

+ ∫ (
1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

𝑥−𝑎+𝑘−1) 𝑥𝑠+𝑎−2𝑒−𝑥
∞

0

𝑑𝑥. 

 𝐹𝑛,𝑎(𝑠) is obtained as an analytic continuation of 
Γ(𝑠+𝑎−1)

Γ(𝑎+1)
𝜁𝑎(𝑠) as follows:   

The analytic continuation of 𝜁𝑎(𝑠) is based on the series representation of 
1

𝑎𝛾(𝑎,𝑥)
, where 

𝛾(𝑎, 𝑥) is the lower incomplete gamma function given by 𝛾(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡𝑥

0
𝑑𝑡 and, 

Γ(𝑎, 𝑥) is the upper incomplete gamma function given by Γ(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡∞

𝑥
𝑑𝑡.  

The series representation of 
1

𝑎𝛾(𝑎,𝑥)
 is given by 

1

𝑎𝛾(𝑎, 𝑥)
= 𝑥−𝑎 [1 +

𝑎

1 + 𝑎
𝑥 + (

𝑎2

(1 + 𝑎)2
−

𝑎

2! (2 + 𝑎)
) 𝑥2

+ (
𝑎3

(1 + 𝑎)3
−

𝑎2

(1 + 𝑎)(2 + 𝑎)
+

𝑎

3! (3 + 𝑎)
) 𝑥3 + ⋯ ]. 

To simplify things put 𝐿1(𝑎) = 1, 𝐿2(𝑎) =
𝑎

1+𝑎
, 𝐿3(𝑎) =

𝑎2

(1+𝑎)2 −
𝑎

2!(2+𝑎)
, 𝐿4(𝑎) =

𝑎3

(1+𝑎)3 −

𝑎2

(1+𝑎)(2+𝑎)
+

𝑎

3!(3+𝑎)
, … the coefficients of 𝑥𝑘−1 for each 𝑘 = 1, 2, 3, ….  

Using the above notation observe that, 

1

𝑎𝛾(𝑎, 𝑥)
=

1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

+ ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

. 

From this multiplying both sides by 𝑥𝑠+𝑎−2𝑒−𝑥 we obtain,  

𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)
= (

1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

) 𝑥𝑠+𝑎−2𝑒−𝑥 

                              + 𝑥𝑠+𝑎−2𝑒−𝑥 ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

, for 𝑥 ∈  (0, ∞).   

But then  

Γ(𝑠 + 𝑎 − 1)

Γ(𝑎 + 1)
𝜁𝑎(𝑠) = ∫

𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

0

𝑑𝑥 = ∫
𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

1

0

𝑑𝑥 + ∫
𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

1

𝑑𝑥 
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= ∫ (
1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

) 𝑥𝑠+𝑎−2𝑒−𝑥
1

0

𝑑𝑥

+ ∫ 𝑥𝑠+𝑎−2𝑒−𝑥 ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

1

0

𝑑𝑥 + ∫
𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

1

𝑑𝑥, 

where 

∫ 𝑥𝑠+𝑎−2𝑒−𝑥 ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

1

0

𝑑𝑥 = ∫ ∑ 𝐿𝑘(𝑎)𝑥𝑠+𝑘−3𝑒−𝑥

𝑛

𝑘=1

𝑑𝑥
1

0

 

 = ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

∫ 𝑥𝑠+𝑘−3𝑒−𝑥
1

0

𝑑𝑥                                                               

= ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

𝛾(𝑠 + 𝑘 − 2, 1)                                                                                              

 = ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

[Γ(𝑠 + 𝑘 − 2) − Γ(𝑠 + 𝑘 − 2, 1)], (since Γ(𝑠) = 𝛾(𝑠, 𝑥) + Γ(𝑠, 𝑥))  

= ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

Γ(𝑠 + 𝑘 − 2) − ∑ 𝐿𝑘(𝑎)Γ(𝑠 + 𝑘 − 2, 1)

𝑛

𝑘=1

                                             

= ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

Γ(𝑠 + 𝑘 − 2) − ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

∫ 𝑥𝑠+𝑘−3
∞

1

𝑒−𝑥𝑑𝑥                                       

= ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

Γ(𝑠 + 𝑘 − 2) − ∫ ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

𝑥−𝑎+𝑘−1𝑥𝑠+𝑎−2
∞

1

𝑒𝑥𝑑𝑥.                       

Therefore,  

Γ(𝑠 + 𝑎 − 1)

Γ(𝑎 + 1)
𝜁𝑎(𝑠) = ∫

𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

0

𝑑𝑥

= ∑ 𝐿𝑘(𝑎)Γ(𝑠 + 𝑘 − 2)

𝑛

𝑘=1

+ ∫ (
1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)

𝑛

𝑘=1

𝑥−𝑎+𝑘−1)
∞

0

𝑥𝑠+𝑎−2𝑒−𝑥𝑑𝑥 = 𝐹𝑛,𝑎(𝑠). 

The right-hand side converges for 𝜎 ∈ ⋃ (−𝑘, −(𝑘 − 1))𝑛
𝑘=1  for 𝑎 > 1 and 

 𝜎 ∈ ⋃ (1 − 𝑘, 2 − 𝑘)𝑛
𝑘=1   for 0 < 𝑎 < 1.  

In particular, for 𝑛 = 1, 2, and 3 we have the following expressions respectively, 
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𝐹1,𝑎(𝑠) = Γ(𝑠 − 1) + ∫ (
1

𝑎𝛾(𝑎, 𝑥)
−

1

𝑥𝑎
) 𝑥𝑠+𝑎−2𝑒−𝑥

∞

0

𝑑𝑥,                                                   

  𝐹2,𝑎(𝑠) =
𝑎

𝑎 + 1
Γ(𝑠) + Γ(𝑠 − 1) + ∫ (

1

𝑎𝛾(𝑎, 𝑥)
−

1

𝑥𝑎
−

𝑎

(𝑎 + 1)𝑥𝑎−1
) 𝑥𝑠+𝑎−2𝑒−𝑥

∞

0

𝑑𝑥, 

𝐹3,𝑎(𝑠) = ∑ 𝐿𝑘(𝑎)Γ(𝑠 + 𝑘 − 2)

3

𝑘=1

+ ∫ (
1

𝑎𝛾(𝑎, 𝑥)
− ∑ 𝐿𝑘(𝑎)

3

𝑘=1

𝑥−𝑎+𝑘−1) 𝑥𝑠+𝑎−2𝑒−𝑥
∞

0

𝑑𝑥. 

Now we have shown that 

Γ(𝑠+𝑎−1)

Γ(𝑎+1)
𝜁𝑎(𝑠) = 𝐹𝑛,𝑎(𝑠). 

Observe that 𝐹𝑛,𝑎(𝑠) is obtained by subtracting the terms 

∫ 𝑥𝑠+𝑎−2𝑒−𝑥 ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

1

0

𝑑𝑥 

and adding the same terms  

∫ 𝑥𝑠+𝑎−2𝑒−𝑥 ∑ 𝐿𝑘(𝑎)𝑥−𝑎+𝑘−1

𝑛

𝑘=1

1

0

𝑑𝑥 

to the term ∫
𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎,𝑥)

1

0
𝑑𝑥 in the following: 

 

Γ(𝑠 + 𝑎 − 1)

Γ(𝑎 + 1)
𝜁𝑎(𝑠) = ∫

𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

0

𝑑𝑥 = ∫
𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

1

0

𝑑𝑥 + ∫
𝑥𝑠+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

1

𝑑𝑥. 

 Therefore, the sign of the imaginary part of 
Γ(𝑠+𝑎−1)

Γ(𝑎+1)
𝜁𝑎(𝑠) is the same as the sign of the 

imaginary part of 𝐹𝑛,𝑎(𝑠). Their difference is the integral on the left-hand side is convergent 

only for 𝜎 > 1, but the integral on the right-hand side converges for 

 𝜎 ∈ ℝ\{1, 0, −1, −2, −3, … , 2 − 𝑛}. 

To apply positivity properties of the oscillatory integral, for 𝑥 ∈ (0, ∞), put  

ℎ(𝑥) =
𝑥𝑠+𝑎−2

𝑎𝛾(𝑎, 𝑥)𝑒𝑥
> 0. 

Then since for 1 < 𝜎 + 𝑎 − 2 < 0, the function ℎ(𝑥) is nonnegative, ℎ(𝑥) ∈ 𝐿𝑙𝑜𝑐
1 (0, ∞) and 

strictly decreases on any sub-interval (0, ∞) hence by Müntz formula we have  

∫
𝑥𝜎+𝑎−2𝑒−𝑥

𝑎𝛾(𝑎, 𝑥)

∞

0

sin(𝑡 ln 𝑥) 𝑑𝑥 > 0. 
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This implies that  

ℑ (
Γ(𝑠 + 𝑎 − 1)

Γ(𝑎 + 1)
𝜁𝑎(𝑠)) > 0. 

But as explained above, 

ℑ (
Γ(𝑠 + 𝑎 − 1)

Γ(𝑎 + 1)
𝜁𝑎(𝑠)) = ℑ(𝐹𝑛,𝑎(𝑠)) > 0. 

Thus, 𝜁𝑎(𝑠) ≠ 0 on 𝑉𝑛
+. But, then by reflection principle 𝜁𝑎(𝑠) = 𝜁𝑎(𝑠̅)̅̅ ̅̅ ̅̅ ̅, so that 𝜁𝑎(𝑠) ≠ 0, 

on 𝑉𝑛
−  as well. Therefore, 𝜁𝑎(𝑠) ≠ 0  on the left half of the complex plane except the 

aforementioned trivial zeros on the real axis. 

CONCLUSION  

In this paper, we described zero free regions on the left half of the complex plane. Moreover, 

for 0 < 𝑎 < 1, we showed that 𝜁𝑎(𝑠) has no zeros on 𝑉𝑛  except for infinitely many trivial 

zeros on the left side of 𝜎 = 0, one in each of the intervals 𝐼𝑛 = [−𝑛, 1 − 𝑛], for 𝑎 ∈ (0, 1) 

and one in each of the intervals 𝐼𝑛 = [1 − 𝑛, 2 − 𝑛] for 𝑎 > 1, where 𝑛 ∈ ℕ. Generally, if 

𝑛 < 𝑎 < (𝑛 + 1), then on each interval [−𝑛, 1 − 𝑛] we have exactly one trivial zero for 

fractional hypergeometric zeta function 𝜁𝑎(𝑠) of order "𝑎". But for 0 < 𝑎 < 1, we are not 

sure whether or not "1 − 𝑎" is the only zero of 𝜁𝑎(𝑠) on 𝐼1 = (0, 1). However, by analyzing 

the paper (Geleta, 2022) we conjecture that there are more zeros of 𝜁𝑎(𝑠) on 𝐼1 besides the 

trivial zero "1 − 𝑎" . And we call these zeros the nontrivial zeros of the fractional 

hypergeometric zeta functions. We expect and hope that a proof of such conjecture may 

shed light either to prove or disprove the Riemann Hypothesis.  
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